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Abstract: The SHETLAND-NET research project aims to build an Internet of Things (IoT) telemetry
service in Antarctica to automatize the data collection of permafrost research studies on interconnect-
ing remote wireless sensor networks (WSNs) through near vertical incidence skywave (NVIS) long fat
networks (LFN). The proposed architecture presents some properties from challenging networks that
require the use of delay tolerant networking (DTN) opportunistic techniques that send the collected
data during the night as a bulk data transfer whenever a link comes available. This process might
result in network congestion and packet loss. This is a complex architecture that demands a thorough
assessment of the solution’s viability and an analysis of the transport protocols in order to find
the option which best suits the use case to achieve superior trustworthiness in network congestion
situations. A heterogeneous layer-based model is used to measure and improve the trustworthiness
of the service. The scenario and different transport protocols are modeled to be compared, and the
system’s trustworthiness is assessed through simulations.

Keywords: transport protocols; trustworthiness; Antarctica; IoT; NVIS; remote WSN; LFN

1. Introduction

Research studies from multiple disciplines are carried out every year in Antarctica [1].
Researchers are temporarily placed in Antarctic base stations, normally located in the
peripheral areas of the continent. One of the main challenges in Antarctica is its lack of
conventional telecommunication systems [1], which hinders the deployment of wireless
sensor networks (WSNs). This fact reduces the possibilities of carrying out research studies
(e.g., automation of data collection and remote bases interconnection).

To overcome these difficulties, our research project, the SHETLAND-NET, proposes
the use of near vertical incidence skywave (NVIS) high-frequency (HF) radio links to
provide low-consumption Antarctic communications, continuing previous research on
ionospheric communications [2]. The ionosphere reflects this signal, providing a long
backhaul link of a 250 km radius coverage area [3,4]. Networks using this type of links can
be classified as long fat networks (LFNs), which are characterized by having long links with
a bandwidth delay product (BDP) greater than 1 × 105 bits (12,500 bytes) [5], following
Equation (1), where the link bandwidth (BW) is expressed in bits per second (bps) and the
round-trip time (RTT) in seconds (s).

BDP = BW × RTT. (1)

The NVIS technology can be used to interconnect remote base stations [6]. Our final
goal is to deploy a telemetry service by interconnecting remote WSNs [7], which will help in
the automatization of data gathering for Antarctic research studies. This deployment will be
carried out during the next Antarctic campaign in the field. However, this communication
technique can be error-prone due to the variant properties of the ionosphere. It may
present typical challenging network issues [8], such as intermittent connectivity, end-to-
end disconnection, and variable error rates, which could degrade the performance of the
overall offered IoT service.
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Therefore, before the deployment phase of our project, we had to study and try to
anticipate the expected trustworthiness of the IoT telemetry service we want to deploy. For
this reason, we defined a model to assess the trustworthiness of our proposed system [7].
This enabled us to foresee the possible trustworthiness issues that might arise during the
campaign in the field and decide on the respective countermeasures.

For our work, we focus on the use case of automating the monitoring of Ground
Terrestrial Network-Permafrost (GTN-P) stations [9], which are used in permafrost research
studies. Each of these GTN-P stations senses 32 different values hourly, which need to be
remotely monitored from a control center. During the Antarctic campaign, we will deploy
a test scenario. WSNs will be placed in two locations: the Spanish Juan Carlos I Base in
Livingston Island, and the Uruguayan Artigas Base in King George Island, both part of
the South Shetland Islands. The Artigas Base will provide Internet connectivity, so data
gathered from the WSNs can be reached remotely. However, sensors in the Juan Carlos I
Base will not have direct Internet connectivity, and the data from these sensors will need to
be sent through an NVIS link to the Artigas base in order to reach the Internet. Figure 1
shows the test scenario in Antarctica.
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Figure 1. Map of the South Shetland Islands in Antarctica [10], showing the position of the WSNs 
(blue circles) during the test scenario of the campaign. The NVIS link is represented with the dis-
continuous blue line, and the Internet connectivity is represented with the discontinuous red line. 
The reproduction of the image was slightly modified under a Creative Commons License (CC BY-
SA 3.0). 

As seen in previous research [4], the main drawback of the NVIS link is its unavaila-
bility during the night, given that the ionosphere’s characteristics vary drastically due to 
solar activity. For this reason, we decided to adopt a delay tolerant network (DTN) tech-
nique to opportunistically send all the data collected during the night as a bulk data trans-
fer when the NVIS link becomes available in the morning. This complex scenario required 
a trustworthiness assessment to analyze its feasibility to be deployed in Antarctica before 
the campaign [7]. As shown in our first round of simulations, performing this opportun-
istic bulk data transfer in an LFN that presents network challenges could degrade the 

Figure 1. Map of the South Shetland Islands in Antarctica [10], showing the position of the WSNs (blue
circles) during the test scenario of the campaign. The NVIS link is represented with the discontinuous
blue line, and the Internet connectivity is represented with the discontinuous red line. The reproduction
of the image was slightly modified under a Creative Commons License (CC BY-SA 3.0).

As seen in previous research [4], the main drawback of the NVIS link is its unavailabil-
ity during the night, given that the ionosphere’s characteristics vary drastically due to solar
activity. For this reason, we decided to adopt a delay tolerant network (DTN) technique
to opportunistically send all the data collected during the night as a bulk data transfer
when the NVIS link becomes available in the morning. This complex scenario required a
trustworthiness assessment to analyze its feasibility to be deployed in Antarctica before the
campaign [7]. As shown in our first round of simulations, performing this opportunistic
bulk data transfer in an LFN that presents network challenges could degrade the system’s
performance (packet losses) due to network congestion caused by the large quantity of
data sent. On the other hand, in prior work, we also analyzed the suitability of different
transport protocols for LFNs and designed a new one, the Enhanced Adaptive and Aggres-
sive Transport Protocol [5,11]. Given that the NVIS links can also be considered as LFNs
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and given the strong performance that some modern transport protocols showed in our
tests, we believed that it was crucial to assess how the use of modern transport protocols
could improve or affect the performance and trustworthiness of the service, especially in
this congestion situation provoked by the DTN technique. Having collected the initial
results and analyzed the system’s trustworthiness in previous work with the standard
transport protocols of the devices’ operative systems, this paper studies the trustworthiness
and compares the usage of different transport protocols by modeling the scenario in the
Riverbed Modeler. The paper contributions are as follows:

1. The definition and concretion of the remote sensor network architecture that will be
deployed in Antarctica, detailing the type of nodes, protocol stack, and communica-
tion techniques that will be used.

2. The modeling of the Antarctic scenario in the simulator. To perform the simulation
tests, we modeled the communication media (LoRa and NVIS), the telemetry appli-
cation, the faulty behavior of Byzantine nodes, the social trust management and the
consensus algorithms, the DTN technique, and the tested transport protocols.

3. The assessment and analysis of the results using our proposed trustworthiness model.
From this analysis, we conclude which transport protocol best suits our use case and
propose a modification of the scenario to be deployed in Antarctica.

The rest of this paper is structured as follows. Section 2 describes the related work in
DTNs, transport protocols, and a system’s trustworthiness. Section 3 defines our use case’s
network architecture. Section 4 reminds our proposed model to measure and evaluate a
system’s trustworthiness. Section 5 describes the simulation tests. Sections 6 and 7 present
and discuss the obtained results, respectively. Finally, Section 8 concludes the paper.

2. Related Work
2.1. Delay Tolerant Networks

The DTN was first presented as an alternative network architecture designed for
challenging networks [8] which suffer from high bit error rates, lack of end-to-end connec-
tivity, and long delays [12]. It was initially designed for interplanetary communications in
space [13], given the number of disconnections that this network suffers. However, over
the years, many other types of terrestrial networks have emerged in response to similar
problems (e.g., underwater networks [14], wildlife tracking networks [15], sparse wireless
sensor networks [16], and vehicular networks [17]).

Conventional TCP/IP protocols are not suitable for these kinds of environments. In
contrast, the RFC 5050 presented a DTN protocol, the Bundle Protocol (BP) [18], which
enabled message delivery to cope with all the issues of challenging networks, even if the
source and the destination were never connected to the network simultaneously. The BP is
based on a store–carry–forward overlay network, where “bundles” are transported through
endpoints on top of the transport layer of the OSI model when a connection opportunity is
present between two endpoints. The BP version 7 draft was recently released [19], which
introduces new features, such as optional CRCs for nonprimary blocks, and proposes other
changes to make it simpler, more capable, and easier to use. Many implementations of
the Bundle Protocol adapted to the constraints of IoT and WSNs exist nowadays, such as
IBR-DTN [20], µDTN [21], and DTN7 [19], among others.

However, other DTN approaches are not based on the BP but use their own rout-
ing protocol designed to be disruption- and delay-tolerant [8]. DISRN [22], PASR [23],
RMDTN [24], and PROPHET [25] are some examples of this kind of approach. More-
over, we can find other schemes that mix DTN with other kinds of technologies, such
as opportunistic networking [26,27], machine to machine (M2M) communications [28],
information-centric networking (ICN) [29], and fog computing [30].

As stated before, in our use case, we will use an opportunistic networking technique
to send all the data collected during the night in the morning, when the NVIS link comes
available, as a bulk data transfer. This kind of approach is possible because our research
group has studied the behavior of the ionosphere and NVIS links in prior research [4], and
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were aware that the link is down at nighttime and becomes available at sunrise. However,
we also know this bulk data transfer provokes network congestion, degrading the system’s
performance with packet losses. For this reason, it is crucial to study how modern transport
protocols can help improve this performance, especially in LFNs such as the NVIS links.

2.2. Transport Protocols

The performance of transport protocols for network communications has been a
topic under discussion and development since the Internet was conceived [5]. The first
extensions of the original Transmission Control Protocol (TCP) were [31] TCP Tahoe, TCP
Reno, TCP New-Reno, TCP SACK, and TCP-Vegas, which included new mechanisms such
as the fast retransmit, the fast recovery, the packet pair link estimation, the duplicated
acknowledgment (DUACK), and the selective acknowledgment (SACK).

However, these legacy transport protocols suffered performance degradation over
some types of networks, including LFNs. The LFN concept and its effects on TCP per-
formance were firstly defined and detailed in the Request For Comments (RFC) 1072,
which was obsoleted by the RFC 1323 to finally become the standard RFC 7323. Some TCP
variants and other transport protocols developed during the last decade have improved
their performance over LFNs [5]. Some of these are Scalable TCP (S-TCP) [32], FAST
TCP [33], High-Speed TCP (H-TCP) [34], Binary Increase Control TCP (BIC-TCP) [35],
and its evolution: TCP CUBIC [36]. TCP CUBIC (RFC 8312) is the most commonly used
transport protocol nowadays, given that it is the TCP variant used by default on most
operating systems. However, most of these protocols consider that packet loss always
occurs due to network congestion, reducing the congestion window. This assumption is
false for wireless links, where packets can also be dropped for other reasons (e.g., fading,
channel interference) [11]. Under these circumstances, reducing the congestion windows
might also degrade the transmission performance, achieving lower throughput [11].

For this reason, other transport protocols, such as Performance-oriented Congestion
Control (PCC) [37], TCP Veno [38], TCP Westwood+ [39], Dynamic TCP [40], Jitter TCP [41],
and Jitter Stream Control Transmission Protocol (JSCTP) [42] are focused on implement-
ing mechanisms to detect if lost packets occur due to network congestion or random
channel loss. They only reduce the congestion window in the first case, achieving better
performance [11].

In addition, other modern transport protocols, such as TCP BBR [43], Copa [44],
Indigo [45], and Verus [46], can achieve high performance, as proven in several physical
tests carried out by Stanford University’s platform Pantheon [45]. TCP BBR is one of
the top-performance protocols, managing the maximum bandwidth with the minimum
RTT. Copa is a practical delay-based protocol that fixes an RTT target and adjusts its
congestion windows based on the minimum RTT and the standing RTT measured during
data transfers. Indigo is a data-driven protocol that uses a machine-learning congestion
control scheme that learns from previous performance data. Verus is a transport protocol
oriented to cellular networks that relates the congestion windows with delay variations
through short-term RTT measurement.

Moreover, given that the aforementioned protocols did not meet the performance
requirements of our cloud data-sharing use case from previous work [11], we presented the
Adaptive and Aggressive Transport Protocol (AATP) [5] and its evolution, the Enhanced
AATP (EAATP) [11], which incorporates mechanisms to differentiate the packet losses’
cause, fairly adapting its sending rate accordingly to the network circumstances. The
performance in these tests was solid, both in simulations and in a physical testbed with an
LFN emulator, showing better results than other protocols, maximizing throughput and
minimizing packet losses [5,11]. Figure 2 shows a summary of the tests’ results. However,
we did not know how these protocols (including ours) could affect the trustworthiness of a
system, especially in the use case of this paper. For this reason, we thought that we needed
to assess whether using the EAATP in the remote Antarctic WSN use case could improve
the system’s performance and trustworthiness, especially in congestion situations.
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2.3. Trustworthiness in Cyber Physical Systems

A cyber physical system (CPS) is defined as a system with integrated computational
and physical capabilities. Wireless sensor networks, smart grids, and some IoT devices
are examples of CPSs [47]. Even though there is no consensus in the literature to define
the trustworthiness property and its scope [48], we can define a CPS’s trustworthiness, in
general terms, as the property of behaving as expected under adversarial conditions [47].
Network malfunction, Byzantine errors, and faulty nodes are examples of adverse condi-
tions that can affect a system’s trustworthiness. Some authors limit this definition to system
security issues only [49], while others propose a broader scope and relate trustworthiness
with other terms such as resilience, availability, reliability, scalability, maintainability, het-
erogeneity, data quality, hardware resources, and fault management policies [48]. We can
find many approaches to measuring or providing trustworthiness in literature, referring to
different elements. We classify them into four main categories [7]:

1. Data trustworthiness: It is defined as the possibility to ascertain the correctness of the
data provided by the source [50]. Many methods use different approaches that try to
detect faulty nodes, false alarms, and sensor misreading using. For instance, authors
in [51] use a fog computing architecture to detect, filter, and correct abnormal sensed
data. In addition, authors in [52] present a data intrusion detection system to trigger
false data from malicious attacks.

2. Network trustworthiness: Defined as the likelihood of a packet to reach its destination
unaltered despite the adversities (e.g., link failure, link saturation, or malicious attacks,
among others), it is a relevant aspect to consider in challenging networks [53], such
as the use case we propose. The network’s performance and trustworthiness have
been addressed from several perspectives, such as channel coding [54], transport
protocols [11], dynamic routing and topology control protocols [55,56], and DTN
architectures and protocols [8].

3. Social trustworthiness: This field has become more popular since the appearance
of the Social Internet of Things (SIoT) [57,58]. In SIoT trustworthiness, objects or
network nodes interact and establish social relationships, which are used to define
trust and reputation models that take into account several input parameters. Authors
in [59] present a model that considers factors as the computational capabilities of
the nodes, the type of relationship between them, the total number of transactions,
the credibility of a node, and the feedback provided by other nodes, among others.
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Authors in [60] present an evolution of the aforementioned trust management model,
which applies a machine learning algorithm to calculate novel parameters such as the
goodness, usefulness, and perseverance of a node. Thanks to these parameters, this
upgraded trust model is resilient to more types of malicious node attacks. Authors
in [61] propose another model that defines the input parameters as the expected gain
on success, the expected damage on a failure, the expected cost, the expected result,
and the goal. Authors in [62] define a decentralized self-enforcing trust management
system which is based on a feedback system and reputational secure multiparty
calculations to ensure the privacy of each party’s provided data.

4. Consensus: It represents a state where all the participants of the same distributed
system agree on the same data values [63]. Consensus protocols can be classified
into two major groups: proof-based consensus and Byzantine consensus. The first
group is related to blockchain technology, where all participants compete against
each other to mine a block, and the most commonly used protocols are proof-of-work,
proof-of-stake, and their variants [63]. The main drawback of these protocols for the
IoT is that devices usually have lesser hardware resources and low processing power,
which make the mining tasks of blockchain extremely difficult [63]. On the other
hand, Byzantine-based protocols implement voting-based mechanisms to reach an
agreement rather than competing among them, generating less resource consumption
in general. Their main drawback is the number of messages that need to be delivered
through the network to reach an agreement. Some well-known protocols from this
category are Practical Byzantine Fault Tolerance (PBFT), RAFT, PaXoS, and Ripple,
among others [63].

3. Remote Sensor Network Architecture

As stated before, the use case of this article is an IoT telemetry service to monitor
remote WSNs in Antarctica interconnected through NVIS LFNs. The monitored data are
used for permafrost studies and are gathered by GTN-P stations [9], which are the sensors
of our network. Each of these GTN-P stations senses 32 different values hourly, and these
values must reach the remote control center in Europe.

The GTN-P stations are equipped with a Moteino [64], an Arduino-based board
designed for low-power consumption applications. The Moteino will send, through LoRa,
its sensed values to a Raspberry Pi 3B+ gateway acting as a concentrator (access network).
LoRa was preferred over other alternatives (e.g., Sigfox, NB-IoT) as the access network
protocol because of its teleoperator independence. The LoRa network will be configured
with a transmission frequency of 868 MHz, a code rate CR3 (4/7), and a spreading factor
SF7, obtaining a 125 kHz channel bandwidth with a bit rate of 5.47 kbps. As proved in [65],
this configuration can offer a coverage range of up to 30 km in Antarctica. Figure 3a shows
the Moteino board with the LoRa transceiver that will be used during the campaign to
collect and forward the data from the GTN-P stations.

The Raspberry Pi 3B+ gateway will forward these data through NVIS links (backbone
network) to the Internet edge router in the Uruguayan Artigas Base in Antarctica. NVIS
was preferred over satellite communication because the latter presents coverage issues
in polar zones and has a higher economic cost [3]. The NVIS nodes will be configured to
transmit at the 4.3 MHz transmission band, with a channel bandwidth of 2.3 kHz and a bit
rate of 4.6 kbps. As in [3], we will increase the NVIS transmission reliability with an FEC
convolutional code (1/2 rate code) and interleaving. With this configuration, an NVIS link
range is up to 250 km. Figure 3b shows the NVIS node with the Raspberry Pi 3B+ gateway,
and Figure 3c shows the NVIS antenna (inverted vee antenna).
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From the closest NVIS node to the Internet edge router (the one with Internet con-
nectivity), data will be pushed to the Internet. From this moment, data monitoring and
gathering will be available remotely from the control center. Figure 4 shows the network
architecture diagram of the remote WSN.

The Artigas Base’s Internet connectivity is supposed to have high reliability, so our
trustworthiness assessment is focused on the access network (LoRa) and the backbone
network (NVIS). As mentioned before, the reliability of NVIS links is very dependent on
the ionosphere state, so it is not possible to send data during the night as all of it would be
lost. For this reason, we believed it was necessary to apply a DTN technique to prevent
the loss of data gathered during the night. In our case, we apply the DTN in the backbone
network, as it is more likely to suffer from a lack of end-to-end connectivity, long delays,
and network disruption.

Given that, in our case, we can predict a specific time slot when the NVIS links do not
work (nighttime), we opted to implement a lightweight DTN approach, opportunistically
sending the data collected during the whole night as a bulk transfer when the NVIS channel
becomes available in the morning. Each concentrator should have collected 13 different
sets of sensed values from each GTN-P station during the night. Our project requires that,
on average, at least 9 out of the 13 datasets gathered from each station (around 70%) reach
the control center correctly [7].

The DTN is usually implemented as an overlay network below the application layer
of the Open Systems Interconnection model (OSI model) and needs a convergence layer as
an interface to connect to the lower layers of the protocol stack. Figure 5 shows the protocol
stack from our use case.
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In the access network, LoRa uses a reduced protocol stack, thus avoiding layers 3 to 6
of the OSI model. The application data is directly encapsulated into the LoRa data link layer.
Once data arrives at the NVIS node, the protocol stack introduces all the OSI model layers
and adds the DTN layer below the application layer. The DTN layer needs a convergence
layer to adapt to the transport protocol below. Figure 4 shows the EAATP as the transport
protocol in the backbone network, although we test diverse transport protocols in our
simulations, as discussed in Section 5. Finally, when the data arrives at the last NVIS node
and must be forwarded through the Internet, the DTN and convergence layers are removed.
The common, well-known TCP/IP model is used, given that end-to-end connectivity at
this zone is assumed.

4. Trustworthiness Model Specification

In this section, we summarize our trustworthiness model. Further details of the
model can be found in [7]. To the best of our knowledge, none of the prior analyzed
trustworthiness approaches have tried to include all of the four trustworthiness areas but
have instead focused on one or some of them without considering the interdependencies
between all the four categories. This could lead to assuming incorrect reasons for a lower
trustworthiness level and implementing the wrong countermeasures to improve it. For this
reason, we believed it necessary to design our model to measure a system’s trustworthiness
level, which includes the four categories mentioned above and helps us to anticipate and
identify the possible weaknesses of our IoT telemetry system.

We propose a layer-based model to measure the trustworthiness and evaluate a
system’s performance (in our case, a group of interconnected remote Antarctic wireless
sensor networks providing an IoT telemetry service). This model is characterized by (1)
two baseline layers (data trustworthiness layer and network trustworthiness layer), (2) two
extension layers (social trustworthiness layer and consensus layer) that include optional
functionalities, and (3) the interaction between all of them. The data trustworthiness,
network trustworthiness, social trustworthiness, and consensus layers can collectively
define a system’s trustworthiness.

We postulate that each layer is characterized by its definition (scope), how the trust-
worthiness of that layer is measured (metric), and how the value of this metric can be
improved (countermeasures).

4.1. Data Trustworthiness Layer

This layer aims to ascertain the correctness of the source’s collected data. We propose
the measurement of this layer’s trustworthiness with the metric faulty sensing ratio (FSR),
defined in Equation (2) as the proportion of false sensed values (FSV) by all nodes and
total sensed values (TSV) in a defined period. The lower the FSR, the better the data
trustworthiness.

FSR =
FSV
TSV

. (2)

Corrective methods (e.g., [51,52]) which try to detect abnormal data (FSV) stored in
the source node due to a sensor malfunctioning, a misreading of the sensed data, or erratic
writing in the node’s memory, can be applied. Additional examples of corrective methods
are hashes, checksums, and parity bits, among others (see Figure 6).
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4.2. Network Trustworthiness Layer

This layer is responsible for assuring that a packet reaches its destination on time and
unaltered despite the adversities (e.g., link failure, network congestion). We measure this
layer’s trustworthiness with the packet delivery ratio (PDR), defined in Equation (3) as the
quotient between the total number of packets correctly received (Pr) by all nodes and the
total number of packets sent (Ps) by all nodes in the same time slot. The higher the PDR is,
the better the network’s trustworthiness.

PDR =
Pr
Ps

. (3)

At the network trustworthiness layer, transmission coding techniques [66] are used
to increase the robustness of the transmitted signal. Routing protocols and quality of
service (QoS) mechanisms are used to find the best path from a source to a destination by
quantifying the quality or performance of each link in the network [55,56]. Congestion
control algorithms and other mechanisms of transport protocols [11] can also improve
network trustworthiness. In the case of challenge networks, DTN overlay architectures
and protocols, such as the Bundle Protocol [8], can also improve network trustworthiness
(see Figure 6).



Remote Sens. 2021, 13, 4493 11 of 24

4.3. Social Trustworthiness Layer

This layer is responsible for leveraging the capability to autonomously establish social
inter-object relationships to improve the trust between them and the correctness of the
collected data. We measure this layer’s trustworthiness with the successful transaction rate
(STR), calculated as the proportion between the number of successful transactions (ST) and
the total number of transactions (TT) in a defined time slot, as stated in Equation (4). A
transaction l is considered successful when a node j expects to obtain some information or
data (v) from node i before a defined maximum reception time (Trxmax) and receives it as
expected, thus providing good feedback (fijl = 1) for that transaction to node i. The higher
the STR is, the better the social trustworthiness.

STR =
ST
TT

. (4)

Most solutions tend to use reputational mechanisms to determine which nodes to
trust when exchanging information. This reputation is commonly based on the feedback of
previous transactions to build an opinion of the node’s trustworthiness [59,60,62].

4.4. Consensus Layer

This layer is responsible for reaching a state where all group participants agree on
the same response or result. We measure this layer’s trustworthiness with the Byzantine
node tolerance (BNT), defined as the proportion of supported Byzantine nodes (Nb) that
can participate in the consensus system without affecting the correctness of the general
agreement and the total number of nodes (Nt) that participate in the consensus system, as
defined in Equation (5). A node is considered Byzantine if it experiences a crash or soft
fault that incapacitates it to behave as expected or if it does not behave as expected on
purpose (malicious node). The higher the BNT is, the higher the probability of reaching a
correct general agreement (GA).

BNT =
Nb
Nt

. (5)

Several mechanisms can be used to reach a decentralized GA that all group nodes
consider to be true. Theoretically, if the number of Byzantine nodes is higher than 50% of
the total number of participating nodes, none of the consensus mechanism will reach a
benevolent agreement [63]. A drawback of these mechanisms is that participating nodes
need to exchange a large quantity of messages between them to reach a consensus, which
can degrade the performance of low-bandwidth networks.

4.5. Trustworthiness Layers Relationships

Figure 6 synthesizes our trustworthiness model actors. Blue-colored elements form
part of our model baseline layers, and orange-colored elements form part of the extension
layers. The primary goal is to increase the STR to provide better trustworthiness. Three
main factors directly help increase the STR: (1) Mitigate/tolerate Byzantine errors; (2)
decrease the FSR; and (3) increase the PDR. These factors can be seen as secondary goals that
leverage the success of the final goal to provide trustworthiness. Each of these secondary
goals can be accomplished by implementing a set of actions or countermeasures. Each of
these countermeasures commonly affects only one of the goals. Moreover, two transversal
actions impact more than one secondary goal. These transversal actions implement the
extension layers of our model: the social trustworthiness layer and the consensus layer.

In Figure 6, continuous-line arrows indicate a positive outcome, discontinuous-line
arrows indicate a negative outcome, and dotted-line arrows indicate an uncertain outcome.
On the one hand, the use of social trustworthiness can reduce network congestion thanks
to the ostracism of nodes with the worst reputation by only sending the values from nodes
with the highest reputation to the control center. In addition, social trustworthiness also
helps to reduce the FSR thanks to the ostracism of bad reputation nodes. It also leverages
the mitigation of Byzantine errors because only values from high reputation nodes (leaders)
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are trusted. On the other hand, implementing a consensus mechanism mitigates Byzantine
errors thanks to the general agreements reached by all nodes from a consensus group.
Contrarily, the consensus layer can negatively affect the PDR, given that it introduces a
considerable amount of extra traffic to the network, which could lead to link congestion.

5. Simulation Tests

As mentioned before, the first tests we performed to assess the system’s trustworthi-
ness in this use case [7] showed that it was possible to have an STR greater than 0.7 in
some circumstances. However, we noticed that the DTN approach of using opportunistic
bulk data transfers when the NVIS link becomes available produced network congestion
in these periods. On the other hand, we also compared, evaluated, and designed modern
transport protocols for heterogeneous LFNs to improve the performance of data transfers
over this type of network. Our tests showed that our protocol, the EAATP, maximized
throughput and minimized packet losses in LFNs. However, we did not evaluate how the
use of these protocols could affect the trustworthiness of a system. Given that the NVIS
links in the remote Antarctic WSN use case can be considered an LFN (with a BDP greater
than 12,500 bytes, from Equation (1)), we thought that using a particular transport protocol
might affect the system’s trustworthiness. For this reason, we decided to run a second
round of tests and check if the hypothesis was correct.

In order to (1) foresee which problems may occur during the Antarctic campaign, (2)
decide which transport protocol to use, and (3) build more accurate expectations of the
system’s performance and outcomes, we applied our trustworthiness model to measure
and evaluate them in this use case. For this purpose, the use case scenario was represented
and evaluated in the Riverbed Modeler simulator. The first step is the modeling of the
different elements that characterize our use case. More details about the modeling of this
scenario and its technologies and protocols can be found in [7,11].

Firstly, the backbone network (NVIS) and the access network (LoRa) were modeled
separately, characterized as stated in Table 1 following the aforementioned description of
the network architecture (please revisit Section 3) and the link availability results from [4]
and [65]. On the one hand, LoRa does not experience any availability variation between
daytime and nighttime, being fully available if there is LoS between the sensor and the
gateway, and with partial availability in the case of no LoS. On the other hand, NVIS is not
affected by not having LoS. However, its availability varies hour by hour, depending on
the ionosphere state, which is highly correlated to solar activity. During nighttime (5 p.m.
to 6 a.m.), the NVIS links are not available, while during daytime (6 a.m. to 5 p.m.), their
availability varies between 70% and 100%.

Table 1. Network parameters used to model the scenario.

Parameter NVIS LoRa

Transmission Band 4.3 MHz 868 MHz
Channel Bandwidth 2.3 kHz 125 kHz

Channel Bitrate 4.6 kbps 5.47 kbps
Coverage Range Up to 250 km Up to 30 km

Daytime Availability (6 a.m.–5 p.m.) 70–100% 100% (LoS), 2–100% (No LoS)
Night Availability (5 p.m.–6 a.m.) 0% 100% (LoS), 2–100% (No LoS)

Maximum Payload Size 242 bytes 140 bytes

Secondly, we modeled the following transport protocols as in our previous work [11]:
BBR, Copa, CUBIC, EAATP, Indigo, and Verus. We focused on modern transport protocols
that have been proven to perform well [45] and TCP CUBIC, which is the standard transport
protocol in most operating systems nowadays. These protocols were modeled according
to the results from our previous work in physical testbeds and simulations [5,11] and the
Pantheon tests [45].
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Thirdly, we needed to model the Byzantine behavior of nodes. As stated in [67], the
probability Pb of a node having a Byzantine fault is unlikely to be constant over time.
The node reliability can be related to the battery charge level by associating the battery
discharge with the WSN node aging process. Following the model in [67], we can assume
the impact of aging as following a linear form, as defined in Equation (6):

Pb(t) = Pb0 + kt, (6)

where Pb0 is the probability of a node having a Byzantine fault at time t = 0, and k is the
aging factor. This probability Pb increases hour by hour until its battery has practically run
out at t = td, when it experiences a crash fault and Pb(td) = 1. In the simulations, we tested
nine different values of Pb0 to emulate the use of different corrective methods (see Table 2).

Table 2. Simulation parameters.

Parameter Value

Number of runs per test 30
Simulation duration 120 h (5 days)

Pb0
[1 × 10−3, 2 × 10−3, 4 × 10−3, 8 × 10−3, 1 × 10−2, 2 ×

10−2, 4 × 10−2, 8 × 10−2, 1 × 10−1]
k 5.7 × 10−5

Transport protocol [BBR, Copa, CUBIC, EAATP, Indigo, Verus]
Redundancy Mode [None, Social, Consensus (PBFT)]

Number of NVIS gateways 5
GTN-P clusters per gateway [8,16,32,64,128,256,512,1024,2048,4096]

GTN-P redundant stations per cluster [1,2,3,4,5,6,7,8,9,10]

As we are in a simulation environment and we can keep track of all collected, sent,
and received values by all nodes, we can compute FSV and ST by comparing the values
that the sensor should have collected with the values that the sensor actually sends and
the values that the control center receives, respectively. In a testbed environment with real
devices, this would only be possible if previously known ground truth values were sent, in
order to compare them with the values received by other nodes.

To model the implementation of the social trustworthiness layer, we used a simplified
version of the objective reputational model from [59]. Our use case simplification assumes
that all transactions will have the same weight, all nodes have the same computational
capability, and the relationship factors between them are equal. Finally, a consensus
protocol can be modeled by knowing the background traffic (bps) introduced to the network
and the number of Byzantine nodes supported (Nb). In our use case, each group of
redundant GTN-P stations will run the PBFT algorithm [68]. The background traffic grows
exponentially as the number of nodes participating in the consensus (Nt) group increases.
Moreover, the number of tolerated Byzantine nodes Nb is calculated as in Equation (7):

Nb =

⌊
Nt − 1

3

⌋
. (7)

Our scenario has five NVIS gateways, each providing an independent LoRa coverage
area (access network) with its own sensors. For each gateway, there are clusters of sensors
measuring the same data. In our test on the field during the campaign, we will deploy
eight clusters per gateway. However, in the simulations, we also tested larger numbers of
clusters (as seen in Table 2) to assess the goodness of our model and the system’s scalability.
Each cluster will have a specific number of redundant sensors measuring the same data.
From our previous tests, we defined that we would set seven redundant sensors (GTN-P
stations) in each cluster in the field deployment, so two Byzantine nodes could be tolerated.
Despite this, in the simulation tests, we varied this number from 1 to 10 in order to compare
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the results with different Byzantine node tolerances (from 0 to 4, following Equation (7))
and assess the system’s scalability.

The simulations consider three different operational modes: the standard mode (no
redundancy), the redundancy mode with social trustworthiness, and the redundancy mode
with consensus. In the standard mode, all the values gathered by every sensor are pushed
through the backbone network to the remote control center. On the contrary, in redundancy
modes, only one value is forwarded to the control center by each cluster. This value is
agreed by cluster members with the social or the consensus mechanism. This fact reduces
the amount of traffic that has to pass through the NVIS backbone LFN, although, contrarily,
it introduces more overload to the LoRa access network due to the messages that need to
be exchanged between cluster members.

All these possibilities add up a total amount of 16,200 different scenarios. Each
scenario was simulated for 120 h (5 days) to experience diverse nighttime and daytime
cycles, and each test was repeated 30 times to assure results confidence. A summary of the
simulation parameters to run our tests is shown in Table 2.

6. Results

After performing all the simulations, the average value of the STR was calculated
for every set of 30 runs per test. The results obtained have a maximum error deviation
of 0.68% with a confidence interval of 99%. Three different operational modes for the
telemetry service can be identified: the standard mode, the redundancy mode with social
trustworthiness layer, and the redundancy mode with consensus layer. For every mode,
an N × M-dimension grid with all the possible combinations of stimulation parameters is
formed, where M is the number of different Pb0 values, and N is the number of different
GTN-P node combinations per gateway. For every point in this grid and for every transport
protocol, the average value of the trustworthiness STR metric is computed. If we link all
the STR values for every neighboring point in the grid, a mesh with all the STR values for
each transport protocol is formed. We call this mesh the trustworthiness mesh.

Given that it is complex to understand the trustworthiness mesh results, we first use
an example to describe how the results are visualized. If we wanted to represent the results
for only one transport protocol, when the number of redundant sensors per cluster is 1, and
the number of clusters varies from 8 to 4096 (Table 2, row 9) we could obtain a mesh similar
to Figure 7a. The “Byzantine Fault Probability” axis has nine discrete points, corresponding
to the nine different Pb0 values shown in Table 2, row 4. The “Redundant Sensors × Sensor
Clusters” axis has 10 discrete points, which are 1 × 2N, where N = [3, 4, . . . , 12], according
to the values shown in Table 2, row 9. Figure 7a shows the general behavior that STR values
will follow in the actual results. On the one hand, across the “Byzantine Fault Probability”
axis, the STR decreases as the Pb0 increases, given that more values are faulty sensed when
the Pb0 is higher. On the other hand, across the “Redundant Sensors × Sensor Clusters”
axis, the STR decreases as the number of clusters increases, given that more devices are
introduced to the network, provoking more packet losses caused by network congestion.

Similarly, suppose we wanted to show, in a single mesh, the results from the same
scenario, but the number of redundant sensors per cluster varied between 1 and 2. In that case,
we could obtain a mesh similar to Figure 7b. In this case, the “Byzantine Fault Probability”
axis remains the same. In contrast, now the “Redundant Sensors × Sensor Clusters” axis has
20 discrete points, which are [1 × 2N, 2 × 2N] where N = [3, 4, . . . , 12]. If all the discrete
points of this axis were labeled, it could be too congested. For this reason, we only label the
beginning of each “redundant sensors” series, i.e., the “1 × 8” and the “2 × 8” discrete points.
The same behavior as before is observed, but now the STR values recover when we jump
from the “1 × 4096” to the “2 × 8” discrete point, given that much fewer nodes are introduced
to the network, i.e., fewer packets are dropped due to network congestion.

Analogously, Figure 7c shows the trustworthiness mesh if we wanted to visualize all
the results simultaneously, varying the number of redundant sensors from 1 to 10 (Table 2,
row 10). In this case, the “Redundant Sensors × Sensor Clusters” axis has 100 discrete
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points, which are [1 × 2N, 2 × 2N, . . . , 10 × 2N] where N = [3, 4, . . . , 12]. In this case, we
observe the same general behavior again. However, now we can also detect that, if we
compare the discrete points with the same number of clusters, the STR also decreases as
the number of redundant sensors per each cluster increases, i.e., more packet losses are
caused by network congestion as more nodes are introduced to the network.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Trustworthiness mesh examples: (a) only one redundant sensor per cluster; (b) one or two redundant sensors 
per cluster; (c) one to ten redundant sensors per cluster. 
Figure 7. Trustworthiness mesh examples: (a) only one redundant sensor per cluster; (b) one or two redundant sensors per
cluster; (c) one to ten redundant sensors per cluster.



Remote Sens. 2021, 13, 4493 16 of 24

Figure 8 shows the frontal view of the trustworthiness mesh from Figure 7c. From
this view, we can observe how the STR varies across the “Redundant Sensors × Sensor
Clusters” axis without showing the variance, depending on the Pb0 of the nodes.
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Our model can also be used to visualize the working domain in which to implement
our service, given a desired minimum trustworthiness level. As stated before, our use
case requires a minimum STR of 0.7, so an average of 9 out of 13 sensed values per night
reach the control center correctly to meet the objective of [9]. Figure 9 shows the working
domain of the example trustworthiness mesh presented in Figures 7c and 8, requiring an
STR higher than 0.7. For every point in the grid, if no solution provides an STR higher than
the desired minimum value, the surface for that area is white-colored, meaning we cannot
deploy the service with those conditions. On the contrary, if one or more solutions achieve
an STR higher than the desired minimum value, the surface is painted with the color of
the solution with the highest STR. This representation is achieved by “cutting” Figure 8
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along the yellow line, which represents the minimum STR level that must be achieved. The
part of the trustworthiness mesh above the yellow line meets the criteria and is part of the
working domain, while the part below does not.

After clarifying how to visualize the data shown in these graphs, we present the tests’
results in the following graphs. Figures 10–12 show the trustworthiness mesh for the
standard mode, the redundancy mode with social trustworthiness, and the redundancy
mode with consensus, respectively. In each graph, the trustworthiness mesh of each
transport protocol is superposed with the others in order to visualize which one achieves
the highest STR. Moreover, Figure 13 shows the trustworthiness working domain of our
telemetry service for an STR higher than 0.7
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7. Discussion

On the one hand, Figures 10–12 show that the levels of trustworthiness achieved
are similar for all the studied transport protocols with low network load (left side of the
mesh and cases with fewer sensor clusters). This fact seems reasonable because we already
selected the most suitable and top-performance transport protocols to perform our tests,
discarding those that do not adapt well in LFNs. We believe that if other transport protocols
less suitable for this kind of network had been tested, the difference in the results would
be more evident. However, (1) the levels of BBR and Verus are slightly lower than their
competitors, and (2) Copa, Indigo, and EAATP share the highest STR values in the case
of low network load, although the predominance of EAATP grows as the network load
increases (the yellow mesh is more visible than the others).
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On the other hand, we can also see that the redundancy mode with social trustwor-
thiness (Figure 11) is the most robust scenario, given that its STR decrease in high-load
situations is less accentuated compared to the other cases (Figures 10 and 12), always
maintaining STR values greater than 0.5. Furthermore, it is confirmed that, in general,
as the probability of a node experiencing a Byzantine error decreases, the achieved STR
values accordingly increase.

From the trustworthiness working domain (Figure 13), we can see the aforementioned
predominance of the EAATP. As mentioned in Section 5, the scenario intended to deploy in
the next Antarctic campaign was the “7 redundant sensors × 8 sensor clusters”. Concretely,
we can check that this case reaches the STR requirement of 0.7 for any Pb0 value.

If we focus on this case, in Figure 13, we can see that the EAATP is the most trustworthy
protocol except for the Pb0 = 1 × 10−1 and Pb0 = 8 × 10−2 cases, in which Copa performs
better. Table 3 shows, in detail, the results for the “7 redundant sensors × 8 clusters” case.
For each protocol and each Pb0, we show the best STR achieved from the three possible
operational modes (standard, social, and consensus). Although Copa, CUBIC, and EAATP
have similar results, the latter can outperform Copa and CUBIC between 0.1% and 0.5%
better in terms of STR in most cases, and also outperforms up to 7% more than its other
competitors. These results confirm our hypothesis, i.e., using a particular transport protocol
can directly affect the system’s trustworthiness in our use case.

Table 3. Best STR achieved by each transport protocol in the “7 redundant sensors × 8 clusters” case.
The best STR for each Pb0 is highlighted in bold.

Pb0 BBR Copa CUBIC EAATP Indigo Verus

1 × 10−3 0.767 0.818 0.817 0.818 0.814 0.801
2 × 10−3 0.767 0.814 0.814 0.819 0.817 0.802
4 × 10−3 0.772 0.819 0.819 0.819 0.811 0.795
8 × 10−3 0.768 0.816 0.814 0.817 0.807 0.797
1 × 10−2 0.767 0.818 0.817 0.820 0.805 0.794
2 × 10−2 0.767 0.814 0.813 0.815 0.799 0.782
4 × 10−2 0.762 0.811 0.809 0.813 0.777 0.765
8 × 10−2 0.750 0.796 0.795 0.794 0.741 0.727
1 × 10−1 0.731 0.785 0.781 0.779 0.724 0.710

We believe that the EAATP’s superior trustworthiness is caused by the fact that
it incorporates a fairness mechanism to share the network bandwidth, which reduces
congestion and packet losses. Moreover, EAATP’s congestion control tries to occupy the
entire network bandwidth rapidly, and its mechanism to differentiate between random
channel losses and congestion losses optimizes its achieved throughput in heavy congestion
situations. These features give the EAATP a competitive advantage in terms of performance
in our use case, where the DTN opportunistic scheme we use to send accumulated data
during the night as a bulk data transfer congests the network.

For these reasons, we decided to use the EAATP as the backbone network transport
protocol for our IoT telemetry service that will be deployed in the field during the next
Antarctic campaign. Moreover, we can identify which of the three modes best suits the
different scenarios which may arise. In general, the standard mode obtains the highest STR
values when there is no redundancy (1 × N zone). If redundancy is applied, the consensus
solution shows the highest levels of trustworthiness in most cases with a low network load.
However, as mentioned before, when the network load increases, the social trustworthiness
solution is more robust, achieving the highest STR values for those cases.

Finally, we also propose that the scenario to be deployed is reconsidered. In the
“7 redundant sensors × 8 clusters” scenario, each gateway has 56 sensors connected, while
only eight different values are sensed, which might be an excessive low efficiency. We
propose to switch to the “5 redundant sensors × 16 clusters”. In this case, increasing the
number of sensors by 43% (80 sensors per gateway) results in increasing the number of
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different sensed values by 100% (16 values). Table 4 shows the detailed results for this
use case. If we compare the results from Tables 3 and 4, the latter case achieves slightly
worse STR values (which seems evident because we decrease the redundancy and increase
the total number of sensors). However, Copa, CUBIC, EAATP, and Indigo still meet the
required STR level of 0.7, providing trustworthiness to the service. In this case, we can also
confirm the predominance of the EAATP, being the protocol with the highest STR in five
of the nine Pb0 cases, while Copa and CUBIC achieve the highest STR in two cases each.
Moreover, EAATP outperforms its competitors by up to 5.1%, while in the cases where
another protocol outperforms the EAATP, it is only by 0.3% at most. Thus, we believe that
the EAATP would also be the most suitable transport protocol to be used in this case.

Table 4. Best STR achieved by each transport protocol in the “5 redundant sensors × 16 clusters”
case. The best STR for each Pb0 is highlighted in bold.

Pb0 BBR Copa CUBIC EAATP Indigo Verus

1 × 10−3 0.757 0.797 0.798 0.797 0.795 0.783
2 × 10−3 0.752 0.799 0.799 0.798 0.796 0.783
4 × 10−3 0.748 0.796 0.798 0.797 0.792 0.777
8 × 10−3 0.75 0.794 0.795 0.801 0.792 0.775
1 × 10−2 0.749 0.793 0.795 0.796 0.786 0.775
2 × 10−2 0.74 0.79 0.787 0.792 0.779 0.764
4 × 10−2 0.73 0.776 0.781 0.781 0.757 0.747
8 × 10−2 0.698 0.74 0.736 0.737 0.727 0.706
1 × 10−1 0.672 0.717 0.714 0.718 0.704 0.692

8. Conclusions

This paper analyzes the applicability of the deployment of a remote WSN for the
Antarctic region using NVIS technology and the provision of an IoT telemetry service for
permafrost studies. This service will be deployed during the 2021–2022 Antarctic campaign
of the SHETLAND-NET project. This work focuses on analyzing and comparing transport
protocols’ trustworthiness in our remote WSN with DTN use case, which uses LoRa at
the access network and NVIS links at the backbone network. Due to certain ionospheric
characteristics, NVIS links do not work correctly at night. For this reason, values sensed at
night are sent opportunistically to the control center as bulk data when the NVIS channel
becomes available, which might cause network congestion. In this situation, the choice
to use a particular transport protocol might affect the overall system’s trustworthiness.
In order to study the viability of the service to be implemented before its deployment in
the field during the Antarctic campaign and in an attempt to compare the performance of
various transport protocols, we use our model to measure and evaluate the trustworthiness
of the proposed system. This trustworthiness model consists of four layers that can affect
the STR trustworthiness metric.

Three operational modes and six transport protocols were analyzed under different
conditions using the Riverbed Modeler simulator. The results show a predominance
of the EAATP as the most trustworthy transport protocol, while BBR and Verus have
the worst trustworthiness. Adding redundancy to the measured values with multiple
sensors and applying a social reputational mechanism improves the robustness of the
system’s trustworthiness, reaching higher STR values and never dropping below 0.5, even
in high-load scenarios. On the contrary, a consensus mechanism improves the system’s
trustworthiness if the number of sensors is kept at a low value.

The research group decided to deploy eight clusters for each NVIS gateway and seven
GTN-P redundant stations per cluster in the Antarctic campaign. The collected results
confirm that this scenario achieves the minimum STR required of 0.7, resulting in a feasible
deployment. In this case, the results show that the EAATP can outperform up to 7% of
the other analyzed transport protocols in terms of trustworthiness (STR). However, we
recommend sacrificing some redundancy (i.e., trustworthiness) and increasing the number
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of different sensed values, implementing the scenario with 16 clusters and five GTN-P
redundant stations. In this case, although slightly worse STR values are achieved, the
requirement of achieving at least an STR of 0.7 is met, while more data can be remotely
monitored from the control center. The EAATP is also the most trustworthy transport
protocol in this case, outperforming its competitors by up to 5.1%. Thus, the research group
has decided to use the EAATP as the transport protocol for the offered telemetry service.

Future work aims to (1) study the viability of using the same network architecture
to deploy an integrated sensing and communication system (ISAC) capable of using
ionosondes as data transmission signals through NVIS; and (2) analyze the implementation
of other DTN architectures and protocols to improve the trustworthiness of the entire
system in situations when the availability of the NVIS link is not previously known
(daytime).
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The following abbreviations are used in this manuscript:
AATP Adaptive and Aggressive Transport Protocol
BDP Bandwidth Delay Product
BIC-TCP Binary Increase Control TCP
BNT Byzantine Node Tolerance
BP Bundle Protocol
bps Bits per second
BW Bandwidth
CPS Cyber Physical System
DTN Delay Tolerant Network
DUACK Duplicated Acknowledgment
EAATP Enhanced AATP
FSR Faulty Sensing Ratio
FSV False Sensed Values
GA General Agreement
GTN-P Ground Terrestrial Network-Permafrost
HF High Frequency
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H-TCP High-Speed TCP
ICN Information-Centric Networking
IoT Internet of Things
ISAC Integrated Sensing and Communication System
JSCTP Jitter Stream Control Transmission Protocol
LFN Long Fat Network
M2M Machine to Machine
NVIS Near Vertical Incidence Skywave
OSI Open Systems Interconnection
PBFT Practical Byzantine Fault Tolerance
PCC Performance-oriented Congestion Control
PDR Packet Delivery Ratio
QoS Quality of Service
RFC Request For Comments
RTT Round-Trip Time
SACK Selective Acknowledgment
SIoT Social Internet of Things
S-TCP Scalable TCP
ST Successful Transactions
STR Successful Transaction Rate
TCP Transmission Control Protocol
TSV Total Sensed Values
TT Total Transactions
WSN Wireless Sensor Network
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