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Abstract: Remote sensing of flow conditions in stream channels could facilitate hydrologic data
collection, particularly in large, inaccessible rivers. Previous research has demonstrated the potential
to estimate flow velocities in sediment-laden rivers via particle image velocimetry (PIV). In this
study, we introduce a new framework for also obtaining bathymetric information: Depths Inferred
from Velocities Estimated by Remote Sensing (DIVERS). This approach is based on a flow resistance
equation and involves several assumptions: steady, uniform, one-dimensional flow and a direct
proportionality between the velocity estimated at a given location and the local water depth, with
no lateral transfer of mass or momentum. As an initial case study, we performed PIV and inferred
depths from videos acquired from a helicopter hovering at multiple waypoints along a large river
in central Alaska. The accuracy of PIV-derived velocities was assessed via comparison to field
measurements and the performance of an optimization-based approach to DIVERS was quantified
by comparing calculated depths to those observed in the field. We also examined the ability of
two variants of DIVERS to reproduce the discharge recorded at a gaging station. This analysis
indicated that the accuracy of PIV-based velocity estimates varied considerably from hover to hover
along the reach, with observed vs. predicted R2 values ranging from 0.22 to 0.97 and a median
of 0.57. Calculated depths were also reasonably accurate, with median normalized biases from
−4% to 9.9% for the two versions of DIVERS, but tended to be under-predicted in meander bends.
Discharges were reproduced to within 1% and 4% when applying the optimization-based technique
to individual hovers or reach-aggregated data, respectively. The results of this investigation suggest
that, in addition to the velocity field derived via PIV, DIVERS could provide a plausible, first-order
approximation to the reach-scale bathymetry. This framework could be refined by incorporating
hydraulic processes that were not represented in the initial iteration of the approach described herein.

Keywords: depth; bathymetry; flow velocity; discharge; flow resistance; roughness; particle image
velocimetry (PIV); river; remote sensing; Alaska

1. Introduction

Information on streamflow and hydraulic characteristics in rivers is essential to a
range of applications in water resource management. For example, such data are crucial
for monitoring water supply, maintaining infrastructure, assessing flood hazards, and
characterizing aquatic habitat. However, measuring velocity, depth, and discharge via
conventional field methods can be difficult, dangerous, and expensive, particularly in
remote areas with limited access. In the U.S., this problem is most acute in Alaska, where the
state’s 1,200,000 km of rivers and streams are currently monitored by only 111 continuously
operating stream gages; the density of this observational network is far less than that of
the contiguous U.S. [1]. A primary reason so many of Alaska’s rivers remain ungaged is
the logistical challenge of making periodic streamflow measurements and maintaining
gages. Collecting more detailed, spatially distributed data on flow velocities and depths
within a reach represents an even more daunting task and would pose additional risk to
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field personnel. Moreover, because many of the existing gages are located in roadless areas,
hydrographers often must be transported to these sites by helicopter. To address these
issues, the U.S. Geological Survey (USGS) is actively pursuing non-contact methods of
estimating streamflow from various platforms. The motivation for these ongoing efforts
is to improve safety, increase efficiency, and expand the monitoring network. Remotely
sensed data sets and approaches employed for this purpose include (1) images acquired
from satellites and analyzed based on various hydraulic approximations [2–4]; and (2) near-
field techniques that include data collected from bridges [5,6], small unmanned aircraft
systems (UAS, or drones) [7–9], helicopters [10], and fixed-wing aircraft [11]. In this study,
we build upon previous work on remote sensing of flow velocities by introducing a new
method for also inferring water depths.

Particle image velocimetry (PIV) has become a well-established, widely used method
of measuring velocity that does not require placing a sensor in direct contact with the
flow. Though first developed for use in a laboratory setting (i.e., flume), PIV is increasingly
applied in natural channels to estimate surface flow velocities, where the technique is often
referred to as large-scale PIV, e.g., [12–18]. Such studies typically focus on small streams
and tend to use images acquired by ground-based cameras or instruments deployed from
UAS. Moreover, flows are often seeded with artificial tracers to enhance particle detection
and tracking. However, this approach is not feasible in larger rivers because introducing
an adequate density of tracers across the entire channel and over time is impractical,
particularly for rivers that are not easily accessible.

Thermal image time series have also proven useful for estimating surface flow veloci-
ties via PIV, e.g., [5,7,11,19]. Although thermal PIV does not require seeding the flow, this
approach is limited in other ways. For example, thermal features generated by turbulence
within the water column are expressed at the surface as subtle differences in temperature
that can only be detected reliably by highly sensitive (and expensive) cooled mid-wave
infrared cameras. Even with appropriate instrumentation, the success of a PIV application
often depends on the air-water temperature contrast.

Although seeding the flow is not feasible in the large Alaskan rivers in which we are
interested and thermal PIV also has proven to be problematic in these environments, our
prior work demonstrated the utility of an alternative approach to deriving flow velocities
from standard RGB (red, green, blue) video [10]. For rivers transporting large amounts
of fine-grained sediment in suspension, turbulence originating at the bed propagates up-
ward through the water column and produces sediment boil vortices that are expressed
at the surface as differences in brightness and color that can be detected and tracked by
PIV algorithms. In a recent investigation of the Tanana River, we used video acquired
from a helicopter hovering at a single location above the channel to create a map of flow
velocities that agreed closely (R2 up to 0.99) with depth-averaged velocities measured
directly in the field. Although this approach is only applicable where and when concentra-
tions of suspended sediment are high, the ability to exploit sediment as a natural tracer
offers significant advantages over introducing artificial material. In this study, we more
thoroughly evaluate this approach and assess its potential for reach-scale application by
analyzing videos collected at multiple hovering waypoints distributed along 2.6 km of the
Tanana River.

Significant progress has been made in remote sensing of flow velocities, but calculating
river discharge also requires information on the cross-sectional area of the channel and
measuring bathymetry (i.e., water depth) via non-contact methods remains challenging.
For example, the use of spectrally based passive optical techniques for this purpose is
constrained by water clarity, as is bathymetric lidar, e.g., [20]. As a result, these depth
retrieval methods cannot be applied to the large, sediment-laden, and thus highly turbid
rivers that are most amenable to optical PIV. This situation implies a conundrum: although
one could measure depths in shallow, clear-flowing streams or velocities in rivers with
high suspended sediment concentrations, one cannot reasonably expect to map both hy-
draulic attributes in the same river at the same time from a single remotely sensed data
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set. In this paper, we propose a solution to this dilemma by introducing a framework for
inferring water depths from remotely sensed flow velocities. In addition to the continuous,
two-dimensional, high-spatial-resolution velocity fields that can be obtained via PIV, this
approach adds value by also providing detailed, spatially distributed bathymetric informa-
tion. Such data on water depth can enhance habitat assessment, facilitate flow modeling,
and help to inform morphologic sediment budget analyses by highlighting patterns of
erosion and deposition.

The approach described herein is based on a relatively simple flow resistance equation
that relates the depth-averaged velocity U to the flow depth H, the slope S of the water
surface, and some index of roughness, denoted by k. Expressions of this kind typically are
used to calculate U, but in this study we manipulate a power law-based flow resistance
equation to instead solve for H. For this reason, we refer to the new framework as Depths
Inferred from Velocities Estimated by Remote Sensing (DIVERS). Specifying the roughness
parameter k can be problematic, but if the river discharge at the time the remotely sensed
data are acquired is known, this information can be used as input to an optimization
algorithm to identify the value of k that minimizes the difference between the known
discharge and that calculated via the flow resistance equation. This approach, which
we refer to as Flow Resistance Optimization (FRO), is analogous in some respects to
recent work by Bandini et al. [21], who used an optimization technique to jointly estimate
discharge and roughness in small streams given prior knowledge of the bathymetry.

In this paper, we describe the DIVERS framework, illustrate its application to the
Tanana River, and evaluate the performance of these new methods by comparing the
velocities and depths derived from remotely sensed data to those measured directly in
the field. This analysis is based on videos acquired from a helicopter hovering above the
channel at a series of locations distributed along the river to obtain reach-scale coverage.
Although we focus herein on a large, sediment-laden river, the proposed technique is
highly general and can be applied to any stream for which spatially distributed estimates
of flow velocity have been made. Such data could be obtained from UAS for short reaches,
manned aircraft for longer river segments, and potentially satellites for broader coverage.
In this study, we evaluate two different approaches to inferring water depths from flow
velocities: (1) flow resistance optimization (FRO) of the roughness parameter k so as to
match a known discharge on a per-hover basis; and (2) aggregating cross sections over the
entire reach (i.e., pooling across the individual hovers) and then identifying the roughness
value that leads to the closest match between the measured and calculated discharges.

The remainder of this paper is organized around the following objectives:

1. Introduce the Depths Inferred from Velocities Estimated by Remote Sensing (DIVERS)
framework for calculating depths from remotely sensed velocities via a flow resistance
equation that expresses depth as a function of velocity, slope, and roughness.

2. Evaluate the potential of this approach by conducting a case study on a large,
sediment-laden river in Alaska, the Tanana.

3. Assess the suitability of a power law-based flow resistance equation for inferring
depth from velocity by applying the relation directly to field measurements.

4. Scale up a PIV-based workflow developed based on an image time series acquired
from a helicopter hovering at a single location above the channel to a larger reach by
applying the procedure to multiple hovers distributed along the river.

5. Compare different methods of setting the roughness parameter, including per-hover
or reach-aggregated flow resistance optimization (FRO) to match a known discharge.

6. Quantify the accuracy of velocities, depths, and discharges inferred from remotely
sensed data via comparison to field measurements.

2. Materials and Methods

The field measurements and remotely sensed data used in this study are publicly avail-
able via a data release hosted by the USGS ScienceBase catalog. Legleiter and Kinzel [22]
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provide a landing page with links to field measurements of flow depth and velocity and
videos acquired from a helicopter.

2.1. Study Area

Alaska is the largest state in the USA and remains sparsely gaged due to the remote,
inaccessible location of many of its rivers [1]. Non-contact methods of measuring river
discharge are particularly valuable in this context and developing such techniques is
an area of active research by the USGS. To support these ongoing efforts, this study
focused on the Tanana River, a large, sediment-laden river typical of Alaskan waterways.
Located southwest of the city of Fairbanks in the center of the state (Figure 1a), the 2.6 km
reach examined herein was immediately upstream of the USGS gaging station at Nenana
(#15515500), where the drainage area is 66,200 km2. The gage discharge on 24 July 2019, the
date on which field observations and remotely sensed data were acquired, was 1722 m3/s,
approximately the median of the mean daily values observed on this date over the 58 year
period of record [23]. The water surface slope on this date was measured from a lidar DEM
acquired the same day and was 0.00014.

The Tanana drains a large, glaciated watershed that delivers a steady supply of
outwash and ensures consistently high concentrations of suspended sediment [24]. The
presence of abundant suspended material within the water column is indicated by the
bright tone of the Tanana River in the background satellite image shown in Figure 1b,
whereas the more clear-flowing tributary entering from the south appears much darker.
Legleiter and Kinzel [10] used 139 measurements of suspended sediment concentration
(SSC) to establish a power function relating SSC to discharge; this expression yielded an
estimated SSC of 2185 mg/L on the day the videos used in this study were obtained. More
importantly, previous research at this site demonstrated that such high SSC allows surface
flow velocities to be inferred under natural flow conditions, obviating the need to seed the
flow with artificial tracer particles for PIV. This approach has a sound physical foundation:
turbulence originating at the bed propagates upward through the water column to produce
sediment boil vortices [25,26]. These ubiquitous features are expressed at the water surface
as differences in color and brightness that can be tracked from frame to frame as they are
carried downstream by the flow [10,27,28].

2.2. Remotely Sensed Data

As described in greater detail by Legleiter and Kinzel [10], the remotely sensed data
used in this study consist of RGB (red, green, blue) videos acquired using a Zenmuse X5
camera [29] deployed from a Robinson R44 helicopter. This relatively basic, low-cost sensor
was housed within an enclosure attached to the nose of the helicopter and mounted on
a gimbal to improve stability. A remote control system allowed an operator onboard the
helicopter to trigger the camera once the aircraft began hovering above each one of a series
of 14 predefined waypoints distributed along the channel to provide reach-scale coverage.
The videos/hovers were numbered sequentially from 51 to 64, increasing in the upstream
direction (Figure 1b,c). The duration of the videos varied slightly among the 14 hovers but
was at least one minute in all cases; all videos were truncated to 60 s. In total, acquisition of
the videos used in this study spanned a period of 30 min. The flying height of the helicopter
above ground level during data collection was 591 ± 3.9 m. The original video files had
a native frame rate of 30 Hz but we retained only every 30th frame based on the finding
that reducing the frame rate to 1 Hz did not adversely affect the accuracy of PIV-based
velocity estimates [10]. Because the Zenmuse camera was not integrated with a Global
Positioning System/Inertial Motion Unit (GPS/IMU), the resulting image sequence could
not be directly geo-referenced but did serve as suitable input to the workflow outlined
by Legleiter and Kinzel [10] and summarized briefly in Section 2.4. Because the Tanana
River was too deep and turbid to apply more traditional, spectrally based approaches to
depth retrieval from passive optical data, we could not evaluate these methods as part of
this study.
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Alaska

Nenana

Fairbanks

(a)

Tanana

River

Figure 1. (a) Location of the study area along the Tanana River within the state of Alaska. The spatial
footprints of the videos acquired while hovering above the channel are overlain on a background
satellite image and ADCP field measurements of (b) depth-averaged flow velocity and (c) flow depth
collected with an ADCP. Flow direction is from east to west (i.e., lower right to upper left). The red
lines and corresponding numbers in (b,c) indicate helicopter hover ID numbers.
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2.3. Field Data

We used direct field measurements of flow depth and velocity collected in situ on the
same day as the helicopter flight to assess the accuracy of image-derived estimates of these
two hydraulic attributes. The field data were collected within three hours of when the
images were acquired during a period of steady discharge and thus were representative
of the flow conditions captured in the videos. The field data were acquired with a TRDI
RiverRay acoustic Doppler current profiler (ADCP) [30] that was integrated with a Hemi-
sphere A101 differential GPS receiver that defined the location of each measurement with a
horizontal precision of 0.6 m [31]. The ADCP was mounted on a small catamaran towed
behind a boat while traversing the river along a series of ten cross sections (XS) oriented
perpendicular to the mean flow direction. Each of these transects consisted of a single pass
and spanned the full width of the channel. During field data collection, an operator in
the boat controlled the RiverRay using TRDI WinRiver II software. This program enabled
real-time visualization of the velocity field over the entire depth of flow as the boat tra-
versed the river. The ADCP data were post-processed in WinRiver II, imported into the
USGS Velocity Mapping Toolbox [32], and exported as a text file containing the easting and
northing spatial coordinates, flow depth, and depth-averaged velocity magnitude at each
measurement location.

For consistency with our previous work at this site and recent research by Pearce et al. [14],
we used this simple summary of the ADCP data as is, without applying a velocity index [33]
to convert depth-averaged velocities measured in the field to surface flow velocities that
might have been more comparable to the velocities estimated via PIV. Instead, the DIVERS
framework for inferring depths from image-derived velocities that is the primary focus of
this study explicitly incorporates a site-specific velocity index to account for the difference
between depth-averaged and surface velocities. As reported in greater detail by Legleiter
and Kinzel [34], the value of this index was derived from the original ADCP data using the
“extrap” module of the Qrev software package developed by the USGS [35,36]. The mean
velocity index for the ten XS measured on the Tanana River was 0.88 and this value was
used for all subsequent calculations.

2.4. Particle Image Velocimetry (PIV)

We derived spatially distributed velocity estimates from each of the 14 videos by
following the PIV workflow established through previous research on the Tanana River.
A more detailed description of this process was provided by Legleiter and Kinzel [10]
and the interested reader is referred to the original publication for further information.
This sequence of operations was implemented primarily within MATLAB and can be
summarized as follows:

1. Acquire video while hovering above the channel, select the frame rate to retain for
analysis, extract the corresponding sequence of images, and convert the images from
RGB to grayscale;

2. Stabilize the image frames relative to one another to account for motion of the he-
licopter during acquisition. We used the TrakEM2 plugin [37] to the FIJI image
processing package [38] for this purpose;

3. Geo-reference the first image in the stabilized stack to a suitable base image. Tie
points are used to define an affine transformation that is applied to each image to
project the stack into a common real world coordinate system;

4. Prepare the images for PIV by using FIJI to apply a finite Fourier transform bandpass
filter and a histogram equalization contrast stretch;

5. Extract the actual spatial footprint of each frame by outlining the boundary of the
non-zero pixels in the image;

6. Overlay the footprints of all the images in the stack to identify the area of common
coverage and digitize a region of interest (ROI) for PIV;
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7. Crop all of the images in the stack to a common bounding box based on the digitized
ROI and apply a binary raster mask to each image to obtain a series of co-registered,
pre-processed, water-only images for PIV;

8. Perform the PIV analysis using the ensemble correlation algorithm included within
PIVlab, a widely used add-in to MATLAB developed by Thielicke and Stamhuis [39,40].
PIV settings to be specified by the user include the size (in pixels) of the interrogation
area within which feature displacements are estimated by computing correlations
between successive images and the step size that controls the spacing of the velocity
vectors output from PIVlab. In this study, a fixed interrogation area of 64 pixels and a
step size of 32 pixels was used to process all of the hovers;

9. Post-process the PIV output by discarding spurious vectors that fall below a minimum
velocity threshold, differ from the mean velocity magnitude by more than three
standard deviations, or fail to pass a normalized median check [39]. To fill any gaps
resulting from these filters and obtain continuous coverage, the remaining vectors are
linearly interpolated;

10. Scale the PIV output by using the ground sampling distance of the images (0.15 m in
this study) to establish the number of pixels per meter and multiplying by the frame
rate (1 Hz for this study) to obtain velocities in m/s. The geo-referencing information
for the stack also is used to transform the vectors to the same real world coordinate
system as the images.

Applying this workflow to the videos acquired at each of the 14 hovering locations
along the Tanana River resulted in a set of spatially continuous, image-derived velocity
fields. The filtered, interpolated PIV output vectors for each hover were used to produce
regular grids of surface velocity magnitudes with a spacing of 4.8 m, the product of the
image pixel size and the PIV step size parameter. These remotely sensed surface velocities
were then used to infer flow depths via the DIVERS approach described next.

2.5. Depths Inferred from Velocities Estimated by Remote Sensing (DIVERS): A Flow Resistance
Equation-Based Framework for Calculating Depth from Surface Velocity

The framework for estimating depths in addition to the velocities derived via PIV
described herein is based upon a relatively simple flow resistance equation and predi-
cated upon a number of critical assumptions. The assumptions involved in modeling
flow and sediment transport in river channels, as well as their implications, are described
in Nelson et al. [41]; only a few of particular relevance to this study are highlighted here.
For example, the DIVERS approach approximates the flow field as steady, uniform, and
one-dimensional, neglecting any flux of mass or momentum in the vertical or cross-stream
directions. The flow is considered fully turbulent and treated as a boundary layer through-
out the entire depth. However, rather than using the logarithmic velocity profile associated
with a parabolic vertical distribution of eddy viscosity, the velocity profile is approximated
by a more mathematically convenient power law formulation. Similarly, the flow is as-
sumed to be hydrostatic so that the pressure gradient can be replaced by the water surface
slope. The most significant assumption we make is that a flow resistance equation typically
used to characterize bulk, cross-sectionally averaged (i.e., one-dimensional) hydraulics
can be applied on a per-pixel basis to calculate local flow depths. This approximation
allows velocity and depth to vary laterally from one node of the PIV output grid to the
next across the channel, but each of these nodes is independent of those adjacent to it, with
no information transferred from areas upstream, downstream, or to either side. In essence,
each pixel is treated as an isolated water column and characterized via a one-dimensional,
steady, uniform flow approximation. An important implication of this assumption is that
secondary flows involving cross-stream currents such as those associated with meander
bends are neglected. Moreover, our approach assumes strict proportionality between depth
and velocity at a given location such that areas where the flow shoals and accelerates, as
might occur over a point bar, or becomes deeper and slows down, as might occur within a
pool, are not represented accurately. In addition to these spatial factors, we assumed that
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flow conditions were steady in time. For example, we did not consider temporal variations
that might be associated with the passage of a flood wave and could lead to a hysteretic
effect in the relationship between stage and discharge. The DIVERS framework thus offers,
at best, a basic, first-order approximation to the actual hydraulic conditions present within
a particular channel of interest.

With these assumptions and limitations borne in mind from the outset, the following
derivation provides the basis for our approach to inferring water depths from remotely
sensed velocities. Following Smart and Biggs [42], we begin with a power law velocity
profile given by

u(z)
u∗

= a
( z

k

)m
(1)

where u(z) is the flow velocity at a height z above the channel bed, u∗ is the shear velocity,
k is a roughness length scale, and a and m denote a fitted (or assumed) coefficient and
exponent, respectively. The velocity us at the water surface, where z = H and H represents
the total flow depth, thus becomes

us = au∗

(
H
k

)m
(2)

Similarly, integrating Equation (1) from the bed to the water surface and dividing by
H yields the depth-averaged velocity U:

U =
au∗

(m + 1)

(
H
k

)m
(3)

Smart and Biggs [42] also provide a parallel development for a specific, widely used
flow resistance equation, Manning’s, which they show to be equivalent to a power law
velocity profile with an exponent of m = 1/6. In this study, we used Equation (1) for greater
generality and to avoid dimensional issues associated with the roughness coefficient, n,
used in Manning’s equation; k has units of length and thus a more readily interpretable
physical basis.

In any case, taking the ratio of the depth-averaged velocity to the surface velocity
yields a velocity index, α, that is widely used to convert surface velocities derived from
remotely sensed data to depth-averaged velocities e.g., [43]:

α =
U
us

=
1

(m + 1)
(4)

The depth-averaged velocities needed to estimate discharge can thus be calculated as

U = usα =
us

(m + 1)
(5)

To also infer the other hydraulic attribute required to compute river discharge, water
depth, we next rearrange Equation (2) and make a substitution for the shear velocity:
u∗ =

√
gHS, where g is acceleration due to gravity and S is the water surface slope,

to obtain an expression for depth H as a function of surface velocity us, slope S, and
roughness k:

H =

[
km

a
√

gS
us

] 1

( 1
2 +m)

(6)

In this study, we assume that the power law velocity profile given by Equation (1)
adequately describes the flow at any location within the channel and, consequently, that
Equations (5) and (6) can be used to derive the depth-averaged velocity and flow depth,
respectively, from remotely sensed data. More specifically, in a spatial context, these two
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equations can be applied to each node (i.e., pixel) of a PIV output grid consisting of surface
flow velocity magnitudes to produce a continuous map of depth.

To calculate the river discharge Q for a cross section extracted from the PIV output, we
can then sum the resulting depth-velocity products laterally across the channel, assuming
a uniform width increment ∆w between adjacent “verticals”:

Q = ∆w
N

∑
j=1

UjHj (7)

where j indexes the N verticals along a cross section. Substituting Equations (5) and (6), we
arrive at the following expression for discharge

Q = ∆w
N

∑
j=1

(
1

(m + 1)
us,j

)[
km

a
√

gS
us,j

] 1

( 1
2 +m)

(8)

This development provides a foundation for mapping water depth, by way of surface
flow velocity, from remotely sensed data and, potentially, estimating river discharge.
Image time series can be used to derive spatially distributed estimates of us via PIV and
water surface slope can be measured from a digital elevation model (DEM), which has
become common practice and has been shown to provide water surface elevations with an
accuracy comparable to conventional field methods (e.g., pressure transducers on rivers
in Alaska [44]). The other variables in Equation (6) are the power law coefficient a and
exponent m and the roughness parameter k. Ferguson [45] introduced a separate coefficient
a1, expressed U as a function of the median bed material grain size D rather than k, and
assumed m = 1/6 as in Manning’s equation to arrive at the following expression

U = a1u∗

(
H
D

) 1
6

(9)

Using a large compilation of field data, Ferguson [45] proposed a value of 7.5 for a1.
Equating (5) with (9) and letting k = D yields a plausible, broadly applicable value of
a = 6.43. This approach is convenient because if one assumes a value of m, such as 1/6 for
Manning’s equation or m = 0.1765 for the widely used default velocity index of α = 0.85, or
calibrates m using measured velocity profiles e.g., [33,35,36], the only remaining unknown
is the roughness parameter k.

Rather than specifying k a priori, remotely sensed surface velocities can be combined
with measurements of Q made directly in the field or recorded at a gaging station and used
to estimate k. This approach involves using an optimization algorithm to iteratively vary k
so as to minimize the difference ε between the measured discharge Q and the discharge Q̂
calculated from remotely sensed data via Equation (8) for a single cross-section

ε = Q − Q̂ (10)

For multiple cross sections, the objective function to be minimized becomes the root
mean squared error (RMSE) between Q and Q̂i calculated for each of the i = 1, . . . , M
transects:

RMSE =

√√√√ 1
M

M

∑
i=1

ε2
i =

√√√√ 1
M

M

∑
i=1

(Q − Q̂i)2 (11)

Once k is calibrated in this manner, Equation (6) can be used to calculate H at each loca-
tion of the PIV output grid and thus obtain a continuous map of flow depth to complement
the surface velocity field derived via PIV.
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2.6. Application to the Tanana River

Given this theoretical foundation and the assumptions described above, we evaluated
the potential to infer water depths from remotely sensed surface velocities by applying the
DIVERS workflow depicted graphically in Figure 2 to the Tanana River. For this case study,
the inputs listed in the “Data acquisition and preparation” phase of the flowchart were
obtained as follows. We queried the streamflow record for the USGS gaging station at Ne-
nana to obtain the known discharge on the day the videos were acquired: Q = 1722 m3/s.
Similarly, we used ADCP data collected on the same date to fit vertical velocity profiles in
Qrev and estimated the mean velocity index across the ten ADCP transects as α = 0.88. We
then rearranged Equation (4) and used this value of α to calculate the power law exponent
as m = 0.1364; this value of m was assumed constant and used for all subsequent analyses.
Water surface elevations were extracted from a lidar DEM that was acquired from the
helicopter on the same day as the videos with a pixel size of 0.5 m and used to determine
the water surface slope: S = 0.00014. To obtain the transects of surface flow velocity
us required to calculate depth and discharge as outlined above, we digitized a channel
centerline and used the automated procedure described by Legleiter [46] to extract cross
sections from the velocity magnitude grids derived from the PIV output for each hover;
the spacing between XS was set to 20 m, approximately 10% of the channel width.
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Figure 2. Conceptual diagram outlining the data, user inputs, processing steps, and outputs of the DIVERS workflow for
inferring water depths from remotely sensed surface flow velocities.

For the “Hydraulic calculation” and “flow resistance optimization” phases of the
workflow, we considered two different approaches: (1) using the known Q to identify the
optimal value of k on a per-hover basis; and (2) aggregating XS over the entire reach by
pooling across the hovers prior to the optimization of k to match the known Q. Hereafter,
we refer to these two approaches as per-hover and reach-aggregated, respectively. The PIV
workflow summarized above was applied in a consistent manner to provide a common set
of input flow velocities to each approach for inferring water depth.

For both of these FRO-based approaches, we used MATLAB’s fminsearch routine as
the optimization algorithm. This derivative-free method finds the minimum of an uncon-
strained multivariate function via the Nelder–Mead simplex search algorithm described
in Lagarias et al. [47]. Using fminsearch required us to make an initial guess for k, the
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variable to be optimized. To obtain a plausible estimate of k, we back-calculated k from
field measurements made during a site visit by USGS hydrographers to the gaging station
at Nenana on the same day the videos were acquired. In addition to the official discharge
reading, NWIS also reports the channel width, cross-sectional area, and mean flow velocity
that were measured and used to compute the discharge. On 24 July 2019, these values were
211.5 m, 1059 m2, and U = 1.63 m/s, respectively. We obtained the mean depth for the XS
by dividing the area by the width: H = 5.01 m. Substituting the depth-averaged velocity U
for the surface velocity us based on Equation (5) and rearranging Equation (6) then yielded
an expression for k in terms of U and H:

k =

[
H( 1

2+m)a
√

gS
U(m + 1)

] 1
m

(12)

Inserting the values of U and H derived from the field measurement at the gaging
station into this equation, along with the values of m and S specified above, led to a value
of k = 0.00054 m for the known k approach. Our subsequent analysis indicated that the
optimization algorithm was not highly sensitive to the initial guess for k.

2.7. Accuracy Assessment

To assess the accuracy of the velocity magnitudes and water depths inferred via PIV
and the DIVERS framework, respectively, we compared the remotely sensed estimates
to ADCP field measurements of depth-averaged velocity and depth. To make these com-
parisons, we used only those field observations located within a specified distance of a
PIV output grid node. The search radius was set to 2.4 m, half the product of the step
size in pixels, which dictated the spacing of the velocity vectors produced by PIVlab,
and the image pixel size. This search strategy ensured that a given ADCP measurement
would not be compared to multiple remotely sensed estimates. Where the search window
encompassed several field measurements, all of the ADCP data within 2.4 m of the grid
node were averaged to obtain a single value for comparison to the velocity and depth
estimated at the center of the window [10].

After pairing the velocities and depths derived from the videos with those measured
in situ by the ADCP, we computed several metrics for quantitative accuracy assessment.
The root mean squared error (RMSE) provided an indication of the precision of the remotely
sensed estimates while the mean bias served as an index of their absolute accuracy. The
bias was calculated as the difference between the ADCP-measured velocities and depths
and those derived from the videos. Given this definition, a positive value of the mean
bias implied under-prediction, on average, of the ADCP-based observations by the PIV
algorithm and DIVERS framework. Conversely, a negative bias implied that the velocities
and depths inferred via remote sensing tended to exceed those measured in the field. We
also normalized the RMSE and mean bias by by the mean of the ADCP measurements
used to make the comparison to express these two metrics in non-dimensional terms as
percentages of the mean velocity and depth [10].

In addition, we performed observed (ADCP) vs. predicted (PIV) (OP) regressions [48]
and used the resulting R2 values as a summary of the correspondence between the velocities
and depths measured in the field and those obtained via remote sensing. The intercept
and slope coefficients of the OP regression equations provided further information on the
performance of the various image-based approaches we evaluated. For example, whereas
an intercept of 0 and a slope of 1 would indicate perfect agreement, any deviation from
these values would imply that the remotely sensed velocities and/or depths were biased
(i.e., a non-zero intercept) or were not scaled correctly (i.e., a slope coefficient less than or
greater than 1).
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3. Results
3.1. Application of the Flow Resistance Equation to Field Measurements

As an initial test of the utility of the DIVERS framework for inferring water depths from
observations of flow velocity described in Section 2.5, as well as the hydraulic assumptions
inherent to the approach, we first applied DIVERS to the ADCP field data itself. More
specifically, we used the depth-averaged velocities measured by the ADCP to predict the
corresponding depths. These calculations involved making the substitution us = U(m + 1),
per Equation (5), in Equation (6) and then using the measured values of U to solve for H.
In performing these computations, we used the values of the water surface slope S and
velocity exponent m given in Section 2.6. To specify the roughness, we used the k value
back-calculated from the discharge field measurement made at the gaging station on the
flight date.

The results of this analysis are summarized in Figure 3. An OP regression of the depths
measured by the ADCP vs. those calculated from the corresponding velocity data via the
flow resistance equation led to a modest R2 value of 0.51 (Figure 3a). The large, positive
intercept of the regression equation, 1 m, differed from the ideal value of 0 and indicated
that the predicted depths were biased relative to the field measurements. Similarly, a slope
coefficient less than 1 suggested that the depth estimates were not scaled correctly either.
The distribution of depth estimation errors depicted in Figure 3b provided additional
information on the discrepancies between the measured and calculated depths. The mean
error of 0.37 m indicated that depths estimated via Equation (6) tended to under-predict the
depths measured directly in the field. The standard deviation of these errors was 2.16 m,
implying that the flow resistance-based framework did not provide precise depth estimates
even when using in situ velocity observations as input. Moreover, the positive skew of the
error distribution, with a long tail of large errors, in excess of 10 m in some cases, suggests
that this approach could lead to major underestimates of depth.
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Figure 3. Accuracy assessment of depths estimated from ADCP measurements of depth-averaged flow velocity for the
entire reach: (a) Observed (measured in the field with an ADCP) vs. predicted (estimated from ADCP measurements of
depth-averaged velocity using a flow resistance equation) regression output. (b) Distribution of depth estimation errors,
defined as ADCP measurements minus estimates from flow resistance equation.

The results presented in Figure 3 were based on ADCP data from throughout the
entire reach, which encompassed a range of hydraulic environments.To minimize any
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potential confounding factors associated with river morphology, we performed a similar
but more focused analysis that considered only those data from a single ADCP transect
located in a straight section of the channel included within hover 58 (Figure 1b). In this
case, a regression of measured vs. calculated depths produced a higher R2 of 0.61 and a
smaller, negative intercept term (Figure 4a). The regression slope coefficient remained
less than 1 but was closer to this ideal value for the single transect case than when data
from throughout the reach were used in the OP regression (Figure 3a). Although the
mean depth estimation error of 1.53 m for the transect in hover 58 was larger than for
the reach-aggregated data set, the standard deviation of the errors was less, 1.69 m vs.
2.16 m. However, the error distribution summarized in Figure 4b also featured a strong
positive skew, with a secondary mode at 3.5 m and a maximum depth estimation error of
over 5 m. As for the reach-aggregated case, these results implied that the flow resistance
equation-based framework tended to underestimate the observed depths.
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(b) ADCP field data from Hover 58: Depth estimation errors
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Figure 4. Accuracy assessment of depths estimated from ADCP measurements of depth-averaged flow velocity for a single
cross section located within Hover 58: (a) Observed (measured in the field with an ADCP) vs. predicted (estimated from
ADCP measurements of depth-averaged velocity using a flow resistance equation) regression output. (b) Distribution of
depth estimation errors, defined as ADCP measurements minus estimates from flow resistance equation.

3.2. Image Stabilization and Geo-Referencing

The second and third steps in the PIV workflow summarized in Section 2.4 involved
stabilizing and geo-referencing the image sequences. Co-registration errors associated
with either or both of these processes could have introduced some degree of uncertainty
into the subsequent PIV analysis and resulting velocity vectors. This possibility was
examined in detail by Legleiter and Kinzel [10] for one of the hovers, 52, which we assumed
to be representative of the other 13 hovers along the reach because all of the videos
were acquired by the same sensor within a period of 30 min and were processed using a
common workflow.

For hover 52, the TrakEM2 plugin used for image stabilization reported minimum,
mean, and maximum displacement errors of 0.626, 0.853, and 1.069 pixels, respectively.
For the 0.15 m ground sampling distance of this image sequence, these errors represented
distances of 0.094, 0.13, and 0.16 m, respectively. Typical stabilization errors were less
than the size of a single image pixel, which is the minimum distance a feature must move
between frames to be detected by the PIV algorithm, and thus did not introduce significant
uncertainty to the resulting velocity estimates.

Once stabilized, the image stack for each hover had to be geo-referenced so that
PIV-derived velocities and inferred water depths could be compared to ADCP field mea-
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surements for accuracy assessment. For hover 52, we identified six tie points between the
first image in the stack and the background satellite image, obtained via the Global Map-
per software package [49], used as a base for geo-referencing. The affine transformation
derived from these control points was used to predict the real world coordinates of the
tie points from their (row, column) pixel coordinates in the Zenmuse image. Comparing
these predictions to the actual spatial locations of the tie points on the base image led to
a geo-referencing RMSE of 4.88 m. This error was uniform throughout the stack because
the images had been stabilized relative to one another and the same transformation was
applied to each frame.

Geo-referencing error did not influence the PIV output because the velocity esti-
mates were based on relative displacements of water surface features between successive
frames in the stabilized image sequence [10]. However, the absolute magnitude of the geo-
referencing error could have affected the comparison of PIV-derived and ADCP-measured
velocities. These two data sets were linked at a spatial resolution set by the cell size of
the velocity magnitude grid produced from the PIV output, 4.8 m in this study. A typical
geo-referencing error of 4.88 m thus was similar to the distance between PIV-derived
velocity estimates, implying that the pairing of ADCP measurements with remotely sensed
velocities and calculated depths might have been ambiguous in some cases. However,
because these hydraulic attributes did not vary abruptly over distances on the order of 5 m
on a river as large as the Tanana, we did not consider this type of geospatial error to be a
major source of uncertainty.

3.3. Reach-Scale Mapping of Flow Velocities

The stabilized and geo-referenced image sequences for each hover were used to
complete the remainder of the PIV workflow (steps 4–10 listed in Section 2.4). Whereas
Legleiter and Kinzel [10] focused on a single hover, 52, during the initial development and
testing of these procedures, this study assessed the potential to scale up the approach to
map flow velocities over a longer river reach. This analysis involved producing a velocity
field from the video acquired at each hover location, comparing the resulting PIV-derived
velocity estimates to the ADCP field measurements located within that particular hover,
and calculating the metrics of performance described in Section 2.7. Two of the hovers, 57
and 59, did not encompass any of the ADCP transects and quantitative accuracy assessment
thus was not possible for these subsets of the reach.

The results for the other hovers are summarized in Figure 5 and Table 1. The OP
regression R2 varied from 0.22 to 0.97, with a median value of 0.57 across the 12 hovers.
Correspondence between the velocities observed in the field and those predicted from the
remotely sensed data was quite strong at the downstream end of the study reach (hovers
51 and 52) but then weakened for hovers 53–55. Farther upstream, the OP R2 reached its
highest value for hover 56 (0.97) and was nearly as high for hovers 58 (0.93) and 60 (0.89).
The agreement between ADCP-measured and PIV-derived velocities presumably was also
strong for hovers 57 and 59, but no field data were collected within the footprints of these
two image sequences. At the upstream end of the study area, the OP R2 values decreased.
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Figure 5. Accuracy assessment of particle image velocimetry (PIV)-derived surface flow velocity estimates by hover. Metrics
of performance include (a) observed (measured in the field with an ADCP) vs. predicted (inferred from PIV) regression
R2; (b) Normalized bias of velocity estimation errors, with errors defined as ADCP-measured minus remotely sensed;
and (c) normalized root mean square error (RMSE) of velocity estimation errors. Bias and RMSE are normalized by the
reach-averaged mean of the velocity measurements used for accuracy assessment.

Table 1. Summary of accuracy assessment of PIV-derived surface flow velocity estimates via com-
parison to ADCP field measurements. n is the number of ADCP data points within each hover;
OP = observed vs. predicted; int. = intercept; RMSE = root mean squared error; Norm. = normalized
(by the mean of the field measurements within the hover).

Hover n OP
R2

OP
int.

OP
Slope

Bias
(m/s)

RMSE
(m/s)

Norm.
Bias

Norm.
RMSE

51 81 0.898 0.079 0.989 −0.062 0.222 −0.041 0.147
52 60 0.869 0.179 0.888 0.018 0.227 0.010 0.129
53 61 0.549 −0.390 1.091 0.223 0.563 0.121 0.305
54 70 0.390 0.614 0.667 −0.022 0.452 −0.012 0.254
55 26 0.547 0.549 0.639 0.184 0.258 0.090 0.127
56 48 0.974 0.194 0.994 −0.187 0.231 −0.164 0.202
57 0
58 43 0.926 0.221 0.945 −0.145 0.215 −0.105 0.156
59 0
60 56 0.887 0.107 0.983 −0.081 0.185 −0.056 0.128
61 118 0.381 0.437 0.764 −0.154 0.468 −0.129 0.390
62 93 0.502 0.179 0.992 −0.170 0.373 −0.136 0.300
63 62 0.599 −0.070 1.049 0.008 0.220 0.007 0.176
64 29 0.221 0.514 0.539 0.082 0.202 0.064 0.157

Median 58 0.574 0.187 0.964 −0.042 0.229 −0.027 0.166

The other metrics of accuracy and precision also varied spatially from hover to hover
throughout the reach. The bias of the PIV-derived velocity estimates relative to the ADCP
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field measurements ranged from −0.17 m/s to 0.22 m/s across the hovers, with a median
value of −0.04 m/s. When scaled by the mean of the field measurements within each hover,
these values correspond to normalized mean biases from −13.6% to 12.1%, with a median
of −2.7%, indicating that PIV provided accurate velocity estimates. Moreover, Figure 5
shows that velocities derived from remotely sensed data did not consistently under-or
over-predict depth-averaged velocities observed in the field.

The precision of the remotely sensed velocities was quantified in terms of the RMSE
relative to the ADCP measurements. The RMSE varied from 0.19 m/s to 0.56 m/s among
the 12 hovers for which field data were available for accuracy assessment, with a median
of 0.23 m/s. When normalized by the mean of the measured velocities within each hover,
these minimum, maximum, and median values were 12.7%, 39%, and 16.6%. The spatial
variation of the RMSE generally mirrored that of the OP R2 metric discussed above, with
lower RMSE values for hovers 51 and 52 at the downstream end of the reach as well as
hovers 58 and 60 in the section between the two meander bends. Conversely, larger errors
occurred for hovers 53, 54, 61, and 62, locations which also had low OP R2 values. However,
some locations with high OP R2 values had relatively large RMSE (e.g., hover 56), whereas
other areas with very low OP R2 values did not have unusually high RMSE (e.g., hover
62). These discrepancies were a consequence of the number of field measurements located
within each hover and their variability. ADCP transects that captured a small range of
velocities could lead to low OP R2 values and yet have relatively small RMSE. In any case,
the remotely sensed velocities derived via PIV provided the input required to infer water
depths using the DIVERS workflow.

3.4. DIVERS Output from a Single Hover

To illustrate the inputs to and outputs from the DIVERS framework, we selected a
single hover, produced maps of velocity and depth, and plotted a transect showing how
the estimated depths and velocities varied laterally across the channel (Figure 6). Although
we highlighted hover 58 as a representative example because this video captured a straight
reach of the channel and included an ADCP transect that encompassed a broad range of
velocities and depths, similar analyses were conducted for all of the other hovers as well.
The velocity field depicted in Figure 6a was produced via the PIV workflow summarized
in Section 2.4 and features higher surface velocities, up to 2.3 m/s, near the left bank. We
digitized a centerline on the PIV map and used an automated procedure [46] to generate
the 10 XS shown in Figure 6a. The surface velocities extracted from the PIV output along
each of these transects served as input to the DIVERS framework, along with the known
discharge and water surface slope listed in Section 2.6. For the case illustrated in Figure 6,
we optimized the roughness parameter k using only the XS within this particular hover
(i.e., the per-hover FRO approach). As an initial guess for k, we used the value back-
calculated from the discharge field measurement made on the flight date. Given these
inputs, implementing the workflow represented in Figure 2 led to the depth map shown in
Figure 6b. The greatest predicted depths, over 9 m, occurred on the left side of the channel,
with much shallower water to the right of the centerline.

The relationship between velocity and depth became even more evident when exam-
ined in a cross-sectional plane, as illustrated in Figure 6c. The surface velocities derived
from the hover 58 video via PIV are represented by blue bars and the depths inferred from
these velocities via Equation (6) are depicted by the black line. The two plots closely parallel
one another, with the greatest predicted depths occurring 80 m from the left bank where
the surface velocities are fastest. Conversely, slower flow less than 1 m/s, at cross-stream
distances greater than 180 m translated into shallower depth estimates less than about
3 m. Each subtle variation in the PIV-derived velocity field, such as the locally lower
values of us 20 and 190 m from the left bank, translate into positive features in the inferred
bottom profile.
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(c) Hover #58, XS #5: PIV-derived surface flow velocities and inferred depth estimates

20 40 60 80 100 120 140 160 180 200 220

Distance from left bank (m)

0

0.5

1

1.5

2

2.5

S
u
rf

a
c
e
 f
lo

w
 v

e
lo

c
it
y
 (

m
/s

)

Velocity

Depth

Figure 6. Example output from Hover 58: (a) PIV-derived surface flow velocities extracted along 10 regularly spaced,
channel-spanning cross sections. (b) Depths inferred by optimizing the flow resistance coefficient k to match the known
discharge. (c) Surface velocities and depths extracted along an example cross section (#5 in (a)).

An accuracy assessment of the depths inferred from the remotely sensed data by
way of the PIV-derived surface velocity field for hover 58 is summarized in Figure 7.
Comparison of the calculated depths with those measured in the field via OP regression
indicated fairly strong agreement, with an R2 value of 0.78, much higher than when
depths were predicted directly from field measurements of velocity (R2 = 0.61; Figure 4a).
Moreover, the intercept of the regression equation in Figure 7 was only slightly less than 0
and the slope coefficient was closer to 1, implying that the depths derived from remotely
sensed data were nearly unbiased and properly scaled. Similarly, the distribution of
depth estimation errors has a mean of 0.67 m, less than half that based on the ADCP
data (Figure 4b), as well as a smaller standard deviation (1.2 m for remote sensing vs.
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1.69 m for the ADCP). The error distribution again is positively skewed, with a tail of
relatively large positive values indicating under-predictions of depth from the remotely
sensed data. Overall, however, these results suggest that, at least on a per-hover basis and
for this particular hover, the DIVERS approach proposed herein was capable of providing
bathymetric information that was as accurate as, if not to superior to, that obtained by
applying the flow resistance equation to field measurements of velocity. We attribute
this surprising result to the coarse spatial resolution of the remotely sensed data, with a
PIV output grid node spacing of 4 m, relative to the point measurements from the ADCP,
which thus provided a much larger sample size. Also, whereas the image-based analysis
produced depth estimates that were evenly spaced across the channel, the ADCP data
might have included more points in some areas where the boat was moving more slowly,
such as along the east bank where the depths recorded by the ADCP were much greater
than those calculated from the velocity measurements via the flow resistance equation;
these points are represented on the right side of Figure 4a. In any case, the key finding is
that the DIVERS framework yielded reasonably accurate depth estimates when applied to
remotely sensed data.
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(a) Hover #58: Observed vs. predicted depths
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Figure 7. Accuracy assessment of remotely sensed depths for Hover 58: (a) Observed (measured in the field with an ADCP)
vs. predicted (inferred from PIV-derived surface flow velocities) regression output. (b) Distribution of depth estimation
errors, defined as ADCP-measured minus remotely sensed.

To gain further insight on this approach and provide some more intuitive, graphical
representation of the FRO process, we analyzed the sensitivity of the predicted depths
and discharges to the roughness parameter k for hover 58. As illustrated in Figure 2,
our workflow involved identifying the value of k that led to the best match between the
discharges predicted from the PIV output via Equations (6) and (8) and the known discharge
specified as input. An initial guess for k also must be specified and in this study we used
a value of 0.00054 m, or 0.54 mm, back-calculated from the field measurement made by
USGS hydrographers at the Nenana gage on the day of the flight. Given this starting
point, the fminsearch optimization algorithm iteratively adjusted k so as to minimize the
objective function, the discharge RMSE given by Equation (11). An additional output
from this procedure is the optimal k, which was 1.29 mm for hover 58, more than twice
our initial guess. Despite this large discrepancy between the initial and optimal values
of k, the fminsearch algorithm converged and nearly reproduced the known discharge of
1722 m3/s, with a mean discharge of 1714 m3/s averaged over the 10 XS used as input; the
corresponding value of the objective function was an RMSE of 115 m3/s.
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For the sensitivity analysis, we used k values ranging from half to twice the optimal
value in Equations (6) and (8) to calculate depths and discharges for each value of k. The
discharge error and RMSE and the normalized mean bias and RMSE of the resulting depth
estimates were then plotted as a function of k (Figure 8). This graphical representation
provided a glimpse into the parameter space explored by the fminsearch optimization
algorithm and confirmed that the optimal k of 1.29 mm resulted in the closest match to
the known discharge, within 1.5% (Figure 8a), and the smallest discharge RMSE, 6.7% of
the known discharge (Figure 8b). Values of k less than the optimum led to larger positive
discharge errors, indicating under-prediction of the known discharge, and correspondingly
greater RMSE. Conversely, as k increased beyond the optimal value of 1.29 mm, the
discharge error became negative, implying over-predictions, and the RMSE began to
increase again after reaching its minimum.

Sensitivity analysis to flow resistance coefficient k: Hover 58
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Figure 8. Sensitivity analysis to the flow resistance coefficient k for Hover 58. The following metrics are plotted as a function
of k over the range from half to twice the k value identified as optimal, which is indicated by the dashed vertical line in each
panel: (a) discharge estimation error, expressed as a percentage of the known discharge, with errors defined as the known
discharge minus that estimated via remote sensing; (b) root mean square error (RMSE) of discharge estimates, expressed as
a percentage of the known discharge; (c) normalized bias of depth estimation errors, with errors defined as ADCP-measured
minus remotely sensed; and (d) normalized root mean square error (RMSE) of depth estimation errors. Bias and RMSE are
normalized by the mean of the depth measurements used for accuracy assessment.

Another important input to the flow resistance equation is the water surface slope
S, which in this study was calculated based on water surface elevations extracted from a
lidar DEM acquired on the same day as the videos and field observations. Measurements
of S are subject to some degree of uncertainty, however, particularly for the more typical
situation where lidar data are not available and elevations must be extracted from a coarser,
presumably less accurate DEM. To assess the potential impact of any errors in S on the
discharges and depths inferred via DIVERS, we performed a sensitivity analysis analogous
to that for k, again focusing on hover 58. For the slope sensitivity analysis, we held k
fixed at the optimal value of 1.29 mm and varied the input S from one half to twice the
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slope derived from the lidar DEM, 0.00014. The same four error metrics examined in
the k sensitivity analysis were calculated and plotted as a function of S (Figure 9). This
analysis indicated that using the water surface slope measured from the lidar DEM led to
the smallest discharge error (1.5%) and minimized the discharge RMSE (6.7%). If a smaller
value of S were used as input, larger underestimates would have occurred, with an error of
−71% and RMSE of 72% for a slope that was half the measured value. For input values of S
that were too steep, the discharge was less sensitive to S but was overestimated by 42% for
an S twice as large as that measured from the lidar DEM. Depth estimation errors followed
a similar pattern, with increasingly large underestimates for water surface slopes less than
the true value and overestimates for values of S that were too large. The normalized RMSE
of the depth estimates reached a minimum of 24% for an input water surface slope of
0.000126, 10% less than that measured from the lidar DEM, but increased for smaller or
larger values of S.

Sensitivity analysis to water surface slope: Hover 58
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Figure 9. Sensitivity analysis to water surface slope S for Hover 58. The following metrics are plotted as a function of S over
the range from half to twice the S value measured from the lidar DEM (0.00014), which is indicated by the dashed vertical
line in each panel: (a) discharge estimation error, expressed as a percentage of the known discharge, with errors defined as
the known discharge minus that estimated via remote sensing; (b) root mean square error (RMSE) of discharge estimates,
expressed as a percentage of the known discharge; (c) normalized bias of depth estimation errors, with errors defined as
ADCP-measured minus remotely sensed; and (d) normalized root mean square error (RMSE) of depth estimation errors.
Bias and RMSE are normalized by the mean of the depth measurements used for accuracy assessment.

3.5. Reach-Aggregated Flow Resistance Optimization

The results presented in the previous section were produced by applying the FRO
version of the DIVERS workflow to a single hover using only the XS extracted from the
PIV-derived velocity magnitude grid for that particular hover. As an alternative to this
type of per-hover analysis, we also considered a reach-aggregated approach in which XS
from all of the hovers were pooled together and the resulting compilation used as input
to the optimization algorithm. The spatial footprints for several of the hovers crossed the
channel at an oblique angle, rather than being perpendicular to the mean flow direction as
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would have been the ideal geometry. As a result, we could not use a single centerline for
the entire reach to automatically generate XS because many of the transects would not have
extended across the full channel width, which was essential for the discharge calculation
that is a central component of the DIVERS framework. Instead, we ensured that all XS
spanned the entire channel by digitizing a centerline and extracting XS separately for each
hover before aggregating them over the reach.

This process resulted in a total of 104 XS distributed across the 14 hovers as shown in
Figure 10. Also indicated on this figure are the along-channel locations of the centroids of
the ten ADCP transects. Pooling the XS for input to the optimization led to a single estimate
of the roughness parameter k for the entire reach, 0.001 m, and using this value in Equa-
tions (6) and (8) yielded a discharge estimate for each XS. The calculated values of Q varied
considerably throughout the reach, from as little as 800 m3/s to nearly 2600 m3/s, but the
mean value of 1650 m3/s was within 4.2% of the discharge recorded at the gaging station
on the day of the flight. These results indicate that although the discharge estimated at any
one of the XS extracted from the PIV-derived velocity fields might not be highly reliable,
pooling the XS over the entire reach yielded a more accurate mean discharge estimate.
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Figure 10. Estimated discharges for cross sections aggregated over the 14 hovers to span the entire reach. The locations
of the midpoints of each transect of ADCP field data are represented by the red X symbols at the bottom of the plot. The
known discharge measured at the gaging station is indicated by the dashed horizontal line and the dashed vertical lines
bracket the cross sections included within each of the hovers.
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Given the single value of k inferred via FRO for the entire reach, Equation (6) provides
a means of inferring a flow depth at every node of the PIV output grid for each hover. An
accuracy assessment of the depths calculated via this approach is summarized in Figure 11.
For the reach-aggregated compilation of estimated depths, the OP R2 value of 0.45 was
much lower than that for hover 58, presented above (Figure 11) as an example of the
per-hover version of the DIVERS framework. The OP regression equation intercept of 1.69
indicated that the image-derived depth estimates were biased and a slope coefficient of
0.539, well below the ideal value of 1, implied that the depths were not scaled correctly,
either. The histogram of depth estimation errors depicted in Figure 11b corroborated these
results. A mean error of 0.46 m indicated that the calculated depths tended to underestimate
those measured directly in the field, but the median error was only 0.01 m because the
distribution was positively skewed, with a long tail of very large under-predictions up
to 10.2 m. The standard deviation of the errors was 2.21 m, suggesting that the reach-
aggregated approach did not yield precise depth estimates. The normalized mean bias and
RMSE for this version of the DIVERS workflow were 10% and 48.3%, respectively, of the
mean depth observed in the field.
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Figure 11. Accuracy assessment of remotely sensed depths for cross sections aggregated over the entire reach. (a) Observed
(measured in the field with an ADCP) vs. predicted (inferred from PIV-derived surface flow velocities) regression output.
(b) Distribution of depth estimation errors, defined as ADCP-measured minus remotely sensed.

3.6. Accuracy Assessment Summary and Comparison of Approaches

The performance of the two FRO-based variants of DIVERS is summarized in Figure 12.
The strength of the association between the calculated depths and the ADCP field mea-
surements was summarized in terms of the OP regression R2 and was higher for the
per-hover than for the reach-aggregated FRO for 8 of the 12 hovers for which ADCP data
were available. The more detailed information presented in Table 2 also indicated that the
intercept and slope terms in the OP regression equations differed between the per-hover
and reach-aggregated FRO approaches. The intercept was typically closer to 0 and the
slope closer to 1 for the per-hover FRO than for the reach-aggregated version, implying
that performing the optimization on a per-hover basis tended to lead to depth estimates
that were less biased and scaled more appropriately. However, even when optimized for
each hover, the intercept and slope coefficients were far removed from the ideal values of 0
and 1, respectively, that would occur if agreement between observed and predicted depths
were perfect.
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Depth estimation accuracy assessment by hover
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Figure 12. Accuracy assessment of depth estimates by hover for the per-hover optimization approach, indicated by blue
bars. The results for the reach-aggregated optimization approach also are included and are represented by the dashed
horizontal line because a single value pertains to the entire reach (i.e., all of the hovers). Metrics of performance include
(a) observed (measured in the field with an ADCP) vs. predicted (inferred from PIV) regression R2; (b) normalized bias of
depth estimation errors, with errors defined as ADCP-measured minus remotely sensed; and (c) normalized root mean
square error (RMSE) of depth estimation errors. Bias and RMSE are normalized by the reach-averaged mean of the depth
measurements used for accuracy assessment.

Table 2. Summary of accuracy assessment of depths inferred from surface flow velocity estimates via comparison to ADCP
field measurements for the two approaches evaluated in this study. n XS is the number of cross sections extracted from each
hover; n is the number of ADCP data points within each hover; OP = observed vs. predicted; int. = intercept; RMSE = root
mean squared error; Norm. = normalized (by the mean of the field measurements within the hover.

Hover k
Method

n
XS

Fit
k (m) n OP

R2
OP
int.

OP
Slope

Norm.
Bias

Norm.
RMSE

51 Per-hover 8 0.000708 84 0.751 −0.636 1.101 0.039 0.277
52 Per-hover 9 0.003242 61 0.627 −0.779 1.247 −0.122 0.358
53 Per-hover 9 0.002227 64 0.758 −0.624 1.131 −0.024 0.330
54 Per-hover 10 0.000619 70 0.430 2.436 0.481 0.086 0.384
55 Per-hover 7 0.000303 26 0.400 3.097 0.349 −0.152 0.338
56 Per-hover 5 0.000420 48 0.614 −1.207 1.019 0.249 0.430
57 Per-hover 9 0.000359
58 Per-hover 10 0.001289 44 0.783 −0.016 0.878 0.125 0.254
59 Per-hover 10 0.001803
60 Per-hover 9 0.001078 56 0.634 2.284 0.553 −0.125 0.495
61 Per-hover 6 0.001062 118 0.425 1.360 0.694 −0.083 0.573
62 Per-hover 4 0.005958 93 0.320 3.364 0.458 −0.104 0.594
63 Per-hover 4 0.001248 62 0.536 2.268 0.264 0.161 0.772
64 Per-hover 4 0.000597 29 0.597 1.038 0.642 −0.056 0.209

Median Per-hover 8.5 0.001070 62 0.606 1.199 0.668 −0.040 0.371

Aggregated Reach-agg. 104 0.001 712 0.452 1.691 0.539 0.099 0.483

Considering the distributions of the depth estimation errors for the different versions
of DIVERS provided additional insight. Scaling the errors by the mean of the field-measured
depths within each hover and computing their average to obtain the normalized mean bias
indicated that the per-hover FRO approach led to less biased estimates of depth, with a
median value of −4%, whereas reach-aggregated FRO yielded a mean bias of 10%. These
results suggest that depths tended to be slightly over-predicted for the per-hover FRO
approach but under-predicted for the reach-aggregated approach. However, examining the
variation of the bias from hover to hover along the reach (Figure 12) revealed that this metric
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fluctuated among the hovers and that in most cases (hovers 51–54 and 56–63) the per hover
FRO approach led to negative biases; and biases were positive for only two of the 12 hovers
with ADCP data (55 and 64). In addition, the normalized RMSE provided a metric of the
precision of the depth estimates generated by the two different implementations of DIVERS.
For the individual hovers, the per-hover FRO approach had RMSE values that tended to be
greater for per-hover FRO (median of 37%)than for reach-aggregated FRO, which led to
less precise depth estimates with an RMSE of 48%.

In addition to the depth accuracy assessment, we also compared the two DIVERS
approaches in terms of their ability to reproduce the known discharge recorded at the USGS
gaging station on the day the images were acquired. Errors were defined as the difference
between the discharge measured at the gage and the mean of the discharges calculated
for each of the cross sections extracted from the PIV output grids. Similarly, the discharge
RMSE was computed using Equation (11). The results of this analysis are summarized
in Figure 13 and Table 3. The accuracy of the discharge estimates varied considerably
from hover to hover but in almost all cases was significantly better for the per-hover FRO
approach than for the reach-aggregated version. The precision of the discharges inferred
via the various DIVERS workflows, as indexed by the RMSE of the discharges calculated
for the individual XS, also fluctuated from hover to hover within the reach (Figure 13).
Attempting to match a known discharge by applying the FRO algorithm on a per-hover
basis led to the smallest RMSE values, ranging from less than 4% for hover 64 to 27% for
hover 53, with a median of 10% (Table 3). Aggregating the XS over the entire reach before
applying the FRO technique more than doubled the RMSE of the estimated discharges, to
over 20%.
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Figure 13. Accuracy assessment of discharge estimates by hover for the per-hover optimization approach, indicated by
blue bars. The results for the reach-aggregated optimization approach also are included and are represented by the
dashed horizontal line because a single value pertains to the entire reach (i.e., all of the hovers). Metrics of performance
include (a) discharge estimation error, expressed as a percentage of the known discharge, with errors defined as the known
discharge minus that estimated via remote sensing; (b) root mean square error (RMSE) of discharge estimates, expressed as
a percentage of the known discharge.



Remote Sens. 2021, 13, 4566 25 of 34

Table 3. Summary of accuracy assessment of discharges inferred from surface flow velocity estimates
via comparison to the known discharge of 1722 m3/s measured at the gaging station for the two ap-
proaches evaluated in this study. Errors are calculated as known minus estimated. n XS is the number
of cross sections extracted from each hover; RMSE = root mean squared error; Norm. = normalized
(by the known discharge).

Hover k
Method XS

Q error
(m3/s)

Q RMSE
(m3/s)

Norm.
Error (%)

Norm.
RMSE (%)

51 Per-hover 8 7.63 114.44 0.44 6.65
52 Per-hover 9 18.78 179.69 1.09 10.44
53 Per-hover 9 121.75 457.99 7.07 26.60
54 Per-hover 10 63.71 331.29 3.70 19.24
55 Per-hover 7 11.07 138.55 0.64 8.05
56 Per-hover 5 3.32 76.20 0.19 4.43
57 Per-hover 9 9.74 129.44 0.57 7.52
58 Per-hover 10 7.70 115.35 0.45 6.70
59 Per-hover 10 17.90 175.50 1.04 10.19
60 Per-hover 9 18.22 176.75 1.06 10.26
61 Per-hover 6 27.37 217.22 1.59 12.61
62 Per-hover 4 19.85 184.85 1.15 10.73
63 Per-hover 4 18.04 176.28 1.05 10.24
64 Per-hover 4 2.33 63.88 0.14 3.71

Median Per-hover 8.5 17.97 175.89 1.04 10.21

Aggregated Reach-agg. 104 71.99 352.04 4.18 20.44

4. Discussion
4.1. A Field Test of the DIVERS Framework

The motivation for the analysis summarized in Section 3.1, in which the DIVERS
framework was applied to field data collected with an ADCP, was to evaluate the degree
to which the relatively simple approach outlined in Section 2.5 could be used to relate
depth and velocity when both attributes were measured directly in the field, without the
complications and uncertainties introduced by estimating velocities from remotely sensed
data. By instead inferring depth from in situ velocity observations, we sought to assess the
potential to apply this framework in a remote sensing context, identify the limitations of
the approach, and establish realistic expectations.

Initially, we considered ADCP data from the entire reach, which led to a modest OP
R2 of 0.51 and many large underestimates of depth (Figure 3). However, aggregating
field observations from throughout the study area, which included both relatively simple
hydraulic settings as well as more complex areas (e.g., meander bends with pronounced
secondary flow patterns), obfuscated the effects of channel morphology on the performance
of the DIVERS framework. To reduce these complications and facilitate interpretation,
we also performed a separate analysis focused on a single ADCP transect in a straight
section of the channel within the footprint of the hover 58 video. Although comparing the
DIVERS-based depth estimates for this cross section to those measured in the field resulted
in a higher OP R2 of 0.61 and less variable errors, depths still tended to be underestimated
(Figure 4).

To gain further insight regarding these errors, we also examined their spatial distribu-
tion by plotting depth estimation errors in the context of the cross section along which the
data were collected. The map presented in Figure 14 revealed that the calculated depths
agreed closely (i.e., errors near 0) with the field measurements toward the right bank and
in the center of the channel, with a few locations where the predicted depths exceeded
the observations, as represented by the blue point symbols. However, to the left of the
channel centerline, and especially near the left bank, applying Equation (6) to the velocity
measurements led to large underestimates of depth, up to 5 m shallower than the depths
recorded by the ADCP in this area.
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Figure 14. Accuracy assessment of depths estimated from ADCP measurements of depth-averaged
flow velocity for a single cross section located within Hover 58: Map of depth estimation errors,
defined as ADCP measurements minus estimates from flow resistance equation.

Taking a broader perspective on the study reach by reexamining Figure 1c showed that
the river’s bathymetry was strongly asymmetric in the vicinity of hover 58, with greater
depths along the left side of the channel and much shallower flow over a bar on the right.
This morphology was a consequence of the meander bend at the upstream end of our
study area, which led to faster, deeper flow along the outer (left) bank that persisted well
downstream of the bend apex, including the area covered by hover 58 and depicted in
Figure 14. As a result of the flow field inherited from upstream, the ADCP transect we
examined was strongly influenced by secondary (i.e., cross-stream) flows that were not
incorporated into the simple flow resistance equation based solely on velocity magnitude,
not along- and across-stream components. These results indicate that omitting such effects
limited the predictive ability of Equation (6), even when using field measurements of
velocity to estimate flow depths. Moreover, the low OP R2 values and large, positively
biased depth estimation errors obtained when using only in situ observations imply that the
accuracy of depths from inferred remotely sensed surface velocities could be constrained
by the inherent deficiencies of the flow resistance equation at the core of the DIVERS
framework.

4.2. Spatial Variations in Performance and Limitations of the Flow Resistance Equation

The results summarized in Figure 5 and Table 1 indicated significant along-reach
variability in the performance of the DIVERS framework and served to highlight some
important limitations of the approach. For example, although agreement between depths
measured directly in the field and those inferred from remotely sensed data was strong at
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the lower end of the reach (hovers 51 and 52), the OP R2 decreased for hovers 53–55. This
deterioration might reflect the presence of a railroad bridge that created artifacts during
image processing and/or a more complex flow field where the channel curved to the west
(Figure 1b,c). We observed further evidence of the influence of channel morphology on the
accuracy of DIVERS-based depth estimates at the upstream end of the study area, where
the OP R2 values decreased as the flow field was influenced by another meander bend, this
time where the river began flowing to the north.

The effects of the fluvial processes operating within this sinuous channel on the
performance of the DIVERS framework were also expressed at a more local scale. For
example, in the more detailed analysis of the output from a single hover presented in
Section 3.4, the pattern of bathymetry illustrated in Figure 6b mirrored that of the velocity
field in Figure 6a and was a reflection of meander-related flow structure. As a result of the
complex hydraulics in this area, the largest underestimates of depth occurred on the left
side of the channel where the river was deepest and the flow resistance equation failed to
account for secondary flows associated with meandering, as described above in the context
of Figure 14.

The similarity between the maps of velocity and depth shown in Figure 6 is a con-
sequence of Equation (6), which summarizes a direct proportionality between H and us.
Although this expression is not linear, for the value of m used in this study, the expo-
nent on us is 1.57, so the relation is only weakly non-linear. As a result, differences in
predicted depth closely track fluctuations in the PIV-derived velocity field. Moreover,
because Equation (6) is applied in an aspatial manner on a per-pixel basis, without refer-
ence to nearby velocities, the depth inferred at a given location depends exclusively on
the remotely sensed surface velocity at that same location. In essence, therefore, the flow
resistance equation merely serves to convert the velocity field into a depth map without
any significant modification of the spatial pattern generated by the PIV algorithm. An
important implication of these results is that the simple, flow resistance equation-based
DIVERS framework cannot account for more complex hydraulics where the local depth
does not scale with the local velocity, as might occur near the inner bank above the apex of
a meander bend where the flow shoals and accelerates over a point bar to produce a higher
velocity but a shallower depth.

In addition, the sensitivity analysis to the roughness parameter k presented in Section 3.4
revealed further limitations of the flow resistance equation-based approach outlined herein.
Considering the influence of k on the predicted depths provided a plausible physical
explanation for the results summarized in Figure 8. For lower values of the roughness
coefficient k, the flow resistance due to friction against the channel boundary was reduced
and a given discharge could be conveyed with a shallower depth, given the same velocity.
As a result, depths tended to be under-predicted for low values of k, as indicated by the
large positive normalized mean bias values on the left side of Figure 8c. As k increased,
however, the flow resistance became greater and the conveyance of a given discharge was
accomplished with greater depths for a given velocity. Depths were thus under-predicted
to a lesser degree, resulting in lower values of the normalized mean bias for larger k in
Figure 8c. For the greatest k values considered in this sensitivity analysis, depth estimation
errors approached 0 and then became slightly negative, implying that depths might be over-
predicted if the roughness used in Equation (6) were too high. Similarly, the normalized
depth RMSE decreased as k increased, even for k values larger than that identified as
optimal by minimizing the discharge RMSE (Figure 8d). In this case, a slightly greater
k of approximately 1.8 mm would have minimized the normalized RMSE of the depth
estimates. These results suggest that optimizing the roughness so as to match the known
discharge might not lead to the most accurate depth estimates because discharge depends
not only on depth but also velocity.

The sensitivity analysis to water surface slope summarized in Figure 9 also provided
insight on the influence of uncertainty in this important input parameter on estimated
discharges and depths. As for the effects of k described above, these results could be
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interpreted in terms of the associated physical processes. For S values that were too gentle,
the flow resistance equation led to underestimates of depth (large negative values on the
right side of Figure 9c) for a given velocity and thus negative discharge errors (right side of
Figure 9a). Conversely, if the input slope were too steep, depths calculated via Equation (6)
would be too high, leading to a positive mean bias for depth and an overestimate of the
discharge (left side of Figure 9a,c). As was the case for the roughness sensitivity analysis,
the normalized RMSE for depth occurred at a value of S smaller than that measured from
the lidar DEM (Figure 9d), again implying that an optimization based on discharge might
not lead to the most accurate depth estimates due to the co-dependence of discharge on
both velocity and depth.

4.3. Different Versions of DIVERS and Potential for Reach-Scale Mapping

Given these limitations, understanding the relative merits of the two different versions
of the DIVERS framework we examined took on added significance as a means of assessing
which implementation might provide the most reliable output in a particular situation.
The agreement between the discharge measured at the gage and that estimated using
the per-hover FRO approach was stronger than for the discharge estimated using the
reach-aggregated version of DIVERS. On a per-hover basis, FRO successfully matched
the measured discharge to within 1% for 6 of the 14 hovers, with a median value of 1.04%.
The smallest errors coincided with the areas where Figure 5 showed that the PIV-derived
velocity estimates were most accurate (hovers 51, 56, and 58). Conversely, sub-reaches with
less reliable velocity estimates also had larger discharge errors (hovers 53 and 54).

When the XS were aggregated over the entire reach prior to FRO, the discharge error
increased to 72 m3/s, or 4.18%, implying that the optimization was more effective when
the number of XS to be reconciled with one another was smaller. The superior ability of
the per-hover FRO approach to reproduce the discharge measured at the gage, relative
to the reach-aggregated FRO, implied that the DIVERS framework was more effective
when implemented on a local basis. Nevertheless, the ability of even the reach-aggregated
version of DIVERS to reproduce the measured discharge to within 5% suggests that the
FRO algorithm was robust, closely matching the known discharge for a given set of input
XS. Moreover, in the reach-aggregated case a relatively high level of global accuracy could
be achieved even in the presence of significant XS-to-XS variability.

The motivation for exploring the reach-aggregated approach was to produce a con-
tinuous, smoothly varying depth map encompassing the entire study area. Figure 15a
suggests that the technique was successful in this regard. This map was assembled as
a mosaic of the bathymetries inferred for the individual hovers using the globally op-
timized value of k and captures along- and across-channel variations in depth without
noticeable discontinuities between hovers. In contrast, when the depth maps produced
for the individual hovers based on k values estimated by applying the FRO algorithm on
a per-hover basis were compiled in this manner, pronounced seams were evident, most
notably between hovers 62 and 63 at the upstream end of the reach (Figure 15b). These
results imply that although depths inferred via the reach-aggregated approach might have
been less reliable on a point-by-point basis, the reach-scale output was more internally
consistent than when the analysis was performed on a per-hover basis and the output
compiled afterward. These findings suggest that a compromise must be reached between
local accuracy and larger-scale continuity.
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Figure 15. Depth map mosaics derived from cross sections (a) aggregated over the entire reach and (b) individual hovers.

4.4. Future Research Directions

An unanticipated outcome of this investigation was the finding that velocities derived
from remotely sensed data via PIV did not consistently under- or over-predict depth-
averaged velocities observed in the field (Figure 5). This result is noteworthy because no
adjustment was made to the PIV output to convert surface velocities to depth-averaged
velocities prior to comparison with the field data. In other words, to perform this accuracy
assessment we did not account for the difference between remotely sensed surface velocities
and in situ depth-averaged velocities by applying a velocity index. These results, which
corroborate those reported in a previous study at this site [10], imply that sediment boil
vortices, the features tracked in this particular application, might have integrated hydraulic
process vertically throughout the water column to a greater degree than floating, purely
surficial tracers would have, thus obviating the need to convert PIV output from surface to
depth-averaged velocities. Although we did not apply a velocity index to PIV estimates
before quantifying their agreement with ADCP measurements, the DIVERS framework
presented herein explicitly includes a velocity index for converting surface to depth-
averaged velocities to allow for greater generality and enable application of DIVERS to
velocity fields inferred via PIV of surficial tracers. In this study, we used a site-specific
velocity index of 0.88 in the DIVERS equations, but an important objective for future
research is to resolve the question of whether velocities inferred by tracking sediment boil
vortices can be interpreted as a depth-integrated expression of hydraulic processes, as
opposed to surface velocities that might be obtained by measuring the displacement of
particles floating on top of the water.

Another important topic for further study is specification of the roughness parameter k.
We showed how k can be back-calculated from field measurements of bulk flow hydraulics
made routinely at gaging stations, but k also could be estimated on the basis of sediment
grain size data and, in rivers with mobile sand beds, surveys of bedform geometry. These
alternatives merit further consideration. For example, Ferguson [45] provided a relation
between grain size and flow resistance that was developed for gravel- and boulder-bedded
channels, but the bed of the Tanana River was comprised of much finer sediment and also
featured bedforms [50]. van Rijn [51] presented an equation expressing roughness as a
function of grain size and the height and steepness of dunes, thus accounting for both
grain- and form-related sources of flow resistance, which can be significant in sand-bed
channels such as the Tanana. Characterizing various types of flow resistance in a range of
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river environments and developing generally applicable, readily parameterized roughness
formulations is an important topic for additional research.

The most significant limitation of DIVERS, acknowledged when the approach was first
introduced in Section 2.5 and revisited in the preceding discussion, is the relatively simple
flow resistance equation upon which the entire framework is based. To reiterate, we treated
the flow as steady, uniform, and one-dimensional and applied a flow resistance equation
intended for bulk, cross-sectionally averaged hydraulics independently to each node of PIV
output grids to calculate local flow depths. Importantly, although this approach allowed
depth to vary laterally in direct proportion to the PIV-derived velocity field, no information
was transferred between adjacent grid nodes to account for cross-stream transfers of mass
and momentum. As a result, secondary flows such as those that occur in meander bends
are not explicitly accounted for by the initial formulation presented herein. Regardless,
the approach provided plausible depth estimates in this case study and these first-order
approximations could provide the bathymetric input data required by more sophisticated
numerical models that do impose conservation of mass and momentum in two or even
three dimensions. Future research will focus on refining DIVERS to incorporate spatial
information (i.e., fluxes from adjacent grid nodes) as an at least heuristic means of relaxing,
to a degree, some of the assumptions inherent to the original iteration of the framework
presented herein.

Finally, given the variability in performance from one hover to the next observed in
this study, as well as the challenges involved in processing images from multiple hovers,
we intend to explore alternatives to helicopter-based image acquisition. Although the
ability of a helicopter to remain stationary above several individual subsections of a reach
allows this type of platform to provide long time series of images for a given portion of
the channel, the sensitivity analysis to image sequence duration reported by Legleiter and
Kinzel [10] indicated that dwell times could be reduced to 15–20 s without compromising
the accuracy of PIV-derived velocity estimates. This finding implies that other means of
image acquisition could also provide suitable input data for PIV and thus DIVERS. For
example, we have also assessed the feasibility of inferring flow velocities from space using
satellite video [34]. Using typical small UAS to obtain videos would be subject to many
of the same limitations as helicopter-based data and might be impractical for large rivers
such as the Tanana, but a new generation of high-altitude, long-endurance UAS capable
of staring at a given location on the Earth’s surface from the stratosphere offer significant
potential in this context. For the time being, however, the most viable approach to remote
sensing of flow velocities and depths over long river reaches might be to acquire images
from conventional, fixed-wing manned aircraft. Certain types of planes can safely fly low
enough and slowly enough to obtain image sequences with sufficient spatial resolution
and along-track overlap for PIV using readily available camera systems. This approach
could help to avoid the hover-to-hover variability associated with helicopter-based data
and provide images and derived products that are more internally consistent. We are
currently planning flights along the Tanana River to assess the potential of manned aircraft
to support the type of reach-scale mapping of multiple river attributes enabled by the
DIVERS framework.

5. Conclusions

Characterizing spatially explicit hydraulic conditions in stream channels via conven-
tional field methods is logistically challenging and at times dangerous, particularly for
large rivers that are difficult to access. Remote sensing provides an appealing alterna-
tive means of quantifying spatial variations in key attributes such as flow velocity and
water depth and could form the basis of a non-contact approach to streamgaging. This
study built upon previous work demonstrating the feasibility of estimating velocities from
videos of sediment-laden rivers by introducing a flow resistance equation-based approach
that allows depth information to also be obtained. We refer to this new framework as
Depths Inferred from Velocities Estimated by Remote Sensing (DIVERS). We evaluated the
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potential to map multiple river attributes at the reach scale by applying two versions of
DIVERS to videos acquired from a helicopter hovering at a series of waypoints along a
large river in Alaska. The accuracy of remotely sensed velocities and depths was assessed
via comparison to field measurements. We also evaluated the ability to reproduce the
discharge observed at a gaging station using an optimization-based technique applied
on both a per-hover and reach-aggregated basis. To recap the results of this analysis, we
present the following principal conclusions:

1. The DIVERS framework is based upon a number of critical assumptions that limit
its applicability and performance. The flow is treated as steady, uniform, and one-
dimensional, with no cross-stream transfer of mass or momentum. Moreover, DIVERS
involves applying a flow resistance equation that is typically used to characterize
bulk, cross-sectionally averaged hydraulics to calculate depths on a per-pixel basis.
In essence, each node of the PIV output grid is considered in isolation such that the
water depth at a given location is directly proportional to the local flow velocity and
is not influenced by adjacent grid nodes.

2. Application of the DIVERS framework to field data resulted in modest agreement
between observed and predicted depths (R2 = 0.51 for the entire reach and 0.61 for a
single transect in a straight section of the channel) and many large underestimates
of depth, implying that the inherent limitations of the approach might constrain the
accuracy with which depths can be inferred from remotely sensed velocities.

3. Agreement between velocities measured directly in the field and estimated from
remotely sensed data via PIV varied from hover to hover within the reach, with OP
R2 values ranging from 0.22 to 0.97 and a median value of 0.57. PIV-based velocities,
which were not adjusted to convert surface velocities to depth-averaged velocities, did
not consistently over-or under-predict the field observations. The median normalized
mean bias was −2.7% and the median RMSE was 16.6%. These results suggest
that velocities estimated by tracking naturally occurring sediment boil vortices were
reasonably accurate and precise.

4. For a single hover in a straight section, agreement between depths inferred via
DIVERS and field measurements was stronger (OP R2 of 0.78), with a smaller mean
and standard deviation of errors than when DIVERS was applied to field data. Plotting
a cross section illustrated the direct proportionality between PIV-derived velocities
and depths calculated via DIVERS.

5. Depth estimates were more accurate for a per-hover flow resistance optimization
(FRO) approach (median normalized median bias of −4%) than for reach-aggregated
FRO (10%). The precision of the two DIVERS variants was quantified in terms of
the normalized RMSE, with values of 37% and 48% for the per-hover and reach-
aggregated FRO methods, respectively.

6. The FRO algorithm successfully reproduced the discharge recorded at a gaging station
to within a median of 1% on a per-hover basis and within 4% when cross sections
were aggregated over the entire reach. The median normalized RMSE values for the
discharge estimates from these approaches were 10% for per-hover FRO and 20% for
reach-aggregated FRO.

7. Although the assumptions inherent to the DIVERS framework impose some impor-
tant limitations, this study demonstrated the potential of this approach to provide
plausible, first-order approximations of water depth throughout the reach. These
estimates could be refined through further research focused on incorporating more
sophisticated numerical modeling techniques that account for processes, such as
lateral transfer of momentum in meander bends, that are not represented in the initial
iteration of DIVERS.
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