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Abstract: Deep learning models have achieved success in image recognition and have shown great
potential for interpretation of ground penetrating radar (GPR) data. However, training reliable
deep learning models requires massive labeled data, which are usually not easy to obtain due to
the high costs of data acquisition and field validation. This paper proposes an improved least
square generative adversarial networks (LSGAN) model which employs the loss functions of LSGAN
and convolutional neural networks (CNN) to generate GPR images. This model can generate
high-precision GPR data to address the scarcity of labelled GPR data. We evaluate the proposed
model using Frechet Inception Distance (FID) evaluation index and compare it with other existing
GAN models and find it outperforms the other two models on a lower FID score. In addition, the
adaptability of the LSGAN-generated images for GPR data augmentation is investigated by YOLOv4
model, which is employed to detect rebars in field GPR images. It is verified that inclusion of
LSGAN-generated images in the training GPR dataset can increase the target diversity and improve
the detection precision by 10%, compared with the model trained on the dataset containing 500 field
GPR images.

Keywords: ground penetrating radar (GPR); deep learning; least square generative adversarial
networks (LSGAN); data augmentation

1. Introduction

Ground penetrating radar (GPR) is a popular geophysical technique and has been
widely applied to near-surface investigation [1,2], archaeological prospection [3,4], hy-
drological investigation [5], lunar exploration [6], and civil engineering [7]. In tunnel
detection, GPR is used to detect voids, seepage, and rebar defects [8,9]. In bridge field,
GPR is commonly used to measure reinforcement position, concrete thickness, and re-
inforcement corrosion degree [10,11]. With the rapid increase of detection requirements
in civil engineering, GPR has been become a regular method for inspecting reinforced
bars (rebars) in concrete, locating subsurface pipelines, structural performance evaluation,
etc. [12]. A single scatterer, such as a landmine, rebar, or pipeline, reflects a hyperbolic sig-
nature in a recorded GPR B-scan profile [13], which can be used to locate the buried objects
from GPR images [14]. However, even for an experienced practitioner, interpretation of
GPR data is extremely time- and labor-consuming due to complex field conditions and
huge data volumes. For example, field data detected by a car-mounted GPR system in a day
would take one week or even longer to be comprehensively interpreted [15]. Therefore, the
low efficiency of manual interpretation is a major factor that limits the fast decision-making
for maintenance and rehabilitation [16,17].
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As a branch of machine learning, neural networks have been developed over 40 years,
and one of the hotspots is the application of convolutional neural networks (CNN) [18].
CNN with multiple hidden layers have shown strong ability in recognition of computer
vision features and present high robustness in detection task, which has shown their
potential in GPR scenarios [19]. In this context, a series of network architectures, such
as Faster region-based CNN (Faster R-CNN) and Single Shot MultiBox Detector (SSD),
have been applied to the GPR image recognition tasks [20-22]. Pham et al. [23] applied a
pre-trained Faster R-CNN model to GPR image identification, proving that deep learning-
based algorithms make an improvement compared to classical computer vision methods.
Giannakis et al. [24] combined neural networks and a random forest regression algorithm
to recognize GPR images. Nonetheless, training a deep learning model requires massive
GPR data with labels of subsurface targets. Due to the high costs of data acquisition and
field validation, massive GPR data for CNNs are not readily available.

Up to now, a challenging aspect impeding the extension of deep learning methods
is the limited amount of GPR data with labels for training. To solve this issue, simulation
is an available way to add the amount of training GPR data. GprMax, an open-source
software based on finite-difference time domain (FDTD) method, has been widely used
for simulating GPR data [25,26]. However, the field radar profiles are more complicated
than simulated radar profiles due to the complex dielectric distributions in real measure-
ment scenarios, which are hardly modelled. With the development of deep learning
techniques, generative adversarial networks (GAN) present a new way to generate GPR
images [27-29]. Nonetheless, training GAN is still a difficult issue in practice due to
the instability of the GAN’s learning process which is usually caused by the objective
function [30,31]. Radford et al. [31] raised a deep convolutional generative adversarial
networks (DCGAN), which improves the convergence of the GAN and the quality of gener-
ated images. Mao et al. [32] changed the objective function of GAN from cross entropy loss
to least square loss and proposed a least square generative adversarial network (LSGAN),
to improve the quality of the GAN-generated images and the stability of the training
process. However, the GAN’s generator is prone to mode collapse during training [33].
The consequence is that the generated images could be exactly the same as the real ones,
and their diversity is decreased.

This paper proposes an improved LSGAN model for generation of high-precision
GPR images. As an example, generated GPR images of rebar in concrete are presented.
Then the influence of the amount of generated GPR data on the hyperbolic recognition
precision is investigated. Finally, the recognition performance is tested using GPR data
recorded on reinforced concrete structures. The rest of this paper is organized as follows.
Architecture of the improved LSEGAN model is introduced in Section 2. Section 3 presents
and evaluates the results produced by the LSGAN model. In the Section 4, the impact of
the amount of generated data on the recognition precision of the CNN model is tested.
Section 5 discusses the characteristics of our proposed algorithm. Conclusions are given in
the last section.

2. Methodology
2.1. Generative Adversarial Networks (GAN)

GAN can generate artificial images by using two adversarial networks. A GAN
architecture is composed of two component parts, including a generation model G and a
discriminant model D (Figure 1) [34]. The G model is responsible for producing spurious
data whereas the D model is in charge of distinguishing the authenticity of the produced
data. Competition between D and G makes the two models equal to optimize the training
process until reaching a balanced state. The generated image of the generator G is rated by a
discriminator D which distinguishes between the field data p;,,(x) and the generated data
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pz(z). The generator G will confuse the discriminator D to judge whether the generated
data is true or not. The loss function in GAN is defined as follows

mGin meV(D, G) = Ex~py,,[LogD(x)] + E.~p,[log(1 — D(G(z)))] @

where G(z) is a sample image generated by a random matrix, x is a field sample image,
Ey~p,,, is the expected value over all field instances, and E. p, is the expected value over

all the fake instances.
.
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Figure 1. Sketch map of the GAN architecture [34].

The convergence direction of the network is achieved by rrgn mDaxV(D, G). The

loss function in Equation (1) can be divided into two parts which correspond to the
discriminative model and the generative model, respectively.

LOSS (1) = —(log(D(x)) + log(1 ~ D(G(2)))) @)

LOSS(c) = —(log(D(G(2)))) )

However, GAN is unstable and easily results in non-convergence during the training
process [29]. In addition, the instability of the GAN makes it prone to under-fitting or
over-fitting [35]. Therefore, the parameters of GAN must be carefully adjusted in the
training process.

2.2. Improved Least Square Generative Adversarial Networks

LSGAN adopts the least square loss function of the discriminator and can generate
images that are closer to field GPR images than the normal GANs [32]. The loss functions
of the generator and discriminator of the LSGAN are respectively defined as follows:

mDinVLSGAN(D) = %Ex"’Pdam |:(D(x) - b)z] + %EZNPZ {(D(G(Z)) - a)z] (4)
HgnVLSGAN(G) - %EZNPZ {(D(G(Z)) - C)2:| (5)

where a is the label of fake data, b is the label of field data, and c is the value set by G for D
to determine whether the generated image is real data.
However, LSGAN models suffer from the following problems [36]:

(@) The generator is susceptible to collapse during the training process;
(b) The generator gradient may vanish and learn nothing;
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(c) The generated images are not diverse.

In this paper, we improve the architecture of LSGAN, as shown in Figure 2. It
can smooth the gradient and improve the stability of the adversarial training, thus re-
ducing the possibility of mode collapses in training stage and increasing the variety of
generated images.
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Figure 2. Architecture of the improved LSGAN.
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The generator’s detailed architecture is presented in Table 1. The purpose of the
generator is to create an image from the input image based on a random noise matrix.
Several up-sampling operations are set to reshape the size of input matrix (512 x 512 in this
work). The design of the generator involves a transposed convolutional block to up-sample
the input image. Eight transposed convolutional blocks are used in the improved LSGAN.
Each block consists of a transposed convolutional layer, followed by a Batch Normalization
and a Rectified Liner Unit (ReLU) activation function. In the first block, the kernel of
transposed convolutional layer is 4 x 4 with a stride of one that resizes the input matrix
to 4 x 4 with 4096 channels. Then the stride of transposed convolutional layer is set as
two with a number of features divided by two at each block. The residual block module is
used to connect with the up-sampling module. A transposed convolution with a size of
4 x 4 and a stride of two followed by Tanh is set as the last block to resize the output to be
512 x 512.

Table 2 shows the composition of the discriminator. The input of the discriminator
model is the fake and real images from the generator. During training, the discriminator
compares two kinds of images, and the output is used to adjust the generator to make
images resemble real ones. The LeakyReLU activation function is used to avoid mode
collapse [37]. Convl includes a 4 x 4 convolutional block with a stride of two, followed by
LeakyReLU activation. Then seven 4 x 4 convolutional blocks with a stride of two, and
several features are multiplied by two at each stage.
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Table 1. The framework of generator model.
Type Layer Output Shape
ConvTranspose2d [1,4,4,4096]
ReLU [1,4,4,4096]
ConvTransposel ConvTranspose2d [1,2048,8,8]
BatchNorm2d [1,2048,8,8]
ReLU [1,2048,8,8]
ConvTranspose2d [1,1024,16,16]
BatchNorm2d [1,1024,16,16]
ConvTranspose2 ReLU [1,1024,16,16]
(Up3) ConvTranspose2d [1,512,32,32]
BatchNorm2d [1,512,32,32]
ReLU [1,512,32,32]
ConvTranspose2d [1,256,64,64]
BatchNorm2d [1,256,64,64]
ConvTranspose3 ReLU [1,256,64,64]
(Up2) ConvTranspose2d [1,128,128,128]
BatchNorm2d [1,128,128,128]
ReLU [1,128,128,128]
ConvTranspose2d [1,64,256,256]
BatchNorm2d [1,64,256,256]
ConvTranspose4 ReLU [1,64,256,256]
(Upl) ConvTranspose2d [1,64,256,256]
BatchNorm2d [1,1,512,512]
ReLU [1,1,512,512]
ResNet Residual Blocks [1,1,512,512]
ConvTranspose2d [1,64,256,256]
BatchNorm2d [1,64,256,256]
ReLU [1,64,256,256]
Up4 ConvTranspose2d [1,64,256,256]
BatchNorm2d [1,1,512,512]
ReLU [1,1,512,512]
Tanh [1,1,512,512]
Table 2. The framework of discriminator model.
Type Layer Output Shape
Convl Conv2d [1,32,512,512]
onv LeakyReLU [1,32,512,512]
Conv2d [1,64,256,256]
BatchNorm2d [1,64,256,256]
Conv? LeakyReLU [1,64,256,256]
onv. Conv2d [1,128,128,128]
BatchNorm2d [1,128,128,128]
LeakyReLU [1,128,128,128]
Conv2d [1,256,64,64]
BatchNorm2d [1,256,64,64]
Conv3 LeakyReLU [1,256,64,64]
onv Conv2d [1,512,32,32]
BatchNorm2d [1,512,32,32]
LeakyReLU [1,512,32,32]
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Table 2. Cont.

Type Layer Output Shape
Conv2d [1,1024,16,16]
BatchNorm2d [1,1024,16,16]
LeakyReLU [1,1024,16,16]
Conv4 Conv2d [1,2048,8,8]
BatchNorm2d [1,2048,8,8]
LeakyReLU [1,2048,8,8]
Conv2d [1,4096,4,4]
BatchNorm2d [1,4096,4,4]
LeakyReLU [1,4096,4,4]
Convs Conv2d [1,1,1,1]
BatchNorm2d [1,1,1,1]
LeakyReLU (1,1,1,1]

2.3. Evaluation Index

Generally, inception score (IS) [38] and Frechet Inception Distance (FID) [39] are two
widely accepted measures for evaluating the performance of GAN models [40]. The IS
measure directly evaluates the generated image itself by calculating its entropy. In contrast,
the FID measurement calculates the similarity between the generated images and the field
images [39] and thus is superior to IS measurement [38]. In this paper, FID score is used to
evaluate the results of the improved LSGAN algorithm.

The FID score presents the feature distance between the real and GAN generated
images, which is also known as Frechet distance between the two multivariate Gaussians.
A lower FID score means closer proximity between the two distributions, which means
higher quality and greater diversity of images generated. The FID score is given by

1
drip(x,8) = || ux — pig I+ Tr| 22 + Yo —2(ZyXg)? (6)

where ¥, and ¥, are the covariance matrix of field and generated images, Tr is the trace
calculated from the sum of the elements along the main diagonal of the square matrix, and
Jix, Hig are the dimensional activations for field images and generated images, respectively.

3. Datasets of GPR Images
3.1. Data Collection

Field GPR images were obtained in several residential buildings of two construction
sites by using a commercial GPR system with a central frequency of 2 GHz (Figure 3). The
GPR data were recorded by a distance-measuring odometer, and the acquisition parameters
are summarized in Table 3. In order to enable the dataset to cover as much as possible of all
types of rebars, GPR images were collected on the surface of concrete walls, columns, beams,
and slabs. Since the dimensions of these concrete components are not the same for different
buildings, the GPR survey lines have various lengths. By data processing, we set each GPR
image to be of the size of 512 x 512. In total, 500 GPR images which contain 2856 rebars
were collected, as shown in Figure 4. Since GPR measurements were conducted before
the building decoration, we can confirm that all the near-surface hyperbolic features are
generated by the concrete rebars. A single rebar reflection can be easily identified due to its
hyperbolic feature, and the field GPR images that are used for training the deep learning
model will be described and tested in the next section.
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(b)

Figure 3. (a) The system used for GPR images acquisition and (b) GPR images of the field data
collection [17].

Table 3. Parameters for GPR data acquisition.

Parameter Value

Central frequency 2 GHz

Trace interval 0.04 m
Time window 6 ns
Samples 512

(©) (d)

Figure 4. (a-d) Examples of field GPR images, in which rebars are easily recognized.

3.2. Data Augmentation Methods

The recognition sample library needs a large amount of GPR images to successfully
train the neural network model. Though 500 images have been obtained, labeled field
GPR data are still limited. In this work, the improved LSGAN is used to generate more
GPR data which supply the amount of training data. In this section, the obtained field
GPR images are used as the training dataset in the training of the improved LSGAN. The
training process is conducted on a computer with a NVIDIA GeForce GTX 1660Ti graphics
card (6 GB memory). It takes 8.5 h for 500 epochs to obtain produced weight file, which is
about the same as the training time with other GANs. After obtaining the weight file, each
artificial GPR image can be generated within 1 s.
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Figure 5 shows the visual inspection in the improved LSGAN training process. Starting
from an image of random noise, the improved LSGAN adjusts the network parameters
to produce GPR images resembling the real ones. At 10 epochs, the generated image
has contained some prominent features, but details are lacking. When epochs reach 100,
there are subtle features which resemble the rebar reflections emerged. At 200 epochs, the
generated image reveals more details and looks similar to a field GPR image. When it
reaches 500 epochs, the generated image contains almost all the detailed information of the
field GPR images. With the improved LSGAN, we generate 500 GPR images containing
2602 rebars to augment the training dataset.

(d)
P

(c)
- =
(e) (f)

Figure 5. Generated GPR images using the improved LSGAN at different training epochs. (a) GPR
image, (b) input image, (c) Epoch 10, (d) Epoch 100, (e) Epoch 200, (f) Epoch 500.

3.3. Results of Other GANs

In addition to the improved LSGAN, other GAN models, i.e., DCGAN and LSGAN,
are used to generate GPR images. Their results are compared with the images generated by
the proposed improved LSGAN. As shown in Figure 6, the clarity of the images generated
by DCGAN is poor, and the hyperbolic characteristics of rebar reflection are not well
learned by LSGAN. In comparison, GPR images generated by the improved LSGAN reveal
more details than the other two.
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Number 1 2 3 4 5

Real image

Improved LSGAN

Figure 6. GPR images generated by LSGAN, DCGAN and improved LSGAN using field images.

The calculated FID score by using PyTorch shows that the improved LSGAN model
achieves a FID score of 29.6 (lower scores correspond to better GAN performance). The
FID score of DCGAN and LSGAN are, respectively, 67.5 and 47.6, which are much higher
than results by the improved LSGAN. It means that the improved LSGAN can extract more
rebar features than the DCGAN and LSGAN from field GPR images. More importantly,
the images generated by the improved LSGAN contain more rebar targets than the field
GPR images, which improves the diversity of training dataset.

4. Results
4.1. Pre-Trained YOLOv4

Since GPR data acquisition can be operated at an ultra-fast speed, both the detection
accuracy and speed of a deep learning model are important in the GPR application scenar-
ios. Therefore, we employ YOLOv4 model which improves YOLOV3’s average precision
and frame per second by 10% and 12%, respectively [41], to test the value of the generated
GPR images by the improved LSGAN.

The schematic diagram of YOLOv4's network structure is shown in Figure 7. To
reduce the number of required training images and iterations, transfer learning is utilized
for training the Yolov4 model. In this study, the employed Yolov4 model is firstly pre-
trained on the COCO dataset [42]. Then the pre-trained Yolov4 model is further trained
and fine-tuned by using the acquired GPR dataset.
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Figure 7. YOLOV4 architecture diagram.

CSPDarknets3

Input
416%416%3




Remote Sens. 2021, 13, 4590

11 of 16

4.2. Testing Results

After data augmentation, the training dataset contains 500 field GPR images and
500 GAN-generated GPR images. A total of 5467 rebars are labeled manually as targets.
To test the impact of generated GPR images in training dataset on the target recognition,
three training datasets are created, as shown in Table 4, and the corresponding recognition
precisions are investigated. The computing facility for training YOLOv4 is the same as that
used in training the improved LSGAN architecture.

Table 4. Setup of the training GPR dataset.

Training Dataset I II III
Field GPR image Vv X Vv
Improved LSGAN image X Vv Vv

\/ dataset used for deep learning training. x dataset not used for deep learning training.

4.2.1. Training Dataset I and II

Training dataset I contains 500 field GPR images, training dataset II contains 500 generated
GPR images. All the images are resized to 512 x 512 pixels. A total of 2865 rebars are labeled
in dataset I, and 2602 rebars are labeled in dataset II. In each training dataset, 350 images (70%)
are randomly selected for training, and the remaining 150 images (30%) are used for validation.

The YOLOV4 network is trained using the Adam optimizer with a learning rate of
0.001 and a weight decay of 0.0001, and the average training and validation losses are
plotted in Figure 8. The network is improved gradually during the training process and
reaches a steady state after 100 training epochs. The loss values for validation are close to
those for training, indicating that no overfitting has occurred. Thus, the network is well
trained and ready for recognition.

1.0 ‘I
0.8 7 dataset I training
dataset I validation
dataset II training
" 0.6 1 dataset IT validation
3
—
0.4
0.2
0 . | L | . | . | . |
0 20 40 60 80 100

Epoch
Figure 8. Training losses of the deep learning network with training datasets I and II.

Next, we investigate the recognition precision of the trained network using 100 field
GPR images that are not included in the training dataset. Classical evaluation metrics in-
cluding precision (Pr), recall (Re), and F1 score (F1) are applied to evaluate the performance
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of the trained YOLOv4 model for rebar detection in GPR images. The Pr, Re, and F1 of the
testing results of the validation images are averaged values.

_ correctly detected rebars

Pr= "1 detected rebars @
Re — correctly detected rebars ®)
all ground — truth rebars
2 X Pr x Re
== + Re ©)

Training results of 100 iterations are then used to evaluate the performance of the
trained YOLOV4 algorithm for rebar detection, as shown in Figure 9. The overall Pr, Re,
and F1 scores of dataset I are 84.9%, 81.2%, and 83.1%, respectively, while those of dataset
IT are 84.9%, 76.4%, and 80.3%, respectively. The generated dataset image can only simulate
the field GPR measurement environment with high precision but cannot be identical with
field GPR images. Thus, a small number of rebars in the test field GPR dataset are not
detected, resulting in low recall rate and FI score. Nevertheless, Datasets I and II result
in the same detection precision. It means that the GPR image generated by the improved
LSGAN can be used to train the detection model.

0.90 - precision

recall
[ [ ]Fl-score

—

= [
i}
|

0.70

0.65

0.60 ! . L
Dataset I Dataset II

Figure 9. Evaluation results of rebar detection.

4.2.2. Training Dataset III

Training dataset III contains the 500 field GPR images and a number of additional
generated images. The YOLOv4 network is trained with different proportions of generated
images using the same training parameters as those of the previous cases. Figure 10 shows
the recognition precision. The highest precision for recognizing rebars reaches 95.9%, which
is higher than the precisions using training datasets I and IL



Remote Sens. 2021, 13, 4590 13 of 16

5004 849 852
450 4 s40 84.7

400 4 837 84.3

w
[F)
g) 350
-1 832
§ 83.7
S 300 g1 s32
=
[
S 2504 s25 $3.0 83.3
B —86.0
g 200 4 %23 82.7 83.0 84.1
Z
150 - 812 822 82.8 83.4
|-82.5
100 -| 803 814 82.5 83.3
50+ 795 80.3 81.9 82.6 | 700
[ [ [ [ [ [ [ -
0 50 100 200 300 400 500
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Figure 10. Classification precision for GPR images corresponding to different numbers of field
training images and after augmentation with generated data, which are used for training YOLOv4.

Figure 11 shows some examples of GPR images, in which the hyperbolic reflections
of rebar are identified in different scenarios. It can be seen that almost all the hyperbolic
rebars in these situations are correctly identified with a high confidence, including multiple
targets, closely aligned targets, overlapped targets, and blurred targets. In addition, we
have further propose an automatic localization method through migration and binarization,
which can accurately estimate the rebar position information [17].

(a)

Figure 11. Cont.
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(e) (f)

Figure 11. (a—f) Rebar detection examples of field GPR images using the trained Yolov4 model.

5. Discussion

This paper proposes an improved LSGAN model for generation of high-precision GPR
images. The loss function of LSGAN can smooth the gradient and improve the stability of
the training process, thus decreasing the possibility of mode collapses and increasing the
variety of generated images. Eight residual blocks and tanh function in generator are aimed
to reduce the training error of deep network. Moreover, LeakyReLU activation function is
applied in discriminator to improve the learning ability and also avoid mode collapse. The
results show that the quality of the images produced by the proposed improved LSGAN is
better than that generated by DCGAN and LSGAN at the same epochs.

In order to verify the feasibility of the generated GPR images for data augmentation,
three different training datasets (dataset I to III) are used to train the YOLOv4 models
and illustrate the recognition precisions. Results reveal that datasets I and II present same
detection precision, but a small number of rebars in the Dataset II are not detected, resulting
a low recall rate and F1 score. With the increasing of the number of improved LSGAN GPR
images (dataset III), the precision of rebar recognition rises to 95.9% when 500 generated
images and 400 field images are used for training. In our previous work [17], a training
dataset of 3992 GPR images containing 13,026 rebars is established by another simple
data augmentation method, i.e., the horizontally flipping and scaling, and the precision
of rebar recognition can only reach 90.9%. In comparison, image augmentation by the
improved LSGAN algorithm achieves a higher recognition precision of 95.9% by using
only 900 images for training. This finding demonstrates that the GPR images generated
by the improved LSGAN have abundant diversity, which can be used to train the neural
network model.

6. Conclusions

In this paper, we propose an improved LSGAN for generation of GPR images to deal
with the insufficient GPR images with labels for training the deep learning models with an
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aim of automatic subsurface target detection. Compared with other GANSs, the improved
LSGAN can generate GPR images of rebar with a higher precision, while ensuring the di-
versity of images. Furthermore, the improved LSGAN approach is employed for GPR data
augmentation. It is found that the generated images can supplement the missing features
in the field GPR data, increase the diversity of the dataset, and improve the recognition
precision by 10%, compared with the precision of 84.9% achieved by using 500 field GPR
images for training.

The future work will try to apply the improved LSGAN to generate GPR images of
other underground targets, such as subsurface pipes, landmines, cavities, etc. In addition,
the improved LSGAN will be trained by combining FDTD simulation and field images to
make the generated images more diverse.
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