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Abstract: Rangelands are composed of patchy, highly dynamic herbaceous plant communities that are
difficult to quantify across broad spatial extents at resolutions relevant to their characteristic spatial
scales. Furthermore, differentiation of these plant communities using remotely sensed observations
is complicated by their similar spectral absorption profiles. To better quantify the impacts of land
management and weather variability on rangeland vegetation change, we analyzed high resolution
hyperspectral data produced by the National Ecological Observatory Network (NEON) at a 6500-ha
experimental station (Central Plains Experimental Range) to map vegetation composition and change
over a 5-year timescale. The spatial resolution (1 m) of the data was able to resolve the plant
community type at a suitable scale and the information-rich spectral resolution (426 bands) was able
to differentiate closely related plant community classes. The resulting plant community class map
showed strong accuracy results from both formal quantitative measurements (F1 75% and Kappa
0.83) and informal qualitative assessments. Over a 5-year period, we found that plant community
composition was impacted more strongly by weather than by the rangeland management regime.
Our work displays the potential to map plant community classes across extensive areas of herbaceous
vegetation and use resultant maps to inform rangeland ecology and management. Critical to the
success of the research was the development of computational methods that allowed us to implement
efficient and flexible analyses on the large and complex data.

Keywords: plant community composition; hyperspectral; grasslands; HPC computing; NEON AOP;
machine learning; vegetation classification

1. Introduction

Herbaceous plant community composition is a strong driver of ecosystem function [1],
herbivore foraging dynamics [2,3], and wildlife habitat quality [4,5] in semi-arid rangeland
systems. In many regions, the composition of herbaceous species is highly dynamic over
space and time due to the complex influences of multiple, interactive drivers including
soil type, topography, weather and climate, herbivory, fire, small mammal disturbance,
and more [6-11]. Characterizing plant communities and plant community change across
broad rangeland landscapes at process-relevant scales is critical to understand the impacts
of management, disturbance, and the changing climate.

Despite the importance of plant species composition in grasslands, data at management-
relevant scales are hard to obtain. Mapping efforts tend to lump herbaceous vegetation
into a single class (e.g., NLCD; [12] or, at best, differentiate only between annual and
perennial grasses (RAP; [13]), primarily because measuring this critical ecosystem property
is time-consuming and difficult to automate. Individual herbaceous plants in these systems
are often quite small and dozens of species can be intermingled at very fine (sub-meter)
scales (e.g., [14]). Field-based data collection typically takes place at spatial resolutions
ranging from sub-meter to ~1 ha. To scale-up from these fine-scaled but area-limited
field measurements to information that would be relevant at larger scales (e.g., livestock
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paddocks or wildlife home ranges), researchers have commonly extended plant community
findings via the stratification of large areas based on more easily measured properties such
as topography, known histories of disturbance, or soil types [15].

These stratification approaches have power, particularly when multiple drivers are
considered. For example, ecological site descriptions derived from national soil maps
and their associated state-and-transition models provide detailed information about the
potential plant community types that may be present in a given location [16] and typically
describe the interactive effects of soil type, climate or weather, and management drivers.
Similarly, catena-based approaches provide information about how topography can modify
both plant community composition and aspects of ecosystem function [9,17,18]. However,
few of these approaches can directly map and monitor complex spatial patterns of plant
community composition on the ground or detect how the composition changes over time
across broad scales.

High spatial resolution, remotely sensed data provide a potential solution to the
problem of mapping and monitoring plant community composition. In recent years, efforts
to map the cover of basic plant functional groups have advanced dramatically and are
now being applied at regional-to-continental scales [13,19]. Such approaches are unable to
differentiate among grassland plant community types or associations due to the broadband
wavelengths and coarse resolution inherent to the imagery available for large spatial
regions (e.g., Landsat, Sentinel, and MODIS). This is especially problematic in grasslands
where many species are intermingled at sub-meter spatial scales.

Hyperspectral imagery collected at high spatial resolution shows promise for further
resolving fine-scale heterogeneity within grasslands. Hyperspectral imagery has been used
across a wide range of grassland ecosystems to map plant traits [20-22], plant communi-
ties [23,24], and individual species. While mapping individual species may be considered
the “holy grail” for classification and could be used to derive maps of plant communities
and functional groups, the high diversity of species present at very fine spatial scales makes
it impractical to map all, or even most, species across large areas. As a result, species
mapping has so far either focused on detecting one or two wide-spread invasive grasses
(e.g., [25,26]) or has been completed for very small areas (e.g., [14]). Developing methods
that utilize fine-scale hyperspectral imagery to map grassland plant communities is critical
to addressing long-standing and emerging grassland management issues, such as assessing
the impacts of climate change, conserving the integrity of wildlife habitats, and optimizing
grazing management practices.

Here, we used publicly available, fine-scale (1 m pixel) hyperspectral data obtained
by the National Ecological Observatory Network (NEON) Airborne Observatory Plat-
form (AOP) to map herbaceous plant community types and their spatial and temporal
dynamics in a shortgrass steppe ecosystem. This work was conducted at the Central
Plains Experimental Range (CPER), a site within the Long-Term Agroecosystem Research
(LTAR) network. The site is dominated by perennial herbaceous vegetation, but within
this “grassland context”, plant community composition is variable in space and time, with
consequences for livestock production, wildlife conservation, and ecosystem function. The
goals of this project were to:

1.  Develop advanced plant community composition classification methods that could
be used to map plant composition at our site and at other NEON sites or in areas with
similar hyperspectral data;

2. Determine the utility of plant community mapping for detecting the effects of soil
type, weather, management, and ecological disturbances (e.g., burrowing mammals)
on plant community composition and compositional change over time.

2. Materials and Methods
2.1. Study Area

This research was conducted at the USDA ARS Central Plains Experimental Range
(CPER), a Long-Term Agroecosystem Research as well as a NEON core terrestrial site (Do-
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main 10), located in northeastern Colorado (40°49'N, 107°46'W; Figure 1). The study area
is dominated by shortgrass steppe vegetation and is characterized by a mix of perennial
warm-season (C4) and cool-season (C3) graminoids. Blue grama (Bouteloua gracilis) is the
dominant warm season grass species, with buffalograss (B. dactyloides) as the subdominant
species. Dominant perennial cool-season graminoids include needle-and-thread (Hesper-
ostipa comata), needle-leaf sedge (Carex duriuscula), and western wheatgrass (Pascopyrum
smithii). The dominant forb and subshrub are scarlet globemallow (Sphaeralcea coccinea), and
fringed sagewort (Artemisia frigida Willd.), respectively. Plains pricklypear cactus (Opuntia
polyacantha Haw.) is also common. Annual grasses consist almost entirely of six-weeks
fescue (Vulpia octoflora, plant nomenclature derived from https://plants.usda.gov, accessed
on 4 November 2021). The mean annual precipitation is 34 cm, and the mean annual
temperature is 8.4 °C, ranging from —2.6 °C in December to 21.3 °C in July.
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Figure 1. Maps displaying the aerial imagery of the study area, vegetation transect locations, pasture of interest (see
Section 3.2), and CPER domain for 2013 (A) and 2017 (B). Time series of temperature (C) and cumulative precipitation
(D) for 2013, 2017 and averaged values from 2013 to 2016, and the historical (1981-2020) record. Temperature and
precipitation data from PRISM ANSIS8].

2.2. In situ Vegetation Data

We measured plant foliar cover by species at 112 plots distributed across 25 different
130-ha pastures at CPER in mid-June of both 2013 and 2017 as part of a collaborative
adaptive grazing management experiment [27]). Pastures were stratified by ecological site
and topography, and monitoring plots were established within the strata for each pasture.
We established 4 pairs of plots in each of the 19 pastures containing 1 or 2 strata (loamy
and/or sandy plains ecological sites), and 6 plots in each of 6 pastures that contained
3 strata (loamy plains, sandy plains, and salt flats). Each plot contained a systematic
grid of 4, 25-meter transects oriented north-south and spaced 106 m apart (1 = 448 total
transects). Along each transect, technicians used the line-point intercept method [28] to
quantify the species composition of the plant community by passing a laser vertically
through the canopy at 50 locations per transect, spaced at 0.5 m intervals. At each location,
they recorded the first species contacted by the laser, or if no vegetation was contacted,
they recorded whether the laser contacted bare soil or litter. Intercepts contacting current-
year vegetation growth were recorded by species, but intercepts contacting standing dead
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vegetation carried over from the prior year (identified by a dull, grey color) were simply
recorded as “standing dead” without regard to the species. In 2017, we added 4 new plots
in one additional pasture (16 transects) for a total of 464 transects sampled.

These data were used to calculate the percent cover of 12 plant functional groups
(Table 1). We included contacts with dung and lichen in the litter category. In addition,
we counted the number of tillers of Pascopyrum smithii and the number of individuals of
Hesperostipa comata in 0.25 m? quadrats placed at 3 m intervals along each transect (1 = 8
quadrats per transect) to obtain a second measure of the abundance of these two important
but less abundant forage species. For these two species, canopy cover estimates can be
imprecise when the plants occur at low relative abundance, in part because they have more
vertically oriented leaves compared to the other grass and forb species. Our estimates of
plant abundance for these species based on counts in 0.25 m? quadrats were more precise
than our canopy interception-based estimates when these species were rare, because of
the larger area sampled using the density method compared to canopy interception. We
adjusted the cover estimates for these two species using the density measurements as
follows. First, we regressed plant density (tillers or individuals per m? based on the 0.25 m?
quadrats) against percent cover estimated via canopy interception at the scale of each
transect. We used this regression to estimate the percent cover of each species predicted
based on the measurement of plant density. We then calculated the estimate of percent
cover for these two species in each transect as the sum of the estimate based on canopy
interception and the estimate based on plant density, divided by two.

Table 1. The twelve plant functional groups used in a cluster analysis to identify distinct plant
communities to be mapped using hyperspectral imagery at the Central Plains Experimental Range in
northeast Colorado.

Functional Group Species Included, or Cover Characteristics
C4 Shortgrasses Bouteloua gracilis, Bouteloua dactyloides
C4 Saltgrasses Distichlis dactyloides, Sporobolus airoides
C4 Midgrasses Aristida purpurea, Sporobolus cryptandrus
C3 Sedges Carex duriscula, Carex filifolia
C3 Western wheatgrass Pascopyrum smithii
C3 Needle and thread Hesperostipa comata
C3 Squirreltail Elymus elymoides
C3 Annual grass Vulpia octoflora
Forbs >20 species, including annuals and perennials
Subshrubs Artemisia frigida, Eriogonum effusum, Gutierrezia sarothrae
Shrubs Atriplex canescens, Ericameria nauseosa
Standing dead Residual standing vegetation produced in prior year
Bare soil Exposed mineral soil
Litter Dead vegetation, dung, or lichen covering the soil surface

Due to the fine-scale interspersion of plant functional groups within a transect, we
conducted a cluster analysis of the transect by a functional group matrix based on mea-
surements from both 2013 and 2017. We used a hierarchical, agglomerative, numerical
cluster analysis based on Euclidean distances and Ward’s method for the determination of
group linkages (implemented in PC-ORD v6.0) and conducted 5 different analyses that
clustered transects into 12, 11, 10, 9, and 8 groups, respectively. After examining group
membership and associated dendrograms, we used the 8-group cluster analysis to identify
distinct plant community classes. Four classes were dominated by C4 shortgrasses but
contained varying levels of subdominant species and bare soil (see y-axis in Figure 2). The
remaining four classes identified communities consisting of (1) C3 midgrasses (Hesperostipa
comata, Pascopyrum smithii, and Elymus elymoides) dominant, (2) C3 midgrasses dominant,
with high exposure of bare soil, (3) C4 saltgrasses with C3 midgrasses (hereafter Tallgrass)
dominant, and (4) forbs dominant (Figure 2).
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Figure 2. Average plant community class (Y-axis) composition derived from the 175 vegetation transects throughout CPER.

The vegetation components on the X-axis are directly related to Table 1, except Bouteloua spp. = C4 Shortgrasses, and C3
Midgrass = C3 Needle and thread (Hesperostipa comata) + C3 Squirreltail (Elymus elymoides).

To define plant community class endmembers to use as training data for the hyper-
spectral imagery mapping, we then selected a subset of transects within each of these
8 groups, where the selected subset was most representative of the defined community. For
example, of the 175 transects classified in the “C4 shortgrass” cluster, cover of C4 short-
grasses, litter, and bare soil varied from 32-73%, 6-32%, to 0-27%, respectively. To represent
the endmember for this plant community, we selected a subset of 16 transects where Cy
shortgrass cover was >50% (range 51-61%), while litter cover was still in the range of 8-20%
and bare soil in the range of 6-20% (Figure 2). This approach provided plant community
classes with high cover of the characteristic dominant and/or subdominant species, while
removing from the calibration those transects with high compositional variability. This
process identified 175 transects representing 8 plant community classes that correspond to
common, uniquely identifiable, and ecologically important plant communities at CPER
(Figure 2). However, the transects were not evenly distributed across the plant community
classes, ranging from 4 to 48 transects per class.

To link the transects and airborne hyperspectral data, a 2-m radius around each
transect defined a region of interest (ROI), which was used to query the hyperspectral data.
This approach provided ~120-pixel observations per transect, resulting in a data cloud large
enough to permit machine learning classification models described below (Section 2.3).

2.3. Hyperspectral Data

Hyperspectral reflectance data (NEON product DP1.30006.001) were acquired by
the NEON AOP at the CPER domain on 25 June 2013, and 24 May 2017 [29]. For each
year, 26 North-South (N-S) acquisition flights covered the entire CPER domain as well
as a single overlapping East-West flight. We found strong East-West illumination trends
within the N-S flight data, which we attributed to anisotropic reflectance. Therefore, the
NEON AOP team applied additional BRDF corrections using the HyTools package [30].
Furthermore, the reflectance data were subset to specific spectral bands to exclude regions
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NDVI

known to have H20 or CO, absorption issues and spectral wavelengths that exhibited high
variation or suspect spatial patterns.

To mosaic the overlapping flights into a single dataset, we selected pixels with a zenith
angle nearest to NADIR. To improve the overall illumination consistency between flights,
each N-S flight’s brightness was scaled to match the E-W flight observation based on
regions of overlapping pixels with zenith angles of less than 6 degrees.

The transects used for our cluster analysis were intentionally located in the most
dominant plant community types within each pasture, and therefore we needed additional
approaches to map certain important but rare vegetation classes. To map bare ground and
standing dead vegetation, we calculated a set of narrow and broad band vegetation indices
from the hyperspectral reflectance data. These indices were added into the classification
process as covariates. Bare-ground and standing dead classes were developed from the
relationship between the cellulose absorption index (CAI) and the Normalized Differenced
Vegetation Index (NDVI) [31,32]. Regions exhibiting spectral characteristics indicative of
bare-ground and standing dead vegetation (Figure 3) were subsampled across the CPER
domain at spatial strides of 6 and 22 meters for standing dead as well as 2 and 3 meters for
bare-ground (2013 and 2017, respectively) to develop the training and validation data.
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Figure 3. Two-dimensional histogram of CAI-NDVI for 2013 (A) and 2017 (B). Shaded regions indicate the space used
to extract Bare Ground and Standing Dead data for the training and validation of the classification model. Grey regions

represent regions with fewer than 100 pixels per bin.

Additionally, high resolution RGB images collected during the NEON AOP flight
in 2013 were used to develop ROIs for two additional vegetation communities: shrubs
and bare soil. Large shrubs, visible in the imagery, were manually delineated across the
entire CPER domain, while large patches dominated by bare soil were delineated within
several pastures, generally near stock tanks or pasture corners (highly trafficked areas).
We chose to include the bare-soil class in addition to the bare-ground class because the
bare-ground spectral region (defined from Figure 3) mapped primarily to gravel roads and
sandy stream beds, whereas the bare-soil class represented patches of the landscape with
very low vegetation cover and a high proportional cover of exposed soil.



Remote Sens. 2021, 13, 4603

7 of 17

2.4. Vegetation Classification

Prior to classifying the hyperspectral data into plant community classes, we split the
data into training (~75%) and testing (e.g., independent validation, ~25%) groups randomly
(Figure 4). To incorporate the effect of spatial autocorrelation and variability between flight
acquisitions on the accuracy assessment, we split the training and testing data (excluding
the standing dead and bare ground classes, which were thoroughly distributed across the
domain) by ROI (e.g., transect), rather than the pixel level. Splitting by ROL rather than by
pixel, insured that the “hold-out” data were completely independent from the model training
data, resulting in a more conservative approach to quantify the overall accuracy of the model.

Hyperspectral
Data

Subset to
ROIs

Train Data Test Data

Grid-search (3-fold CV) Best Model CPER Plant

Dim. Reduction Classification + Post- Community

PCA + Processin Class Ma
SelectKBest — 8 P

Figure 4. Schematic showing the workflow/pipeline used in the classification process. Green arrows
indicate the flow of data and red arrows indicate the flow of the machine learning model.

The classification algorithm involved two steps: (1) dimensional reduction using a
combination of principal component analysis (PCA) and SelectKBest and (2) classification
using a Support Vector Machine (SVM with a gaussian radial basis function kernel) algo-
rithm using the Scikit-learn package [33]. An exhaustive grid-search approach was used to
select the optimum number of dimensions (concurrently between PCA and SelectKbest), as
well as the hyperparameters associated with the SVM model (C and gammaly]) (Table 2),
using a 3-fold cross validation strategy maximizing the F1 accuracy statistic (weighted
harmonic mean of precision and recall).

Table 2. Grid-search parameter space used to optimize the model. The model parameters associated
with the best-fit model are in bold. (see Section 3).

Model Component Parameter Search Grid

SVM hyperparameter ~ C (Regularization)  (1,10,1 x 102,5 x 10%,1 x 10%,5 x 10%,1 x 10°)
(1x107%,1x1075,5x 10751 x 1074,
5x1073,1 x 1073, 0.01, 0.1)
PCA N Components (60, 80, 100, 120, 140, 160)
SelectKBest N Components 1,5,9,13,17)

SVM hyperparameter v (Kernel Coef.)

Once we identified the best-fit hyperparameters from the grid-search routine, we
retrained the algorithm using these parameters and the entire training dataset. Using the
results of this model, we calculated probabilities and defined a probability threshold for
each class that maximized accuracy while minimizing the number of unclassified pixels.
For each class, the probability threshold was increased until the true positivity rate dropped
below 90% or the probability threshold reached 75%.



Remote Sens. 2021, 13, 4603

8of 17

With the optimized hyperparameters, the accuracy of the model was assessed with the
remaining testing data. The model was trained with the entire training dataset (~75%) and
then predicted using the testing data (~25%). The probabilities were calculated for each
pixel, and the thresholds previously calculated for each class were applied to the results.
Finally, the overall accuracy of the model was quantified using F1 statistics (macro and
micro), the Cohen Kappa score, and recall, precision, and confusion matrices.

2.5. Case Studies: Change Detection and Disturbance Impacts

In systems where C3 and C4 graminoids are mixed, shifts in relative abundance
between these two functional types can have large impacts on ecosystem function [1]
and the provision of wildlife habitats [5]. To assess the ability of our approach to capture
temporal shifts between C3-dominated and C4-dominated plant community classes, we
quantified shifts between the plant communities dominated by C4 species (C4 shortgrass)
and plant communities that had significant C3 species (C3 Midgrass, C3 Midgrass + incr.
Bare Soil, C3 Midgrass + C4 Shortgrass + incr. Bare Soil, and C3 Midgrass + C4 Shortgrass)
from 2013 to 2017. On a 10 x 10-meter grid, we calculated the percent area that transitioned
between the C4-dominated and C3-dominated classes between 2013 and 2017. We then
differenced the C3-dominated and C4-dominated datasets between 2013 and 2017 to
produce relative change maps across the CPER domain.

As additional case studies to assess the potential utility of our classification approach,
we visually determined how well our classified map was able to detect and spatially
quantify the impacts of two well defined and thoroughly studied disturbances at CPER:
an 80-year grazing intensity experiment [34,35] and colonies of black-tailed prairie dogs
(Cynomys ludovicianus; [36]).

The boundaries of active prairie dog colonies at CPER are mapped annually (see
Augustine et al. 2014). To demonstrate the ability of our approach to detect fine-scale
compositional impacts of prairie dog activity, we visually determined whether a commonly
used soils dataset, SSURGO, or our plant community composition map was better able to
visually resolve the impacts of the colonies on plant communities.

Starting in 1939, the Long-Term Grazing Experiment (LTGIL; [34,37] has consistently
applied three distinct cattle grazing intensities: light (20% utilization of peak growing
season biomass), moderate (40% utilization), and heavy (60% utilization), from mid-May
to October with season-long grazing on three adjoining ~130-hectare pastures (Figure 1).
The differential grazing pressure resulted in a significantly elevated level of C3 plant
communities in the lightly grazed pasture as compared to the moderately and heavily
grazed pastures [35]. For the three pastures in the grazing experiment, we compared
histograms of the mapped plant community classes between a pasture grazed heavily for
80 years and a pasture grazed lightly for 80 years to quantify the compositional impacts of
grazing at the whole-pasture scale.

2.6. Computational Environment

The high dimensionality and volume associated with the NEON hyperspectral data
posed considerable computational challenges. For instance, the total number of pixels from
the 2013 NEON flight observations was greater than 211 million, resulting in over 90 billion
observations (426 bands per pixel). To overcome these hurdles, we developed our analysis
on the USDA ARS High Performance Computer (HPC) system (Ceres) using an open-
source software stack in Python to distribute computations across multiple nodes. The
data were processed, and machine learning algorithms were implemented in a distributed
computing environment. To allow for reproducibility and extensibility, the computational
environment was containerized using Docker [38] and is archived on DockerHub. The
analysis was conducted in the Jupyter interface [39] with a wide breadth of geospatial and
computational python tools [40]. The primary Python packages used in the analyses were
Dask (distributed computing; [41,42]), Xarray (multi-dimensional arrays; [43]), SciKit-Learn
(machine learning; [33]) and the Holoviews stack (visualizations; [44—46]).
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3. Results
3.1. Accuracy and Plant Community Change

The overall accuracy assessment of the plant community classification produced a
Cohen Kappa score of 0.826 and F1 scores of 85.5% (micro) and 74.9% (macro). Confusion
matrices and tabulated accuracy metrics (Figure 5 and Table 3) show the overall and
the individual plant community class accuracy of the classification while the mapped
results of the classification are shown in Figure 6. Typically, plant community classes with
more distinct species compositions were more accurately mapped than plant communities
with more overlap within their species distributions. Despite our efforts to minimize
the effect of the imbalanced training data (e.g., using the F1-Macro statistic to score the
SVM model), there is a general trend towards higher accuracy within plant communities
with larger training observations, typical of most machine learning algorithms. Overall,
however, these results show that the pre-processing and machine learning approaches
were able to accurately resolve the spectrally similar plant communities across CPER using
hyperspectral data.

A. Confusion Matrix: Relativized B. Confusion Matrix: Absolute Values
Bare Ground 0 0 00 0O 0O 0O O 0 0 01840 00000 00 0 0 0
Bare Soil4 O 0 0 0 0 0 0 O 0 0 o0 0 2216 0 0 4 o0 0 0 0 O 0 0
C3Midgrass1 0 0 0 5 0 1 0 0 2 1 1740 05680 40 0 4 0 0 14 9 128
C3 Midgrasssincr. Bare Soil 4 0 8 0 - 0 0 030 0 0 0 040 37 03001 0 0 144 1 00
cashortgrassi 0 1 2 0 - 1157 0 0 0 2 {0 7 20 08051017276 0 1 0 20
CaShortgrasstAnnualGrass4 0 1 0 0 0 - 0 00 0 1 0140 0 0 01120 0 0 0 1 0
C4 Shortgrass+C3Midgrass+ 0 0 15 0 25 0 29 1 0 18 0 1210 0 46 0 77 0 91 4 0 56 0 39
C4 Shy C3
Midgrasssincr paresoil{ 0 2 0 2127 0 14008 0 0 0 0 7 0 67 8 0 4 12726 1 0 0
Fob10 14 1 0 0 0 0 3o o 00323 0 0 0 0 6180 0 0
shrb1 O 4 4 0 11 0 4 2 0 0 240 2 2 0 6 0 2 1 0 39 0 1
StandingDead4 0 O 0 0 O O O 0O O O 1 0 0 0 0 0O 0O 0O O O 0 913 7
Tallgrassy 0 0 0 ©0 1 0 3 3 0 1 0 0 6 1 0 19 0 44 32 0 16 1 1152
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Figure 5. Confusion matrices showing the relative (A) and absolute (B) results of the SVM model using
the validation (hold-out) data. Rows are the actual values, and the columns are the predicted values.

Table 3. A detailed accuracy assessment for each plant community class showing the precision, recall,
and F1-Score for each class.

Plant Community Class Precision Recall F1-Score
Bare Ground 1.0 1.0 1.0
Bare Soil 0.96 1.0 0.98
C3 Midgrass 0.89 0.74 0.81
C3 Midgrass-incr Bare Soil 0.82 0.62 0.71
C4 Shortgrass 0.78 0.72 0.75
C4 Shortgrass + Annual Grass 0.92 0.98 0.95
C4 Shortgrass + C3 Midgrass 0.29 0.29 0.29
C4 Shortgrass + C3 Midgrass+incr. Bare Soil 0.33 0.40 0.36
Forb 0.87 0.82 0.84
Shrub 0.31 0.74 0.43
Standing Dead 0.99 0.99 0.99
Tallgrass 0.86 0.91 0.88
Accuracy 0.85 0.85 0.85
Macro Average 0.75 0.77 0.75

Weighted Average 0.86 0.85 0.85
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Figure 6. Mapped results of the classification pipeline showing the plant community classes for 2013 (A) and 2017 (B).

To characterize plant community shifts between 2013 and 2017, we visualized the
pixel-level changes using a Sankey Diagram (Figure 7). Within the plant community classes,
the most prevalent transition was from C4 Shortgrass-dominated areas in 2013 to a C4
Shortgrass + C3 Midgrass community in 2017, which accounted for nearly 20% of the
pixels. Augustine et al. [27] reported similar results based on ground-based observations
of species compositional change between 2013 and 2017. The next-most prevalent shift was
from the C3 Midgrass community to the C4 Shortgrass + C3 Midgrass community (3.4%

of pixels).
2013:Bare Soile e 2017:Bare Soil
2013:Tallgrass 2017:Tallgrass
2013 Shrub == ] 2017:Shrub
rass+C3 Mid r s ——
2
2013:.C4 Shongras%&éi&? R340G BarE 8 — -_— e ———— ZUTLOS Womes
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2013:C4 Shortgrass+Annual Grass e 2017:C4 Shortgrass+C3 Midgrass

2013:C4 Shortgrass
2017:C4 Shortgrass

Figure 7. Sankey plot detailing the change in plant communities from 2013 to 2017. For clarity, plant community classes
that accounted for less the 0.5% of the change were excluded from this plot.

The plant community changes illustrated in the Sankey Diagram (Figure 7) were
pervasive across many different pastures at the CPER, despite different management
regimes being applied in different pastures (Figure 8; [27]). The magnitude and spatial
extensiveness of the shift suggest that broad-scale drivers (such as shifting weather or
climate patterns, Figure 1) were a stronger driver of plant community shifts between 2013
and 2017 than pasture-scale drivers (such as management practices) during this timeframe.
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Figure 8. Percent change in plant community classes dominated by C3 (A) and C4 (B) species between 2013 and 2017. Blue

indicates an increase between 2013 and 2017 while red indicates a decrease.

3.2. Characterizing Disturbances

While overall plant community compositional shifts at CPER between 2013 and 2017
are likely related to climate dynamics, our plant community maps were also able to detect
the effects of pasture-scale management and natural disturbances. Figure 9 shows the plant
communities in 2013 that include elevated bare-soil components along with ground-based
prairie dog colony perimeter maps from the current and previous years. The regions of
elevated bare soil are strongly correlated to the regions that were actively occupied by
prairie dogs in both 2012 and 2013. Furthermore, SSURGO, a static dataset that uses soils
information to predict vegetation properties, was not able to detect the dynamic effects of
the prairie dog colonies on the vegetation (Figure 9).

For the LTGI experiment, our plant community classification results match plot-
based results [35] that found strong relationships between long-term grazing intensity and
plant community composition. The plant community class map not only captures broad,
pasture-scale trends related to grazing intensity (Figure 10), but also displays the finer-scale,
spatially explicit heterogeneity present within each of the larger pastures. For example,
grazing exclosures (dotted red boxes in Figure 10) are fenced areas within the pastures
where cattle cannot graze, and these were established as experimental controls. Even within
the moderately and heavily grazed pastures, these exclosures show a relative increase in the
abundance of C3-dominated plant communities, congruent with previous ground-based
measurements [47]. Additionally, bare soil patches caused by heavy cattle traffic around
water tanks are visible in the lightly (northeast corner), moderately (northwest corner), and
heavily (northwest corner) grazed pastures. Finally, the effects of topography on vegetation
composition are also visible, particularly in the moderately grazed pasture; this type of
topographically generated heterogeneity creates habitats for wildlife as well as patches of
high-quality forage for livestock.
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Figure 9. Maps of a pasture at CPER (see Figure 1) with extensive prairie dog colonies. (A) 2013 NEON plant community
classification map showing regions with elevated bare soil (yellow), regions with more continuous vegetation cover (olive),
and boundaries indicating regions that had active prairie dog colonies during both 2012 and 2013 based on detailed in situ
(field-based) mapping (black polygons). (B) SSURGO Ecosite map of the same pasture.
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Figure 10. Results of the 2017 plant community classification across three pastures at CPER (see Figure 1) with increasing
levels of grazing (A—C) associated with the LTGI experiment. Dotted red polygons show grazing exclosures within each
pasture. Associated with each map is a histogram (D-F) that shows the area of each plant community class for the
above pasture.
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4. Discussion

Our results show that airborne hyperspectral imaging has the potential to map grass-
land plant communities across relatively large areas at a fine spatial resolution. Mapping
grassland dynamics at fine spatial and species resolutions is challenging due to the similar
spectral profiles shared by ecologically distinct grasses, and these difficulties are exac-
erbated by sub-pixel-scale interference from standing dead vegetation and bare soil, as
well as the very fine scale at which grasses, forbs, and shrubs are intermingled within the
landscape [14]. The rich spectral information and relatively fine spatial resolution of the
NEON AOP hyperspectral data were able to partially resolve these challenges by mapping
vegetation at the plant community class scale, rather than the species level. Efforts to map
individual grassland species suggest that pixel resolutions of <1 cm may be required to
achieve satisfactory results [14], which is currently impractical for mapping large areas.
Our community class-level approach allowed for the production of landscape-scale plant
composition maps within a spectrally similar grassland context. Although these maps did
not resolve the percent cover of each individual species, they were still able to provide
very detailed, ecologically and management-relevant information on plant community
composition at fine spatial scales. For systems where plants or other features are spectrally
similar and highly intermixed at sub-pixel scales, we conclude that although spectral
unmixing may be infeasible, a “community class” approach can provide a path forward for
obtaining information-rich results.

Our modelling approach performed very well for some community classes and less
well for others (see Figure 5). This result may have arisen, in part, from utilizing ground-
based training/validation data that were collected at coarser spatial scales (25-m transects)
than the NEON hyperspectral data (1 m). Transects were selected to represent each plant
community class, but we were unable to quantify the spatial homogeneity of community
composition within the inference region (a 2-m buffer) around each transect. For example,
if a transect contained 50% C4 shortgrasses and 50% C3 midgrasses based on the ground-
based LPI data, this could correspond to either (1) 100% of the 1 m pixels containing an
even mixture of the two functional types, or (2) 50% of the pixels being dominated by C3
midgrasses, 50% of the pixels being dominated by C4 shortgrasses, and 0% containing
an even mixture of the two functional types. Therefore, we suspect that a portion of
pixels within the training transects likely differed from the plant community class to which
they were assigned, resulting in sub-optimal training data and lower accuracies during
validation. This may have especially been the case for plant communities containing a
mixture of dominant and subdominant plant species (e.g., C4 shortgrasses mixed with C3
midgrasses), resulting in lower classification accuracies for these classes. In future years,
we plan to develop more robust and homogeneous ROISs for training and validation. With
better ROIs, we plan to explore the possibilities of further improvements to the classification
pipeline, including potentially developing a species-level unmixing model for some of the
more dominant plant species.

Annual variability in productivity and species composition made producing tem-
porally consistent plant composition maps challenging. For example, transects sampled
in 2013 that clustered into the C3 Midgrass community contained a lower mean cover
of P. smithii than transects clustered into this community in 2017. Such dynamics can
significantly complicate the robustness of models whose inference space is intended to
include both spatially and temporally heterogeneous conditions [48]. Therefore, having a
multi-year dataset that encompasses the full range of vegetation variability was critical to
develop plant community classes that represented the true dynamics of the system. How-
ever, to ensure the temporal consistency of the model, it is preferable to develop training
data that are collected in each year for which the calibration will be applied. We were able
to accomplish this due to the extensive ground-based sampling conducted annually at
CPER (>400 transects sampled per year) despite the overall shift in plant communities. The
CPER transect data captured a large enough range in spatial plant community variability
that we were able to identify transects in both 2013 and 2017 with consistent species com-
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position for the majority of the plant community classes of interest. Using long-term data
to document temporal shifts in plant community composition over broad spatial scales
may be particularly important in the context of climate change adaptation.

Our analysis showed an increase in plant communities containing C3 midgrasses,
predominantly P. smithii and H. comata, from 2013 to 2017. This shift is consistent with a
gradual increase in these species documented during the 1980s through 2011 [35,47], and
could have arisen both as a result of above-average precipitation during 20132017 as well
as directional shifts associated with rising atmospheric CO,, which benefits the production
of C3 midgrasses at this site [49]. We note that the study area experienced a prolonged
period of above-average precipitation and below-average temperatures from late 2013 to
2015 (see Figure 1D). These conditions tend to stimulate the production of C3 midgrasses,
which are less tolerant of heat and drought [7]. Additionally, an epizootic outbreak of
plague (caused by the bacterium Yersinia pestis) affected three large prairie dog colonies
within the study area in 2015 and 2016, substantially reducing their populations [50] and
subsequently reducing their grazing of C3 midgrass.

In addition to documenting temporal shifts in community composition, case study
results demonstrate several other potential applications of this type of approach. Plant
community mapping can be used to document the effects of grazing management decisions
or natural disturbances (burrowing mammals, fire) at a high spatial resolution across
broad spatial extents that would be hard or impossible to sample using traditional plot-
based sampling. Studies at smaller, pasture-scales, conducted over the past four decades
examining how plant community composition affects cattle grazing distribution relied on
detailed, ground-based maps [51,52], but with the use of remotely sensed data, mean that
investigations can now be extended to a far wider range of conditions and spatial scales.
In particular, combining high-resolution, landscape-scale vegetation maps with newly
emerging technologies to control livestock movement, such as virtual fencing, will create a
new era of opportunity to manage livestock across a far wider range of spatial scales than
the pasture sizes currently imposed by existing fencing infrastructure [53].The wall-to-wall
coverage offered by remotely sensed data not only allows for more accurate pasture-scale
integration, but also allows for the identification of rare but potentially important features
or trends within a given area of interest.

Furthermore, plant community maps can also improve other grassland mapping
and modelling efforts when the response of the variable(s) of interest is dependent on
plant species composition. For example, Magiera et al. [54] found that including a species
composition map improved estimates of biomass yield from RapidEye satellite imagery in
mountainous grasslands. Likewise, Gaffney et al. [48] found that regression coefficients
differed for C3 vs. C4 dominated plots when modelling grassland productivity from
satellite-derived absorbed photosynthetically active radiation (APAR).

5. Conclusions

In the era of big data and rapid global change, advanced programming and computing
skills will be increasingly necessary to answer key questions about complex biological
systems. In our study, the high resolution of the data posed challenges from a compu-
tational standpoint (e.g., >150 billion observations). Here, we presented a set of novel
methodologies to preprocess, mosaic, and classify NEON AOP hyperspectral data across
the CPER domain along with a computationally efficient python code, capable of pro-
cessing the data and implementing a robust machine learning algorithm, in a distributed
computing environment on a HPC system. The methods and computational approach
outlined in this paper are transferable to other NEON domains, where researchers will be
able to leverage AOP hyperspectral data, integrated to ground-based observations, to better
characterize fine-scaled ecological processes. Our work highlights the importance and
power of interdisciplinary approaches that link computational scientists with ecologists;
such partnerships have the potential to rapidly advance our understanding of dynamic
ecosystem patterns and processes at management-relevant spatial and temporal scales.
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The plant community maps we generated for this shortgrass steppe landscape will
advance research on the applications of precision livestock and wildlife management
approaches that require an understanding of how grazers respond to fine-scale variation
in vegetation dynamics at scales from hectares (e.g., individual drainages and hillslopes)
to broad landscapes. Detailed plant community information could also revolutionize
the ability of managers to apply precision vegetation management (e.g., management to
increase or decrease the abundance or spatial extent of certain plant community classes) as
well as spatially targeted conservation efforts for key wildlife habitat features embedded
within vast rangeland landscapes.
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