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Abstract: Subtidal natural hard substrates (SNHS) promote occupancy by rich benthic communities
that provide irreplaceable and fundamental ecosystem functions, representing a global priority target
for nature conservation and recognised in most European environmental legislation. However, scien-
tifically validated methodologies for their quantitative spatial demarcation, including information on
species occupancy and fine-scale environmental drivers (e.g., the effect of stone size on colonisation)
are rare. This is, however, crucial information for sound ecological management. In this investigation,
high-resolution (1 m) multibeam echosounder (MBES) depth and backscatter data and derivates,
underwater imagery (UI) by video drop-frame, and grab sediment samples, all acquired within
32 km2 of seafloor in offshore Belgian waters, were integrated to produce a random forest (RF)
spatial model, predicting the continuous distribution of the seafloor areal cover/m2 of the stones’
grain sizes promoting colonisation by sessile epilithic organisms. A semi-automated UI acquisition,
processing, and analytical workflow was set up to quantitatively study the colonisation proportion
of different grain sizes, identifying the colonisation potential to begin at stones with grain sizes
Ø ≥ 2 cm. This parameter (i.e., % areal cover of stones Ø ≥ 2 cm/m2) was selected as the response
variable for spatial predictive modelling. The model output is presented along with a protocol of
error and uncertainty estimation. RF is confirmed as an accurate, versatile, and transferable mapping
methodology, applicable to area-wide mapping of SNHS. UI is confirmed as an essential aid to
acoustic seafloor classification, providing spatially representative numerical observations needed
to carry out quantitative seafloor modelling of ecologically relevant parameters. This contribution
sheds innovative insights into the ecologically relevant delineation of subtidal natural reef habitat,
exploiting state-of-the-art underwater remote sensing and acoustic seafloor classification approaches.

Keywords: underwater imagery; multibeam echosounder; random forest; subtidal natural hard
substrate; stone colonisation; epilithic fauna

1. Introduction

Subtidal natural hard substrates (SNHS), whether of geogenic or biogenic origin, repre-
sent an important ecological habitat and cover essential functions in marine ecosystems [1],
making them a worldwide priority target for environmental management, conservation,
and restoration. Structural complexity at various scales enhances bentho-pelagic coupling,
and subsequently, the associated ecological succession phases by acting as settling, shel-
ter, feeding, and nursery grounds for a variety of marine organisms at multiple trophic
levels [1,2]. In an anthropogenically threatened and rapidly changing marine environ-
ment [3,4], the heterogeneous and scattered distribution of SNHS represents keystone
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patches that promote larvae dispersal and colonisation by epibenthic organisms, giving
rise to subtidal natural reef habitats (e.g., “stony reefs”, see [5]). SNHS-associated bio-
logical communities are regarded as particularly rich (in terms of diversity, biomass, and
species rarity) yet fragile environments, with low resistance and resilience to anthropogenic
disturbance. As a result of historical and modern anthropogenic pressures, mainly those
that directly physically affect the seafloor, these underwater environments are deemed
significantly depauperated to the point of being deemed extinct, and/or at the brink of
extinction (e.g., in the North Sea region, [4,6–9]). While all European legislation, e.g., [10,11]
and policy-related documents [5,12] mention SNHS and associated biological communities
in some way, scientifically validated methodologies for the quantitative and ecologically rel-
evant spatial demarcation of SNHS habitats are rare. Revolutionising seafloor cartography
and the production of detailed benthic habitat maps (BHM) [13], acoustic seafloor classifi-
cation (ASC) [14–16] is a highly multidisciplinary branch of marine sciences that focuses
on accurate and objective predictions of seafloor surficial material properties. ASC, com-
pared to terrestrial land-cover-land-use mapping, is based on multiple and concurrently
developing technologies and data-integration approaches, today achieved by: (1) seafloor
mapping by hydroacoustic remote sensing; (2) ground truthing by grab, core, and un-
derwater imaging (UI) sampling; and (3) predictive modelling using spatial prediction
algorithms.

Seafloor mapping by hydroacoustic remote sensing enables acquisition of continu-
ous and high-resolution (metric/decametric resolution for shallow-water high-frequency
systems) seafloor topographic and textural information (see [17] for a review). Owing to
their specific design, multibeam echosounder (MBES) systems drastically promoted the
development of ASC, enabling the co-registration of coincident seafloor measurements
of bathymetry (i.e., equivalent to topography) and backscatter strength (BS), recognised
as a unique physical proxy of the seafloor nature and texture [18–20]. Supplementing
the spatial mapping by hydroacoustic data, point-based measurements acquired in the
form of traditional sampling instruments such as cores and/or grabs are used to ground
truth (i.e., confirm/validate) the seafloor’s composition as hypothesised/inferred from the
hydroacoustic observations. Nonetheless, due to a number of practical reasons (e.g., cost,
time, and labour) traditional sampling techniques generally produce a too sparse sampling
effort (i.e., distance between sampled points) as well as being limited to a very limited
portion of the seafloor surface (typically ~0.25 m2), preventing a sound correlative analysis
with the high-resolution measurements achieved by hydroacoustic sensors. Moreover, for
the specific case of studying fragile SNHS habitats, traditional sampling proves to be highly
destructive, conflicting with environmental conservation efforts [21]. More recently, the
advent of underwater imaging (UI; i.e., underwater photography using benthic sledges and
drop-down video frames; see, e.g., [22–26]) is providing the means to fill the investigation
gap between hydroacoustic and ground truth data resolutions [27]; i.e., the spatial coverage
is considerably higher, revealing the heterogeneous spatial distribution of SNHS at meter
scale, as well as providing the means to sample SNHS habitat in a minimally invasive
manner. Finally, predictive modelling algorithms (e.g., machine learning, clustering) are
dedicated to data integration and map-making [16,27–33]. In particular, decision-tree-
based machine learning algorithms (e.g., random forest; [34]) have gained widespread
popularity in the habitat mapping realm, e.g., [27,35–37] due to their ability to integrate the
information from disparate and large datasets, detecting complex relationships between
the predictor (explanatory hydroacoustic and/or modelled spatial variables) variables and
the targeted response (ground truth observations) variable, without relying on any a priori
assumptions about the kind of relation, nor their underlying value distributions.

This investigation is based on these recent technological and analytical advances and
aims to present a data-analysis workflow interlinking high-resolution UI and MBES using
a machine learning predictive modelling approach, specifically setting up a quantitative
mapping methodology for SNHS habitat. Besides the innovative use of machine learning
for continuous (i.e., numerical) data prediction, a key character of this habitat mapping
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investigation is the exploitation of the UI in favour of a quantitative (i.e., continuous;
numerical) as well as ecologically informed formulation of the criterion used to spatially
delineate the targeted habitat.

Study Site

In Belgian waters, the existence of SNHS is relatively well documented, both his-
torically ([38] and references therein) and recently. Currently, maps of potential SNHS
distribution, based on a combination of geological, geophysical, sedimentological, and
visual observations, have been produced [39–41]. As exemplified by the “gravel bed po-
tential distribution” map (Figure 1), ~16% of the Belgian seafloor relates to variable [42]
SNHS, with a potential of stone occurrences. However, the spatial resolution of such
maps remains too coarse for adequate ecological management of SNHS communities,
requiring the accurate pinpointing of spatial units down to the level of meso- to fine-scale
patches [43,44] and/or single stones [24]. With the advent of high-resolution seafloor
mapping technologies and advanced seafloor modelling approaches [16], high-resolution
research can now also be addressed towards the regional scale benefitting environmental
monitoring obligations. In this scenario, the Belgian continental shelf (BCS) serves as an
excellent case study to select a study area overlapping with the potential distribution map
and test advancing ASC-based BHM methodologies. The study site is located beyond
the 24 nautical miles, in offshore waters, at the northwesternmost delimitation of the BCS
(Figure 1) and covers ~32 km2 of MBES and ground truth survey area (Figures 1 and 2).
Here, water depth range is 37–43 mLAT and is influenced by a semi-diurnal tidal regime,
with mean ranges of ~4.3 mLAT and ~2.8 mLAT during spring and neap tides, respectively
(referenced in Zeebrugge [45]). The tidal ellipse is mainly oriented in SW-NE direction,
and the residual current transport is mainly oriented towards the NE [46]. The water
mass is well mixed year-round with salinity values around 34 practical salinity units [47],
and with a relatively clear water mass characterised by sediment transport estimated at
<0.5 tonnes/m per day [48]. During spring tide, peak surface and bottom current velocities
can exceed 1 m/s and 0.7 m/s, respectively [48]. In this region, the maximum significant
offshore wave height can reach >4 m [49].

In this study, the term “stones” (also referred to as “lag deposit” and “subtidal nat-
ural hard substrate” or SNHS throughout the manuscript) is in alignment with the re-
search conducted by Michaelis and co-workers [24,25], based on the international standard
ISO14688-1:2017 [50] and it is defined as solid geogenic material with a diameter larger
than 2 cm. This grain size classification system was preferred over, e.g., the Wentworth [51]
scale as it distinguishes between boulders and large boulders. The specific terms refer
to: “coarse gravel” (Ø 2–6 cm), hereafter referred to as “gravel”, “cobble” (Ø 6–20 cm),
“boulder” (Ø 20–63 cm), and “large boulder” (Ø > 63 cm). The grain size class “fine gravel”
(Ø < 2 cm) was added to this standard, enhancing the grain size discrimination poten-
tial. This standard was used to derive a quantitative estimation of stone sizes from the
underwater imagery.
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Figure 1. Geographical setting (left; circular maps) of the BCS (right; geographically tilted, see north 
arrow) displaying the gravel potential distribution map [39] and the surveyed study area. Universal 
Transverse Mercator Zone 31 North, World Geodetic System 84 (UTM 31N, WGS84). 

 
Figure 2. Overview of the MBES and ground truth surveys. Top to bottom: MBES bathymetry; compensated backscatter 
imagery; composite image of secondary features derived from the MBES primary data (see after, section “Spatial model-
ling by RF”); survey extent with ground truth locations and areas of interest selected for modelling. Areas of interest 
selected for modelling (Roman characters) and corresponding video transects (e.g., T1) are labelled accordingly in Figure 
5 (see “Results” section). 
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Figure 2. Overview of the MBES and ground truth surveys. Top to bottom: MBES bathymetry; compensated backscatter
imagery; composite image of secondary features derived from the MBES primary data (see after, section “Spatial modelling
by RF”); survey extent with ground truth locations and areas of interest selected for modelling. Areas of interest selected
for modelling (Roman characters) and corresponding video transects (e.g., T1) are labelled accordingly in Figure 5 (see
“Results” section).
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2. Materials and Methods

Multibeam hydroacoustic surveys and ground truth data: multibeam hydroacoustic
and ground truth surveys were conducted with RV A9602 Belgica during 2018 and 2019
(Table 1). Bathymetry and backscatter data were logged using a hull-mounted Kongsberg
(https://www.kongsberg.com/maritime/) EM3002 Dual System operating at a nominal
frequency of 300 kHz (Table 1). The echosounder emits 508 soundings per ping cycle. Trans-
mit and receive units produce small (Tx and Rx) beams with widths of 1.5◦ × 1.5◦. The
Rx beam spacing was set in high-density equidistant geometry, and sound emitted at pulse
length of 150 µs in MBES normal mode. The quality of a part of the bathymetry acquired
during campaign 2018-17 was suboptimal due to a poor real-time kinetic (RTK) positioning
signal and post hoc tidal-level corrections were needed. Low quality in bathymetry implies
poor geometric corrections of backscatter data; [52,53] for details. Furthermore, artefacts
represent a severe source of error in image analysis and predictive modelling [54,55]. Due
to this, bathymetry data acquired and processed by the Agency for Maritime Services and
Coast, Coastal Division, Flemish Hydrography, and acquired by a Kongsberg EM3002 dual
system installed on HV Ter Streep during 2013 (Table 1), were used instead to substitute a
small portion of the study area. All other surveys benefitted from RTK tidal corrections.
Specific details of the MBES backscatter data processing software and pipelines can be
found in [56] and [57], chapter 3. Standardised procedures were followed for backscatter
data acquisition and processing, including implementing an operational routine to en-
sure the echosounder measurements’ stability (or drift, see [19,57,58]), enabling merging
backscatter data acquired at different moments in time, hence enabling efficient image
analysis, e.g., [59–62]. The backscatter processing nomenclature proposed by [20] was
used, and the backscatter product used in this investigation refers to fully compensated
backscatter imagery (CBI), with code: “A4 B0 C0 D0 E5 F0”. For further analysis, the MBES
data were gridded into raster format (floating point 32-bit) files with a 1 m horizontal
resolution.

Table 1. Timeframe ID of the oceanographic campaigns, geophysical data type, ground truth data, and number of selected
frames used for further analysis. RV = research vessel; MBES = multibeam echosounder (seafloor depth and backscatter);
GT = ground truth; HG = Hamon grab; UV = underwater video; n.a. = not applicable; Rep. = replicate sample. Link to
oceanographic campaign reports and course of actions available at RV Belgica web site: https://odnature.naturalsciences.
be/belgica/en/(re: campaign ID).

Vessel and Campaign ID Month-Year Data Type GT Data Number of Image Stills

RV Belgica 2018-17 Jul-2018 MBES + GT UV (n = 2); HG (n = 4 × 3 rep.) n = 26
RV Belgica 2019-19 Jul-2019 MBES + GT UV (n = 3); HG (n = 2 × 3 rep.) n = 239

HV Ter Streep Jun-2013 MBES (only depth soundings) n.a. n.a.

Underwater imagery acquisition, processing, and analysis. Underwater imagery (UI) was
acquired by means of a video drop-frame system; a robust steel metal, winch-operated frame
(http://www.vliz.be/en/videoframe-en) equipped with a medium-resolution ROS inspector
colour camera (https://www.rosys.com/), linked to a MacArtney (www.macartney.com)
multimedia controller unit (pan, tilt, zoom), and set up to acquire a 1 m2 optical field
of view. In this investigation, the latter camera system provided only a video live feed
solution during the data acquisition phase. The UI used in this study was acquired by
means of a GoPro 5 video camera (GoPro, Inc., San Mateo, CA, USA—https://gopro.com/)
installed on the metal frame, downward looking (i.e., orthogonally to the seafloor ideal
plane), at a height of ~75 cm from the bottom, achieving on average a field of view of
~0.47 m2 (about half the footprint size of the gridded MBES data). The GoPro camera was
operated in FOV-linear mode, acquiring 60 frames per second (FPS), with a resolution
of 1920 × 1440 pixels. GoPro’s focal length measures 16.5 mm. Using these settings,
the underwater imagery acquired by the GoPro camera is able to resolve sub-centimetre
objects. Two HUGYFOT (https://www.hugyfot.com/) Arius 1500 lumen underwater
lights were installed on the frame and mounted orthogonally to the seafloor, reducing

https://www.kongsberg.com/maritime/
https://odnature.naturalsciences.be/belgica/en/(re
https://odnature.naturalsciences.be/belgica/en/(re
http://www.vliz.be/en/videoframe-en
https://www.rosys.com/
www.macartney.com
https://gopro.com/
https://www.hugyfot.com/
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backscattering of light from the seston, otherwise reducing image quality. Two green
laser pointers were also installed on the frame to provide a metric reference scale (10 cm
apart). Positions were corrected for antenna layback adjusted to the cable breakpoint on
the winch’s frame. Positional uncertainty of the drop-camera system was minimised by
acquiring data exclusively during slack-water windows when the current velocity reaches
<0.5 knot and by ensuring minimal slack of the cable. During the acquisition of videos,
the frame was kept as close as possible to the bottom (i.e., ≤1 m, achievable by controlling
the altitude from the on-board monitor control unit). To improve the quality of the videos
(and subsequently extracted frames), where possible, the frame was often lowered onto the
ground and left recording for several seconds.

A total of five video transects were acquired during the two oceanographic campaigns.
Positioning was achieved by coupling the image timestamp to the vessel position provided
by the On-Board Data Acquisition System (ODAS—https://odnature.naturalsciences.be/
belgica/en/odas), with a chosen acquisition rate of 1 s to have a more precise logging of
the heading and geographical coordinates. For each video transect, frames were extracted
every 10 s using VLC media player, resulting in a UI sample (still frame) of the seafloor
every ~2.5 m of drift/navigation. A total of 426 still frames were extracted from the five
videos. From this initial set, blurred scenes (i.e., due to sediment plumes upon landing
and/or a too high concentration of seston) and/or scenes that did not relate to the seafloor
(i.e., down- and up-casting phases) were removed from the dataset, reducing it to n = 265
seafloor observations measuring on average 0.64 m2 (median = 0.57 m2) and exploitable
for the extraction of quantitative parameters, as summarised and illustrated by Table 2
and Figure 3. Still frames were further processed using software ImageJ. Image contrast
and illumination were manually enhanced. The pixel-to-cm scale was set against the laser
pointers (10 cm apart), calibrating the images in terms of metric scale, and enabling further
data analysis.

Based on the calibrated still frames, an image-annotation protocol was set up to extract
numerical parameters in order to: (A) study geo-bio relations, i.e., identify the grain size
fraction of interest with respect to colonisation by epilithic organisms; and (B) test RF
for regression to model the distribution of the percentage cover of the identified grain
size fraction of interest over broader spatial scales. To address point A, calibrated images
displaying stones (n = 149) were treated in ImageJ, whereas the remaining images, with
no visible stones, were assigned a value of 0%. A semi-automated routine fitting elliptic
and circular patterns, referred to as regions of interest (ROIs), was set up to circumscribe
the visible stones in the still images. By doing so, the Feret (or calliper) diameter (Ø) of
each stone could be extracted, thus related to a grain size class (as specified in the “Study
site” section). Furthermore, stones’ ROIs were labelled as colonised and/or uncolonised.
This selection criterion was based on the presence of at least one visible colony or individ-
ual specimen of epilithic organisms colonising the visible stone surface (e.g., Alcyonium
digitatum, Alcyonidium diaphanum, Spirobranchus triqueter, Metridium senile, Flustra foliacea,
Nemertesia sp.). This information was used to compute estimates of proportion of stone
colonisation per grain size class and by video transect location. The ecological information
obtained from point A is in turn tabulated along the X and Y coordinates of the ground
truth dataset and used to address point B, with predictive spatial modelling by RF for
regression.

https://odnature.naturalsciences.be/belgica/en/odas
https://odnature.naturalsciences.be/belgica/en/odas
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Table 2. Investigated parameters form the dataset of calibrated underwater still frames obtained
from underwater videos. Interpretation; ♦ = colonised/uncolonised. * = not explicitly used in this
investigation. Count and areal measurements were standardised to an identical sample size of 1 m2.

Investigated Key Parameters of the Selected Dataset of Still Underwater Images

Input Parameter Scale
Free text Still frame area (height × width) Numerical (m2)
Selection Large boulders (>63 cm) ♦ Numerical (cm Feret Ø; (1/0); area m2)

Boulders (20–63 cm) ♦
Cobbles (6–20 cm) ♦
Coarse gravel (2–6 cm) ♦
Fine gravel (<2 cm) ♦

Selection Community matrix * Numerical/counts; species conspicuous features
Selection Substrate distribution pattern * Categorical, predefined (i.e., dense/sparse/bare)

Spatial modelling strategy. In this investigation, UI is exploited to define a quan-
titative and ecologically relevant target response for predictive modelling, thereby eco-
logically meaningfully delineating SNHS habitat in the predicted maps. The modelled
target response relates to the surface area of geogenic features (i.e., stones) where biological
colonisation by epilithic species occurs. To that end, the standardised prospective-mapping
workflow, based on UI and MBES spatial data, is set up to: (1) numerically study the
biological colonisation proportion of different stone sizes (in respect to visible epilithic
species); hence, to identify the grain sizes diameter (Ø) where the colonisation potential
begins. Consequently, the workflow is set up to: (2) exploit the numerical information
achieved by UI (i.e., the % seafloor cover of these grain sizes/m2) for spatial predictive
modelling using a state-of-the-art machine learning approach.

Spatial modelling by RF. RF (Breiman, 2001a and details therein) is a machine learning
algorithm based on the fundamental unit of machine learning: the decision tree. The
algorithm was chosen due to its widespread success in computer [63] and marine sciences
applications, specifically relating to advanced ASC, e.g., [16,27,32,64,65]. Furthermore,
the algorithm can be used to model continuous (i.e., numerical data), satisfying the map-
making requirements of the habitat mapping methodology being tested in this investigation.
RF modelling was implemented in R using part of the ModelMap package module [66]
and user custom-made code snippets. The habitat-mapping methodology was tested on
a spatial sub-selection of the surveyed study area (32 km2), hence four 1 × 1 km squared
areas, surrounding the underwater imagery and Hamon grab sample locations (Figure 2).
Within these locations, the modelling pipeline is composed of three steps: (1) feature
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derivation and selection; (2) model tuning; and (3) accuracy and uncertainty assessment.
The aim of the statistical modelling is to produce a map displaying the distribution of the
grain size fraction of interest with respect to colonisation by epilithic fauna. As such, the
overall percentage cover of the identified grain size fractions of interest (i.e., % relativised
to surface area) was selected as the response variable to be modelled over the MBES spatial
data.

Feature derivation and selection. A set of geomorphometric, statistical, and textural
secondary features was computed from the MBES primary data. From the CBI, statistical
(mean, max. min. mode, median, and standard deviation) and textural (Sobel–Feldman
filters for intensity, direction, and edge R package SpatialEco, [67], grey level co-occurrence
matrix homogeneity index R package GLCM [68], and Moran’s I autocorrelation R package
raster [69]) were derived, whereas from the bathymetry, rugosity and slope were computed.
Overall, n = 15 secondary features were derived, using a 3 × 3-pixel neighbourhood
window. The importance of multiscale analysis in predictive models is recognised [70],
though only the smallest possible scale of derivation (i.e., window of 3 × 3) was used
to ensure maximal exploitation of the high-resolution data. Secondary features were
chosen based on their expected influence on the target response and on their reported
importance in previous research [16]. A feature selection routine was applied to reduce the
initial dataset to a set of relevant features only. The RF Boruta [71] wrapper function was
used, including all features, even those that were highly correlated with a Spearman rank
coefficient of 0.96 (as from correlations analysis, not shown here, and as from previous RF
research [63]).

Model tuning: The RF algorithm has few parameters that require tuning and has
been reported to be generally insensitive to alterations of the default values [34]. Recent
applications of RF in marine sciences however indicated the importance of tuning two
hyperparameters: (1) the number of decision trees grown in the forest (i.e., ntree = 500); and
(2) the number of predictors used at the splits during the tree-building process (mtry). The
ModelMap package [66] automatically accounts for this potential bias and select the optima
with respect to the out-of-bag (OOB) error estimate (in mean squared residual—MSR). In
terms of training data, 30% was withheld for validation, and training sample selection
(n = 186) was randomly stratified per bins of 10%, balancing test and training sample sets.

Model accuracy was evaluated against a set of withheld samples (30%, n = 79). The
following accuracy metrics were computed between observed and predicted values: mean
absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), Pearson
correlation coefficient (p), and Spearman correlation coefficient ($). Both MAE and RMSE
are measured in the same units as the response variable. R2 and descriptive statistics (i.e.,
quantiles) are additionally used to assess model performance. Moreover, model uncertainty
was accounted for by computing the coefficient of variation (CV). Being composed of
several decision trees, the model’s CV can be obtained by dividing the standard deviation
of the predictions for each pixel by their respective predicted mean value. This spatial
information was used to mask the RF model output, displaying the predictions for the pixels
with an equivalent CV pixel equal to 0 (i.e., the lowest uncertainty). Further corroborating
the evaluation of model accuracy, a set of Hamon grab samples (see Table 1) were used to
qualitatively validate model predictions. This source of ground truth data could only be
used qualitatively, validating the model predictions in a binary sense (i.e., presence/absence
of stones), given the incomparability of estimates of percentages of stone cover between
underwater imagery and grab samples, as well as the lack of coincident video and Hamon
grab sample locations that would allow quantitative comparison. Finally, RF importance
metrics (from Boruta) and partial dependence plots were used to study how selected
important features influenced the prediction of the target response.

3. Results

Bio-Geo relations from underwater imagery. Overall, the number of delineated stones
(NDS) in the UI dataset accounts for n = 9639 stones. Except for the fine gravel (NDS = 2110)
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that was consistently uncolonised by epilithic fauna across the five video transects, the
proportions of colonised coarse gravel (NDS = 5986), cobbles (NDS = 1492), boulders
(NDS = 49), and large boulders (NDS = 2) significantly differed (χ2 statistics; degrees of
freedom (D.F.) = 4; fine gravel χ2 = 2.138; p = 0.71; coarse gravel χ2 =22,565; p =< 0.001;
cobble χ2 = 39.716; p =< 0.001; boulder χ2 = 200; p =< 0.001; very large boulder
χ2 = 400; p =< 0.001). Across the five transects, the proportion of colonisation ranges
varies considerably across grain size classes. Besides fine gravel (i.e., 0%), colonisation of
coarse gravel is considerable, ranging between 5.4 and 27.7%. Cobbles are colonised in
the range 34.5–98.8%, whereas boulders and large boulders, if present, are consistently
colonised (0–100%). The relationship between the average (across five video transects)
proportion of colonisation with increasing stone size is reported in Figure 4. Following
these observations, it was decided that for this dataset and moment in time, the grain size
of interest with respect to colonisation by epilithic fauna starts at stone sizes Ø ≥ 2 cm.
Thus, the areal cover cumulatively accounting for coarse gravel, cobble, boulder, and large
boulder grain size classes (expressed as %/m2 and in the range 0–46%) was selected as the
parameter (target response) from underwater imagery used for spatial modelling.
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RF spatial predictions, accuracy, and uncertainty. Predictive performance of the
selected RF model (i.e., 70% training, 500 trees, and six features randomly selected at
each node) was tested, per modelled subarea, by comparisons of observed and predicted
values from the whittled test set (i.e., 30%). The modelling approach indicated a good
performance, quantified by multiple accuracy metrics (Table 3). Both MAE and RMSE
have very low values, the adjusted R2 has a moderately high value, and both linear and
nonlinear correlation coefficients coincide with a high value, indicating the relative absence
of outliers (as observed in previous studies; Gazis et al., 2018). Accordingly, the difference
between observed and predicted mean and median (Q3) values is very small (0.3 and 1%,
respectively). The interquartile range at intervals Q2 and Q5 reveals the inherent limitation
of RF regression unable to predict out-of-training-range values [34], as well as over- and
underestimating minimum and maximum values, respectively (as observed in similar
investigations [27,72]).
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Table 3. Accuracy metrics computed from observed and predicted values of test samples (30%).
MAE: mean absolute error; MSE: mean squared error; RMSE: root mean squared error; R2: R squared
from linear regression; P: Pearson correlation coefficient; Spearman ($): Spearman rank correlation
coefficient. Q: quantile; SD: standard deviation.

MAE MSE RMSE R2 P $

5.7 63 7.9 0.54 0.73 0.73
Mean Q1 Q2 Q3 Q4 Q5 SD

Observed 10.1 0 0 6 20 38 11.7
Predicted 10.4 0 3 7 19 25 8.4

RF importance and spatial drivers. The analysis of the RF importance, by means of
Boruta feature selection and partial dependence plots of selected features, revealed their
ranked importance (not shown here), in respect to the prediction of the target response
(i.e., those that explained most variance), as well as revealing their underlying nonlinear
relations (Figure 5). Of the overall fifteen features, two were discarded (3 × 3 CBI Sobel
filters for direction and edge). The remainder (n = 13) features were kept as important,
scoring >5 Z-scores (i.e., all CBI statistics (min. max. median, standard deviation, and
mode), bathymetry and all secondary morphometric features (rugosity and slope), CBI
Moran’s I autocorrelation, and CBI Sobel intensity index). Expressed in terms of Z-scores by
the Boruta analysis, the feature that most significantly contributed to the target prediction
was the backscatter minimum value (high backscatter strength), followed by the bathymetry.
All geomorphometric features (i.e., slope and rugosity), were retained as important. The
partial dependence plots reveal that all the retained features contribute in a non-linear
manner to the prediction of the response variable, as well as showing that, at this scale (i.e.,
1 m horizontal resolution and 3 × 3 neighbourhood windows), there exist specific data
intervals (e.g., mid-range depths, higher backscatter intensities, terrain with a slope <4◦,
rugosity values < 0.35) promoting higher coverage of stones with a high potential of
colonisation by epilithic fauna.
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Predicted spatial distribution of subtidal natural hard substrates associated with
epilithic organisms. The first row of Figure 6 displays the spatial predictions (range 0–34%)
of the natural hard substrates identified as having a high potential of colonisation by
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epilithic fauna. These modelled predictions capture the morpho-sedimentological contin-
uum of the seafloor/habitat and show that the distribution of hard substrates (expressed
as stone coverage %/m2) coincides with two predominant spatial configurations (i.e.,
seascape patterns): (1) relatively large-scale striations (here aligned with the main tidal axis
SW-NE and within depressions where the current channelises); and (2) small-scale elliptical
shapes, observed under the form of relatively small-scale troughs/depressions. Striations
develop longitudinally in the orders of kilometres, forming a stripy pattern with narrow
(200–300 m) bands, alternated by sand ribbons. Small-scale elliptical shapes (patches)
range in Ø 10–25 m and alternate with small to medium-sized sand ripple morphologies
ranging in height 1–2 m and wavelength (λ) 10–20 m (as apparent from the hill shade
semi-transparent map highlighting the geomorphology). Both spatial configurations are
populated by relatively high percentages of stone cover, with values in the range 10–34%
cover.

Complementing the model predictions, the coefficient of variation (mid-row Figure 6)
displays spatial uncertainty. This information provides a spatially explicit understand-
ing of the modelled areas’ uncertainty, displaying the by-pixel algorithm’s consistency in
allocating predicted values. This information was used to spatially constrain the model
predictions (bottom row, Figure 6) where the CV was lowest, i.e., with a value of 0. The
resulting map captures the spatially explicit patchy distribution of the natural hard sub-
strate and removes the minimum overestimated values coincident with the hill shade sand
signatures. Finally, the Hamon grab samples (blue outlined triangles, bottom row pictures,
Figure 6), qualitatively corroborate the model predictions, in a binary sense, displaying
samples with a high content of hard substrate, correctly allocated to pixels of striations and
small-scale elliptical patches (blue tail of the colour palette), whereas predominantly sandy
samples are correctly allocated outside these zones, thus on areas predicted in the range
0–8% (red tail of the colour palette, first row, Figure 6; dark black areas, third row, Figure 6).
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4. Discussion

The investigation focused on the scientific validation of a transferrable and quanti-
tative (i.e., continuous data prediction) habitat mapping routine, suited to the spatially
explicit demarcation of subtidal natural hard substrates environments (i.e., in the offshore
North Sea setting) with high potential of colonisation by epilithic fauna. The proposed
methodology exploited a combination of contemporary and non-destructive (minimally
invasive) remote sensing (ship-based MBES soundings) and ground truthing technologies
(UI by drop frame), interlinked by a state-of-the-art machine learning predictive algorithm
(i.e., using RF for regression). The innovative character of the habitat mapping approach
tested in this investigation is the quantitative exploitation of the UI for the development of
an ecologically informed SNHS habitat delineation criterion, aiding the spatial delineation
of the realised niche of reef-associated epilithic organisms. The following paragraphs dis-
cuss the success of this investigation, focusing on the exploitation of UI for a quantitative
appraisal of SNHS habitat and the potential of this data for ecologically informed habitat
modelling. Lastly, shortcomings and future outlooks are highlighted.

In line with recent applications of UI for the characterisation of SNHS and associated
epibenthic assemblages in the English Channel and Southern North sea marine regions
setting, e.g., [21,24–26,37,73], seafloor imaging by drop/drift frames is confirmed as a highly
time efficient (i.e., number of samples vs. sampling time) approach, providing spatially
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representative data of interest for the characterisation of high-frequency (in respect to
the acoustical signal penetration into the seafloor; see [18,74]) and high-resolution (in
respect to the sample size match between remote sensing and ground truthing data)
MBES data. The UI observations revealed comprehensive details of the seafloor nature:
substrate, biota, and their spatial organisation and structure (size of visible biotic and
abiotic occurrences) and provided insight into sedimentary processes and geo-bio relations.
Based on such data, the investigation showed how UI enables deriving an ecologically
relevant spatial delineation criterion to map SNHS habitat. Firstly, the proportion of
biologically colonised substrate could be related to specific grain size fractions (starting
from stones Ø > 2 cm). Consequently, UI provided the quantitative information needed to
set up predictive seafloor modelling, in this case producing maps capturing the percent
cover (%/m2) of the grain size fractions with the highest potential of colonisation by
epilithic fauna. Thus, UI satisfies both a numerical ecological appreciation of bio-geo
relations and the production of a dataset enabling ecologically informed seafloor substrate
modelling. Consequently, the seafloor model herein produced may not be considered as
a mere substrate map (i.e., abiotic map), rather, as a benthic habitat map [13] specifically
related to SNHS assemblages of epilithic fauna. Here it must be mentioned that including
environmentally dynamic variables (i.e., hydrodynamics) at relevant scales in the modelling
process [75] would inevitably enhance the ecological significance of the modelled map
outputs, including a refined and mechanistic understanding of the fine-scale driving factors
of SNHS communities. Interestingly, if such seafloor predictions are repeated in time (i.e.,
by repeating the data acquisition and processing workflow herein tested, on datasets
acquired, e.g., during different seasons), spatiotemporal and high-resolution changes in the
areas of potential epibenthic colonisation may further help elucidate environmental drivers
and temporal dependencies of such benthic communities. Indeed, considerations of the
fourth dimension (i.e., time) in BHM studies is fundamental for the interpretation of static
maps (i.e., “snapshot-in-time”) and of the UI data and derived observations. With regard
to the latter, it must be noted that mechanisms of seafloor disturbance (both natural and/or
anthropogenic, e.g., periodic stone burial and/or abrasion by bottom fishing gears), may
cause a bias to the biological observations (e.g., colonisation). Therefore, it is important
to consider that the resulting datasets and resulting spatial models may have a strong
dependence on the local seafloor spatiotemporal dynamicity over timescales ranging from
seconds to years.

With regard to spatial modelling, as for other recent investigations, e.g., [27,35–37,63]
the use of RF is confirmed as a well-performing (accurate) and versatile predictive algo-
rithm. From a relatively limited number of loci, RF exploits the multivariate information,
including highly correlated features, while avoiding overfitting [34]. RF learns complex un-
derlying non-linear relations (e.g., Figure 5, partial dependence plots in this investigation)
between explanatory features (i.e., the hydroacoustic data) and the target response (derived
from UI), predicting fitted relations on the broader “unseen” surveyed area and revealing
trends and patterns that may reveal casualties and even be used to formulate novel scien-
tific hypotheses [76]. Using RF for regression produces output models that are interpretable
as a seafloor morpho-sedimentological continuum. Unlike predictive modelling of habitat
classification schemes [77], continuous spatial predictions provide finer ecological informa-
tion (e.g., gradients [36,78]) and enable better exploitation of high-resolution hydroacoustic
data, leading to a better depiction of seafloor heterogeneity, evidencing fine-scale varia-
tions that may otherwise remain unnoticed where a single categorical/thematic class is
used instead. Further benefits of RF for regression and for the case of modelling spatially
clustered and heterogeneous seafloor features, such as SNHS, is the randomisation of the
training data points in each decision tree. This leads to a new set of training data points
informing the model’s learning process, and since the spatial selection is ignored by the
random selection process, the influence of spatial autocorrelation is limited, making it an
appropriate modelling approach for spatially clustered data (e.g., mapping of polymetallic
nodules in [27]). Furthermore, RF benefits from a relatively simple model-tuning, and
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does not rely on any prior transformation/standardisation of the input data, or on any a
priori assumption/requirement of the data structure (e.g., normality; [34]). Finally, at the
cost of increasing the computational time, a favourable characteristic of RF for regression
is the potential of deriving spatially coincident measures of uncertainty for the model
predictions, such as the CV herein used, providing interesting insights into the algorithm
decisions consistency in allocating the learnt predicted values to the unseen data. Moreover,
coincident uncertainty measures enabled spatial subselection of the model predictions,
masking overestimated values (i.e., those predicted on obviously sandy areas; cfr. hill shade
prospective view in Figure 5), and explicitly revealing the two main spatial distribution
patterns of the modelled response: distributed as striations and elliptical geometries of
hard substrate. Striations are indicative of a strong tidal stream and the presence of hard
substrates [79] and were also observed by earlier studies in nearby study sites (e.g., English
Channel [80]; Belgian waters, [81,82]). Holme and Wilson [80] described such striations
as “longitudinal tide swept furrows” associated with rich epibenthic communities. For
the study site assessed in this investigation, this observation is confirmed by the UI (e.g.,
Figure 5), displaying a typical SNHS fauna, including long-lived (i.e., >5 yrs.), vertically
developing, and arborescent sessile epilithic species. Indeed, knowledge of the spatially
explicit distribution of the stone’s coverage (i.e., by seafloor units of 1 m2) is an invaluable
asset to biological data survey planning, as well as providing the baseline for environ-
mental monitoring at ecologically relevant scales. Recent studies, including the present
investigation, demonstrated that stone size is a fundamental driver of SNHS epibenthic
(epilithic) species assemblages [24,25]. Furthermore, besides the size of individual stones,
seascape patterns, such as the striations and elliptical shapes herein identified, can be
important proxies of biological communities (describing the relation between geological
and biological structure, e.g., [83,84]. Therefore, at such scales, the integration of MBES and
UI by RF for regression largely improves the identification of the ecology of such seascape
patterns.

Hitherto, only a few cases have been published showing the importance of geological
complexity or geodiversity in marine management, e.g., [84,85], but clearly if these coincide
with hotspots of biodiversity, a new era is emerging in the mapping of SNHS. This is indeed
the case for the Southern North Sea region, having a complex geological history and a
diverse morphosedimentary setting. For example, the results of this research (including
the interpretation of the UI-derived community matrix; not shown here) may suggest that
all SNHS striations and elliptical shapes in this specific environmental setting may be
considered as priority areas for conservation and monitoring, hosting high-priority SNHS
biological assemblages.

While the instrumentation and set-up used in the present investigation proved highly
valuable for targeting the research aim, some improvements could be made at both the UI
data acquisition and processing and the predictive modelling phases. Hereafter, shortcom-
ings are flagged. Technical improvements are needed in the design of the UI acquisition
platform, including increased illumination allowing one to position the recording camera
higher above the seafloor to naturally achieve a viewing angle closely matching the res-
olution of the MBES data (i.e., 1 m). Although videos were acquired under optimal sea
state conditions and tidal windows, and extracted image stills were well positioned (i.e.,
georeferenced to the drop-frame cable’s breakpoint), installation of a dedicated positioning
system would represent a considerable positional improvement and decrease the chances of
positional error propagation in the modelling phase. Analysis of underwater imagery can
be highly time-consuming given the high number of data points compared to conventional
sampling gears. While the extraction of parameters (i.e., such as the stone’s Ø and areal
cover) from still images was mostly automated, the annotation, i.e., segmentation into ROIs
and labelling into colonised and/or uncolonised, was performed manually. The success
of fully automated image-annotation applications [86] is inextricably linked to the quality
of the underwater imagery, in turn dictated by the specific set-up of the various compo-
nents on the UI acquisition platform, by the quality and functioning of the components
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themselves, and by the environmental conditions at the time of UI acquisition. Thus, it
is expected that considerable improvements in the use of such technology for seafloor
ecological characterisation and quantitative predictive modelling will come in from R&D-
oriented technical improvements of the UI acquisition platform itself, as well as from the
field of computer science and big data, in the application of machine and deep learning
algorithms to the automated annotation of UI [87], as well as image processing, correction,
and filtering (e.g., during data acquisition, minimising a posteriori labour-intensive aspects
of image analysis).

Specifically relating to relatively turbid water environment, development of “clear-
water housing” underwater optical systems [88] will inevitably benefit future SNHS re-
search. Regarding the RF predictive modelling, as reported by others [27], the most
significant improvements in predictive accuracy and performance result from the use of
more training data points.

The availability of more data, especially if they are better distributed (i.e., data that
will include the entire range of the target response, for example from all the different
topographies and acoustical facies), would inevitably reinforce the model in learning
improved and wider relationships between the predictor and response variables, while also
ensuring a larger number of validation data points to derive accuracy metrics from. Here,
use of towed sledge systems and or/autonomous underwater vehicles (AUVs) represent
an invaluable asset to the collection of larger volumes of UI in complement to the MBES
data [89]. In this regard, an important aspect of machine learning application to habitat
mapping studies will be to address the effect of the amount of training data on model
performance. This aspect remains poorly explored in this domain and is at the centre of
discussion of recent research, e.g., [27]. This aspect will be particularly important in view
of upscaling the habitat mapping approach tested in this investigation and incorporating
it into standards designed to specifically survey and characterise SNHS habitat. It will
be important to define quantitatively the amount of UI groundtruth data to be collected,
in respect to the extent of the hydroacoustic survey. A sufficient underlying number of
observations is needed for a representative model to be constructed. In this investigation,
modelling tests (not shown here) were conducted to predict the target response over the
entire 32 km2 surveyed area. However, these produced poorer accuracies, evidencing
the relative paucity of UI observations available for this study. While a good practice
approach is to check, prior to the modelling phase, the representativeness of the training
and testing groundtruth and underlying MBES datasets (i.e., by comparing the probability
density functions from the primary MBES data prediction surface and sample locations;
not shown), further tests are required to elucidate this aspect further, particularly in view
of the large volumes of MBES data expected to become available in the coming years [90].
Finally, future tests based on this predictive modelling approach may benefit from the use
of RF for quantile regression, having the potential to improve the uncertainty reporting by
exploiting lower and upper quartiles as confidence around the mean predictions [66].

5. Conclusions

The results of this investigation show that the acquisition, processing, and analysis
of underwater seafloor imagery data provide seafloor mappers with quantitative and
ecologically relevant information on the distribution of subtidal natural hard substrates.
This numerical information can be integrated with ship-based MBES data by means of RF
machine learning, here used to compute high-resolution predictions of stone areal coverage
(%/1 m2) at scales relevant for ecological management. Such spatial predictions provide
a direct link to the distribution of SNHS epibenthic assemblages that are a priority for
environmental conservation and monitoring in European seas and elsewhere. Furthermore,
this investigation demonstrated how the use of underwater imagery enabled understanding
of how stone size influences biological colonisation and, consequently, how this information
can be quantitatively exploited to develop ecologically meaningful habitat delineation
criteria.
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