Spatio-Temporal Analysis of Ecological Vulnerability and Driving Factor Analysis in the Dongjiang River Basin, China, in the Recent 20 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Evaluation Factors and Data Sources
2.3. The Principal Component Analysis
2.3.1. The PCA Structure of EV Based on the PSR (Ecological Pressure Ecological Sensitivity, Ecological Resilience)
2.3.2. Weight Calculation Based on the PCA
2.3.3. Ecological Vulnerability Model Calculation
2.3.4. Threshold Definition Based on Net Primary Production
2.4. Geodetector
- (1)
- Factor detector: It detects the spatial heterogeneity of EV change Y and the explanatory power of different factors X on EV change Y. Measured by the q-value, the expression is [65]:
- (2)
- Interaction detector: analyzes the possible causal relationships between different influencing factors, i.e., whether the combined effect of different factors enhances the explanatory power of EV. In the evaluation process, we first calculate the q-values of Y for each of the two factors: q(X1) and q(X2); calculate the q-value of Y when the two layers are tangent: q(X1∩X2); and compare q(X1), q(X2), and q(X1∩X2). The relationship is detailed in the Table 3 [64].
3. Results
3.1. Temporal Evolution Characteristics of Ecological Vulnerability
3.2. Change of Ecological Vulnerability Grade Index
3.3. Analysis of the Drivering Factors of Ecological Vulnerability
4. Conclusions and Discussions
4.1. Discussions
4.2. Conclusions
- (1)
- The PCA method can objectively and reasonably calculate the changes in each factor in the process of assigning weights to vulnerability factors in multi-temporal studies. The method can better reflect the change process of each factor in the EV system, and has good applicability in the southern red soil hilly ecosystem of China.
- (2)
- NPP data can be associated with the assessment of the health of land surface ecosystems, and the EV level thresholds in different periods can be obtained with the aid of NPP data calculation, which is important for the analysis of EV in different years.
- (3)
- Over the past 20 years, the overall EV intensity in the DRB can be characterized by a mild decrease, while the upstream and downstream EV intensity in the DRB can be characterized by a mild increase. The midstream exhibited a mild decrease. From 2001 to 2019, the mean EV value gradually decreased. From 2001 to 2008, The area of EV intensity for mild increase is much larger than stable. From 2008 to 2019, EV intensity is more widely distributed in areas of mild decrease than mild increase.
- (4)
- During 2001–2019, the spatio-temporal pattern of EV in the DRB was significantly affected by the relative humidity, average annual temperature, and vegetation cover.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Image Identifier | Acquisition Time | Sensor Type | Track Number (ROW/PATH) | Sun Elevation/(°) | Solar Azimuth/(°) |
---|---|---|---|---|---|
LT05_L1TP_121043_20011121_20161209_01_T1 | 21/11/2001 | TM | 43/121 | 39.428 | 149.338 |
LT05_L1TP_121044_20011121_20161209_01_T1 | 21/11/2001 | 44/122 | 40.544 | 148.454 | |
LT05_L1TP_122043_20011230_20161209_01_T1 | 30/12/2001 | 43/121 | 34.59 | 147.199 | |
LT05_L1TP_122044_20081201_20161028_01_T1 | 30/12/2001 | 44/122 | 35.663 | 146.415 | |
LT05_L1TP_121043_20081210_20161028_01_T1 | 10/12/2008 | TM | 43/121 | 36.556 | 150.666 |
LT05_L1TP_121044_20081210_20161028_01_T1 | 10/12/2008 | 44/122 | 37.69 | 149.878 | |
LT05_L1TP_122043_20081201_20161028_01_T1 | 1/12/2008 | 43/121 | 37.903 | 150.895 | |
LT05_L1TP_122044_20081201_20161028_01_T1 | 1/12/2008 | 44/122 | 39.041 | 150.076 | |
LC08_L1TP_121043_20191123_20191203_01_T1 | 23/11/2019 | OLI | 43/121 | 41.304 | 155.234 |
LC08_L1TP_121044_20191107_20191115_01_T1 | 7/11/2019 | 44/122 | 46.471 | 152.692 | |
LC08_L1TP_122043_20191114_20191202_01_T1 | 14/11/2019 | 43/121 | 43.436 | 154.605 | |
LC08_L1TP_122044_20191114_20191202_01_T1 | 14/11/2019 | 44/122 | 44.634 | 153.701 |
Target Layer | Criterion Layer | Indicator Layer | Name of Data | Positive and Negative | Weight of 2001 | Weight of 2008 | Weight of 2019 |
---|---|---|---|---|---|---|---|
Ecological Response | Terrain indicators | Elevation(X1) | GDEMV2 elevation data | Negative | 0.03598 | 0.01263 | 0.00885 |
Slope(X2) | Positive | 0.0185 | 0.00718 | 0.00407 | |||
Slope orientation(X3) | Positive | 0.24991 | 0.24989 | 0.2499 | |||
soil erosion(X4) | 1:4 million Chinese soil type data Meteorological Data | Positive | 0.00021 | 0.00017 | 0.00008 | ||
Average annual precipitation(X5) | Negative | 0.08956 | 0.09075 | 0.20449 | |||
Average annual temperature(X6) | Negative | 0.04795 | 0.05347 | 0.10973 | |||
Relative Humidity(X7) | Positive | 0.17487 | 0.20386 | 0.11149 | |||
Ecological State | Landscape indicators | Mean Patch area (Area_mn) (X8) | Landsat remote sensing satellite data | Negative | 0.00059 | 0.00003 | 0.00012 |
Boundary density (ed) (X9) | Positive | 0.00107 | 0.00042 | 0.00071 | |||
Shannon Diversity Index (SHDI) (X10) | Positive | 0.00059 | 0.00039 | 0.00058 | |||
Shannon’s evenness index (SHEI) (X11) | Negative | 0.00001 | 0.00003 | 0.00012 | |||
Simpson diversity index (SIDI) (X12) | Negative | 0.00001 | 0.00003 | 0.00012 | |||
Vegetation indicators | Vegetation cover(X13) | Negative | 0.24466 | 0.24056 | 0.24606 | ||
Ecological Pressure | Social indicators | Population density(X14) | Population density | Positive | 0.00015 | 0.00009 | 0.00011 |
GDP per capita(X15) | GDP density | Positive | 0.13595 | 0.1405 | 0.06357 |
References
- Depietri, Y. The social–ecological dimension of vulnerability and risk to natural hazards. Sustain. Sci. 2020, 15, 587–604. [Google Scholar] [CrossRef]
- Lv, X.; Xiao, W.; Zhao, Y.; Zhang, W.; Li, S.; Sun, H. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Bouwer, L.M. Have disaster losses increased due to anthropogenic climate change? Bull. Am. Meteorol. Soc. 2011, 92, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Gerland, P.; Pelletier, F.; Cohen, B. Risks of exposure and vulnerability to natural disasters at the city level: A global overview. United Nations Tech. Pap. 2015, 2, 1–40. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Niu, W.Y. Improvement of ablers model with regard to searching of geographical space. Chin. Sci. Bull. 1989, 34, 155–157. [Google Scholar]
- Clements, F.E. Research Methods in Ecology; University Publishing Company: Lincoln, Nebraska, 1905. [Google Scholar]
- Liao, X.; Li, W.; Hou, J. Application of GIS based ecological vulnerability evaluation in environmental impact assessment of master plan of coal mining area. Procedia Environ. Sci. 2013, 18, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.; Kokic, P.; Crimp, S.; Martin, P.; Meinke, H.; Howden, S.M.; Voil, P.D.; Nidumolu, U. The vulnerability of Australian rural communities to climate variability and change: Part II—Integrating impacts with adaptive capacity. Environ. Sci. Policy 2010, 13, 18–27. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.; Luo, W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference. Sci. Total Environ. 2020, 741, 140256. [Google Scholar] [CrossRef]
- Keyes, A.A.; McLaughlin, J.P.; Barner, A.K.; Dee, L.E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 2021, 12, 1586. [Google Scholar] [CrossRef]
- Chang, H.; Pallathadka, A.; Sauer, J.; Grimm, N.B.; Herreros-Cantis, P. Assessment of urban flood vulnerability using the social-ecological-technological systems framework in six US cities. Sustain. Cities Soc. 2021, 68, 102786. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Pirasteh, S.; Ellison, J.C.; Jaafari, A. Fuzzy-based vulnerability assessment of coupled social-ecological systems to multiple environmental hazards and climate change. J. Environ. Manag. 2021, 299, 113573. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Ding, M.; Guan, Q.; Ai, J. Gridded assessment of eco-environmental vulnerability in Nanchang city. Acta Ecol. Sin. 2019, 39, 5460–5472. [Google Scholar]
- Yang, Y.; Song, G. Human disturbance changes based on spatiotemporal heterogeneity of regional ecological vulnerability: A case study of Qiqihaer city, northwestern Songnen Plain, China. J. Clean. Prod. 2021, 291, 125262. [Google Scholar] [CrossRef]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Li, Q.; Shi, X.; Wu, Q. Effects of protection and restoration on reducing ecological vulnerability. Sci. Total Environ. 2021, 761, 143180. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, J.; Jing, Z. Tempo-spatial changes of ecological vulnerability in resource-based urban based on genetic projection pursuit model. Ecol. Indic. 2021, 121, 107059. [Google Scholar] [CrossRef]
- Jin, Y.; Li, A.; Bian, J.; Nan, X.; Lei, G.; Muhammand, K. Spatiotemporal analysis of ecological vulnerability along Bangladesh-China-India-Myanmar economic corridor through a grid level prototype model. Ecol. Indic. 2021, 120, 106933. [Google Scholar] [CrossRef]
- Dai, X.; Gao, Y.; He, X.; Liu, T.; Jiang, B.; Shao, H.; Yao, Y. Spatial-temporal pattern evolution and driving force analysis of ecological environment vulnerability in Panzhihua City. Environ. Sci. Pollut. Res. 2021, 28, 7151–7166. [Google Scholar] [CrossRef]
- Huang, M.; Zhong, Y.; Feng, S.; Zhang, J. Spatial and temporal characteristics and drivers of landscape ecological vulnerability in the Chaohu Lake Basin since 1970s. Lake Sci. 2020, 32, 977–988. [Google Scholar]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection–A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Kang, H.; Tao, W.; Chang, Y.; Zhang, Y.; Li, X.; Chen, P. A feasible method for the division of ecological vulnerability and its driving forces in Southern Shaanxi. J. Clean. Prod. 2018, 205, 619–628. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Chi, Y.; Jiang, D.; Chen, S. Ecosystem service value decreases more rapidly under the dual pressures of land use change and ecological vulnerability: A case study in Zhujiajian Island. Ocean Coast. Manag. 2021, 201, 105493. [Google Scholar] [CrossRef]
- Shi, H.; Lu, J.; Zheng, W.; Sun, J.; Ding, D. Evaluation system of coastal wetland ecological vulnerability under the synergetic influence of land and sea: A case study in the Yellow River Delta, China. Mar. Pollut. Bull. 2020, 161, 111735. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Wu, L.; Tang, Y.; Li, Y.; Zhang, Y.; Ye, L.; Zhang, B. Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series. Ecol. Indic. 2021, 121, 106985. [Google Scholar] [CrossRef]
- Xue, L.; Jing, W.; Zhang, L.; Wei, G.; Zhou, B. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef]
- Wu, C.; Liu, G.; Huang, C.; Liu, Q.; Guan, X. Ecological vulnerability assessment based on fuzzy analytical method and analytic hierarchy process in Yellow River Delta. Int. J. Environ. Res. Public Health 2018, 15, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, K.A.; Liou, Y.A. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total Environ. 2019, 664, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Effects of Different Vegetation Restoration Patterns on Soil Reactive Organic Carbon in the Antaibao Mining Area; China University of Geosciences: Beijing, China, 2015. [Google Scholar]
- He, Y.; Guo, H.; Tan, Q.; Pan, W.; Chen, S. Identification of significant water problems in the Dongjiang River Basin of Guangdong Province. Water Resour. Conserv. 2021, 37, 16–21. [Google Scholar]
- Lv, L.; Gao, X.Q.; Liu, Q.; Jiang, Y. Effects of landscape patterns on nitrogen and phosphorus export in the Dongjiang River Basin. J. Ecol. 2021, 41, 1758–1765. [Google Scholar]
- Lv, L.T.; Zhang, J.; Peng, Q.Z.; Ren, F.P.; Jiang, Y. Analysis of landscape pattern evolution and prediction of changes in the Dongjiang River Basin. J. Ecol. 2019, 39, 6850–6859. [Google Scholar]
- Jiang, Q.; Zhou, P.; Liao, C.; Liu, Y.; Liu, F. Spatial pattern of soil erodibility factor (K) as affected by ecological restoration in a typical degraded watershed of central China. Sci. Total Environ. 2020, 749, 141609. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zheng, F.; Römkens, M.J.M.; Darboux, F. Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology 2013, 187, 1–10. [Google Scholar] [CrossRef]
- Williams, J.R. The erosion-productivity impact calculator (EPIC) model: A case history. Philosophical Transactions of the Royal Society of London. Ser. B Biol. Sci. 1990, 329, 421–428. [Google Scholar]
- Diao, C.; Wang, L. Landsat time series-based multiyear spectral angle clustering (MSAC) model to monitor the inter-annual leaf senescence of exotic saltcedar. Remote Sens. Environ. 2018, 209, 581–593. [Google Scholar] [CrossRef]
- Mao, X.P.; Diao, J.J.; Fan, J.H.; Lui, Y.Y.; Xu, N.G.; Wang, Z.; Li, M.S. Analysis and prediction of landscape dynamics in the forest-grass mosaic zone of the Daxingan Mountains, Inner Mongolia. J. Ecol. 2021, 1–12. [Google Scholar]
- Xue, S.-S.; Gao, F.; He, B.; Yan, Z.-G. Analysis of landscape patterns and driving forces in the Wulungu River basin from 1989–2017. Ecol. Sci. 2021, 40, 33–41. [Google Scholar]
- Cui, T.-X.; Gong, Z.-N.; Zhao, W.-J.; Zhao, Y.-L.; Lin, C. Extraction method of wetland vegetation cover under different end element models: An example from the Beijing Wild Duck Lake Wetland Nature Reserve. J. Ecol. 2013, 33, 1160–1171. [Google Scholar]
- National Bureau of Statistics. Statistical Yearbook of Jiangxi Province; China Statistics Press: Beijing, China, 2002 2009 2020. [Google Scholar]
- National Bureau of Statistics. Statistical Yearbook of Guangdong Province; China Statistics Press: Beijing, China, 2002 2009 2020. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Practical Multivariate Statistical Analysis; Tsinghua University Press: Beijing, China, 2001. [Google Scholar]
- Zou, T.; Yoshino, K. Environmental vulnerability evaluation using a spatial principal components approach in the Daxing’anling region, China. Ecol. Indic. 2017, 78, 405–415. [Google Scholar] [CrossRef]
- Siegel, K.J.; Cabral, R.B.; McHenry, J.; Ojea, E.; Owashi, B.; Lester, S.l. Sovereign states in the Caribbean have lower social-ecological vulnerability to coral bleaching than overseas territories. Proc. R. Soc. B 2019, 286, 20182365. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Fan, Y.; Yang, F.; Jiang, L.; Yang, W.; Chen, S.; Gong, R.; Liang, T. Quantitative assessment model of ecological vulnerability of the Silk Road Economic Belt, China, utilizing remote sensing based on the partition-integration concept. Geomat. Nat. Hazards Risk. 2019, 10, 1346–1366. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Tian, Y.; Liu, L. Adaptability of agricultural ecosystems in the hilly areas in Southern China a case study in Hengyang Basin. Adaptability of Agricultural Ecosystems in the Hilly Areas in Southern China: A Case Study in Hengyang Basin. Acta Ecol. Sin. 2015, 35, 1991–2002. [Google Scholar]
- Dai, E.; Li, S.; Wu, Z.; Yan, H.; Zhao, D. Spatial pattern of net primary productivity and its relationship with climatic factors in Hilly Red Soil Region of southern China: A case study in Taihe county, Jiangxi province. Geogr. Res. 2015, 34, 1222–1234. [Google Scholar]
- Yao, X.; Yu, K.; Liu, J.; Yang, S.; He, P.; Deng, Y.; Yu, X.; Chen, Z. Spatial and temporal changes of the ecological vulnerability in a serious soil erosion area, Southern China. Chin. J. Appl. Ecol. 2016, 27, 735–745. [Google Scholar]
- Chen, Z.; Yao, X.; Yu, K.; Liu, J. Evolutionary Relation between Ecological Vulnerability and Soil Erosion in the Typical Reddish Soil Region of Southern China. J. Southwest For. Univ. (Nat. Sci.) 2017, 37, 82–90. [Google Scholar]
- Tian, Y.; Liu, P.; Zheng, W. Vulnerability assessment and analysis of hilly area in Southern China: A case study in the Hengyang Basin. Geogr. Res. 2005, 24, 843–852. [Google Scholar]
- Fan, S.; Guo, Y.; Qiu, L.; Jiang, C.; Huang, Y. Analyzing the effects of land cover change on urban ecological vulnerability in the central districts of Fuzhou city. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2018, 34, 92–98. [Google Scholar]
- Guo, Z.C.; Wei, W.; Pang, S.F.; Zhen, Y.; Zhou, J.; Xie, B. Spatio-temporal evolution and motivation analysis of ecological vulnerability in arid inland river basin based on SPCA and remote sensing index: A case study on the Shiyang River Basin. Acta Ecol. Sin. 2019, 39, 2558–2572. [Google Scholar]
- Yao, K.; Zhou, B.; Li, X.; He, L.; Li, Y. Evaluation of Ecological Environment Vulnerability in the Upper-Middle Reaches of Dadu River Basin Based on AHP-PCA Entropy Weight Model. Res. Soil Water Conserv. 2019, 26, 265–271. [Google Scholar]
- Xie, Y.; Tu, X.; Wu, H.; Zhou, W.; Huang, B. Evolution of drought levels and impacts of main factors in the Dongjiang River basin. J. Nat. Disasters 2020, 29, 69–82. [Google Scholar]
- Shi, X.; Wu, M.; Zhang, N. Characteristics of water use efficiency of typical terrestrial ecosystems in China and its response. Trans. Chin. Soc. Agric. Eng. 2020, 36, 152–159. [Google Scholar]
- Abd El-Hamid, H.T.; Caiyong, W.; Hafiz, M.A.; Mustafa, E.K. Effects of land use/land cover and climatic change on the ecosystem of North Ningxia, China. Arab. J. Geosci. 2020, 13, 1099. [Google Scholar] [CrossRef]
- Chen, J.; Luo, M.; Ma, R.; Zhou, H.; Zou, S.; Gan, Y. Nitrate distribution under the influence of seasonal hydrodynamic changes and human activities in Huixian karst wetland, South China. J. Contam. Hydrol. 2020, 234, 103700. [Google Scholar] [CrossRef]
- Guo, B.; Kong, W.; Jiang, L.; Fan, Y. Analysis of spatial and temporal changes and its driving mechanism of ecological vulnerability of alpine ecosystem in Qinghai Tibet Plateau. Ecol. Sci. 2018, 37, 96–106. [Google Scholar]
- Jiang, Y.; Li, R.; Shi, Y.; Guo, L. Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau: A Case Study of Shannan, China. ISPRS Int. J. Geo-Inf. 2021, 10, 327. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector:principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhou, B.; Li, F.; Xiao, H.; Hu, A.; Yan, L. Characteristics and climate explanation of spatial distribution and temporal variation of potential evapotranspiration in Headwaters of the Three Rivers. J. Nat. Resour. 2014, 29, 2068–2077. [Google Scholar]
- Lin, K.; He, Y.; Lei, X.; Chen, X. Climate change and its impact on runoff during 1956–2009 in Dongjiang basin. Ecol. Environ. Sci. 2011, 20, 1783–1787. [Google Scholar]
- Liang, S.; Bai, R.; Chen, X.; Chen, J.; Fan, W.; He, T.; Jia, K.; Jiang, B.; Jiang, L.; Jiao, Z.; et al. Review of China’s land surface quantitative remote sensing development in 2019. J. Remote Sens. 2020, 24, 618–671. [Google Scholar]
- Liu, J.; Zhao, J.; Shen, S.; Zhao, Y. Ecological vulnerability assessment of Qilian Mountains region based on SRP conceptual model. Arid Land Geogr. 2020, 43, 1573–1582. [Google Scholar]
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef]
- Taye, F.A.; Folkersen, M.V.; Fleming, C.M.; Buckwell, A.; Mackey, B.; Diwakar, K.C.; Le, D.; Hasan, S.; Saint Ange, C. The economic values of global forest ecosystem services: A meta-analysis. Ecol. Econ. 2021, 189, 107145. [Google Scholar] [CrossRef]
- Jiang, P.; Ding, W.; Yuan, Y.; Ye, W.; Mu, Y. Interannual variability of vegetation sensitivity to climate in China. J. Environ. Manag. 2022, 301, 113768. [Google Scholar] [CrossRef]
Name of Data | Data Production Unit | Data Source Website | Resolution | Processing Method |
---|---|---|---|---|
Landsat remote sensing satellite data | USGS | https://earthexplorer.usgs.gov/ | 30 m | Spatial analysis |
GDEMV2 Elevation Data | Geospatial Data Cloud | http://www.gscloud.cn/ | 30 m | Spatial analysis |
GDP per capita | Statistical Yearbook of Jiangxi and Guangdong Province, China | _ | _ | Statistical analysis |
1:4 million Chinese soil type data | National Earth System Science Data Sharing Platform | http://www.geodata.cn/ | _ | Spatial analysis |
Population density | WorldPOP dataset | https://www.worldpop.org/ | 100 m | Spatial analysis |
Meteorological data | China Weather Data website | http://data.cma.cn/ | _ | Spatial analysis |
Vulnerability Level | 2001 | 2008 | 2019 | NPP |
---|---|---|---|---|
Potential | <0.47 | <0.41 | <0.38 | - |
Slight | 0.47–0.51 | 0.41–0.48 | 0.38–0.42 | 0.75 |
Mild | 0.51–0.52 | 0.48–0.50 | 0.42–0.44 | 0.5 |
Moderate | 0.52–0.59 | 0.50–0.53 | 0.44–0.46 | 0.25 |
Severe | >0.59 | >0.53 | >0.46 | - |
Criterion | Interaction |
---|---|
q(X1∩X2) < Min(q(X1), q X2)) | Non-linear weakening |
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) | Single-factor non-linear attenuation |
q(X1∩X2) > Max(q(X1), q(X2)) | Two-factor enhancement |
q(X1∩X2) = q(X1) + q(X2) | Independent |
q(X1∩X2) > q(X1) + q(X2) | Non-linear enhancement |
Level | Vulnerability Level | 2001 | 2008 | 2019 |
---|---|---|---|---|
Percentage of the Total Area (%) | Percentage of the Total Area (%) | Percentage of the Total Area (%) | ||
I | Potential | 23 | 8 | 17 |
II | Slight | 14 | 17 | 15 |
III | Mild | 4 | 7 | 9 |
IV | Moderate | 29 | 13 | 9 |
V | Severe | 30 | 55 | 50 |
Name of the Factor | 2001 | 2008 | 2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
q | q Ranking | p | q | q Ranking | p | q | q Ranking | p | |
Soil erosion(X4) | 0.109 | 10 | 0 | 0.066 | 10 | 0 | 0.037 | 12 | 0 |
Area_mn(X8) | 0.057 | 15 | 0 | 0.046 | 14 | 0 | 0.080 | 9 | 0 |
Slope orientation(X3) | 0.250 | 5 | 0 | 0.259 | 2 | 0 | 0.002 | 15 | 0 |
Vegetation cover(X13) | 0.280 | 3 | 0 | 0.208 | 4 | 0 | 0.102 | 4 | 0 |
Elevation(X1) | 0.258 | 4 | 0 | 0.207 | 5 | 0 | 0.049 | 11 | 0 |
Boundary density (ed) (X9) | 0.057 | 14 | 0 | 0.049 | 13 | 0 | 0.084 | 5 | 0 |
GDP per capita(X15) | 0.132 | 9 | 0 | 0.089 | 9 | 0 | 0.148 | 3 | 0 |
Average annual precipitation(X5) | 0.245 | 6 | 0 | 0.145 | 6 | 0 | 0.076 | 10 | 0 |
Population density(X14) | 0.172 | 7 | 0 | 0.133 | 7 | 0 | 0.023 | 13 | 0 |
Average annual temperature(X6) | 0.284 | 2 | 0 | 0.226 | 3 | 0 | 0.235 | 1 | 0 |
Shannon Diversity Index (SHDI) (X10) | 0.059 | 11 | 0 | 0.050 | 11 | 0 | 0.083 | 8 | 0 |
Shannon’s evenness index (SHEI) (X11) | 0.058 | 12 | 0 | 0.009 | 15 | 0 | 0.083 | 7 | 0 |
Relative Humidity(X7) | 0.325 | 1 | 0 | 0.329 | 1 | 0 | 0.209 | 2 | 0 |
Simpson diversity index (SIDI) (X12) | 0.058 | 13 | 0 | 0.050 | 12 | 0 | 0.084 | 6 | 0 |
Slope(X2) | 0.144 | 8 | 0 | 0.090 | 8 | 0 | 0.015 | 14 | 0 |
2001 | 2008 | 2019 | |||
---|---|---|---|---|---|
X3/X7 * | 0.564 | X3/X7 * | 0.570 | X13/X6 * | 0.351 |
X3/X6 ** | 0.535 | X13/X7 * | 0.505 | X13/X7 * | 0.321 |
X3/X13 * | 0.528 | X3/X6 ** | 0.476 | X9/X6 * | 0.311 |
X13/X7 * | 0.517 | X3/X13 * | 0.471 | X6/X12 * | 0.311 |
X3/X1 * | 0.506 | X3/X1 * | 0.464 | X6/X11 * | 0.310 |
X3/X5 ** | 0.502 | X4/X7 ** | 0.442 | X6/X10 * | 0.310 |
X13/X6 * | 0.481 | X13/X6 * | 0.434 | X8/X6 * | 0.307 |
X13/X5 * | 0.454 | X3/X5 ** | 0.402 | X7/X12 * | 0.291 |
X4/X7 ** | 0.447 | X15/X7 * | 0.394 | X11/X7 * | 0.291 |
X3/X14 ** | 0.426 | X3/X14 ** | 0.394 | X9/X7 * | 0.291 |
X3/X2 ** | 0.405 | X10/X7 * | 0.394 | X10/X7 * | 0.290 |
X4/X6 ** | 0.403 | X7/X12 * | 0.394 | X8/X7 * | 0.287 |
X1/X7 * | 0.397 | X9/X7 * | 0.393 | X4/X6 ** | 0.284 |
X5/X7 * | 0.396 | X8/X7 * | 0.388 | X5/X6 * | 0.280 |
X1/X6 * | 0.393 | X13/X5 * | 0.379 | X5/X7 * | 0.280 |
X15/X7 * | 0.388 | X5/X7 * | 0.379 | X13/X6 * | 0.270 |
X6/X7 * | 0.385 | X1/X7 * | 0.368 | X15/X6 * | 0.265 |
X3/X15 ** | 0.383 | X6/X7 * | 0.367 | X4/X7 ** | 0.257 |
X13/X15 * | 0.382 | X15/X6 * | 0.354 | X15/X7 * | 0.255 |
X10/X7 * | 0.380 | X3/X15 ** | 0.354 | X14/X6 * | 0.253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhang, Z.; He, Q.; Ma, G. Spatio-Temporal Analysis of Ecological Vulnerability and Driving Factor Analysis in the Dongjiang River Basin, China, in the Recent 20 Years. Remote Sens. 2021, 13, 4636. https://doi.org/10.3390/rs13224636
Wu J, Zhang Z, He Q, Ma G. Spatio-Temporal Analysis of Ecological Vulnerability and Driving Factor Analysis in the Dongjiang River Basin, China, in the Recent 20 Years. Remote Sensing. 2021; 13(22):4636. https://doi.org/10.3390/rs13224636
Chicago/Turabian StyleWu, Jiao, Zhijun Zhang, Qinjie He, and Guorui Ma. 2021. "Spatio-Temporal Analysis of Ecological Vulnerability and Driving Factor Analysis in the Dongjiang River Basin, China, in the Recent 20 Years" Remote Sensing 13, no. 22: 4636. https://doi.org/10.3390/rs13224636
APA StyleWu, J., Zhang, Z., He, Q., & Ma, G. (2021). Spatio-Temporal Analysis of Ecological Vulnerability and Driving Factor Analysis in the Dongjiang River Basin, China, in the Recent 20 Years. Remote Sensing, 13(22), 4636. https://doi.org/10.3390/rs13224636