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Abstract: The normalized difference vegetation index (NDVI) is an important agricultural parameter
that is closely correlated with crop growth. In this study, a novel method combining the dynamic
time warping (DTW) model and the long short-term memory (LSTM) deep recurrent neural network
model was developed to predict the short and medium-term winter wheat NDVI. LSTM is well-suited
for modelling long-term dependencies, but this method may be susceptible to overfitting. In contrast,
DTW possesses good predictive ability and is less susceptible to overfitting. Therefore, by utilizing
the combination of these two models, the prediction error caused by overfitting is reduced, thus
improving the final prediction accuracy. The combined method proposed here utilizes the historical
MODIS time series data with an 8-day time resolution from 2015 to 2020. First, fast Fourier transform
(FFT) is used to decompose the time series into two parts. The first part reflects the inter-annual
and seasonal variation characteristics of winter wheat NDVI, and the DTW model is applied for
prediction. The second part reflects the short-term change characteristics of winter wheat NDVI,
and the LSTM model is applied for prediction. Next, the results from both models are combined
to produce a final prediction. A case study in Hebei Province that predicts the NDVI of winter
wheat at five prediction horizons in the future indicates that the DTW–LSTM model proposed here
outperforms the LSTM model according to multiple evaluation indicators. The results of this study
suggest that the DTW–LSTM model is highly promising for short and medium-term NDVI prediction.

Keywords: normalized difference vegetation index (NDVI); prediction; dynamic time warping
(DTW); LSTM; MODIS

1. Introduction

As an important development in the direction of agriculture in the future, precision
agriculture can greatly improve productivity and input utilization efficiency. The prediction
of crop yield is an important focus of precision agriculture. Accurate yield prediction
methods can provide support for good decision-making in agricultural planning, budgeting
and input [1–3]. The normalized difference vegetation index (NDVI) is an indicator that
reflects the greenness and productivity of vegetation, and it is closely related to the growth
and yield of crops [4]. Accurate NDVI prediction can lead to very effective forecasts for
crop yields [3,5–8].

Compared with traditional remote sensing data, crop time series data have many
advantages [9]. For example, crop time series data can reflect changes in long-term trends,
seasonal cycles and random changes [10]. At present, NDVI prediction methods mainly
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include statistical methods and neural network methods [11]. In previous work, statistical
models based on climatic factors such as precipitation and temperature were applied
to NDVI prediction [12–14]. Li et al. [12] analyzed the relationship between the NDVI
and two eco-climatic parameters (growth degree days (GDD) and rainfall) using monthly
Advanced Very High-Resolution Radiometer (AVHRR) NDVI data, as well as data from
160 weather stations in China for a period of a decade. Ji and Peters [13] used NDVI
(1989–1993) images obtained from the AVHRR, as well as climate data from automated
weather stations, to quantify the relationship between climate and vegetation in cropland
and grassland in the northern Great Plains of the United States with a spatial regression
technique that adjusted for spatial autocorrelation. Propastin and Kappas [14] modeled
the spatial relationship between rainfall and vegetation with NDVI and rainfall data from
meteorological stations in central Kazakhstan, which they applied using a model based on
traditional ordinary least squares (OLS) regression and geographically weighted regression
(GWR). In addition, the auto-regressive integrated moving average (ARIMA) statistical
method, a commonly used time series prediction method, has been applied for NDVI
prediction. The ARIMA method was used to predict inter-annual trends in terrestrial
vegetation dynamics [11]. Together with climate data, the ARIMA method was also used
to predict the NDVI of coniferous forest on a regional scale [15]. Since neural networks
can handle complex nonlinear data and have good anti-noise capability [16–18], in recent
years they have been used to build many classic nonlinear models to solve various complex
problems [19]. For example, an artificial neural network (ANN) was used by Kang et al.
to predict the NDVI using historical NDVI and meteorological data [20]. In addition,
gradient-enhanced machine models were used by Nay et al. to predict the enhanced
vegetation index (EVI) in Sri Lanka and California [21]. A recurrent neural network (RNN)
was used by Stepchenko and Chizhov to predict short-term NDVI [22]. Reddy and Prasad
used long short-term memory (LSTM) to predict vegetation dynamics [23]. A time-delay
neural network (TDNN) was used by Wu et al. to predict the NDVI in arid and semi-arid
grassland [24].

The methods described above all have certain limitations. When using statistical
methods, they all assume that the NDVI time series are linear and stable, but real NDVI
time series are generally non-linear and non-stationary. Although neural network models
have obvious advantages in processing complex non-linear information hidden in NDVI
time series, they also have some limitations. For example, time series trend features may
be difficult to extract when the amount of data is limited. In addition, they usually directly
use time series data as the model input, without pre-analysis and processing of the data.

Recently, the dynamic time warping (DTW) algorithm [25], which was designed for
speech recognition, has also been used in remote sensing, mainly for land cover classifi-
cation and mapping [26–29]. DTW obtains the optimal alignment between two temporal
sequences based on their similarity to generate a dissimilarity measure [27,30]. When
DTW is applied to remote sensing data, the ability of the algorithm to align radiometric
profiles DTW mitigates the influence of temporal distortions and irregular sampling, while
allowing comparisons of shifted evolution profiles. However, the DTW algorithm has
never been used in the prediction of NDVI time series.

The NDVI time series of winter wheat contains both relatively stable intra-annual
and seasonal variability as well as short-term transient variability due to meteorological
factors such as temperature and precipitation. LSTM is well suited for modeling long-term
dependence, but this approach is prone to overfitting [31], whereas the DTW prediction
algorithm is based on waveform similarity and has the characteristic of not being prone to
overfitting. Therefore, the combination of these two models can reduce the prediction error
caused by overfitting and improve the prediction accuracy. To obtain inter-annual and
seasonal variations and short-term transient variations, the complete winter wheat NDVI
time series needs to be decomposed. The fast Fourier transform (FFT) [32], as an efficient
and fast computational method, is often used to perform signal decomposition [33–35].
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Here, we report an algorithm combining DTW and LSTM, which allows better predic-
tion of the NDVI of winter wheat using time series data. The aims of this study were as
follows: (1) generate DTW and LSTM deep neural network models capable of predicting
the short- and mid-term NDVI of winter wheat with a high level of accuracy; (2) produce
a method for combining the predictions of the DTW and LSTM models to increase the
accuracy of predictions; and (3) assess the applicability, effectiveness, and advantages of
the proposed DTW–LSTM combination model as a method for predicting the short- and
mid-term NDVI with data from experiments conducted in Hebei province using five-year
satellite time series data.

The main contributions of this study are as follows: (1) the FFT algorithm was used
to decompose the NDVI time series to obtain a long-period sequence and a short-period
sequence; (2) a DTW prediction model and an LSTM prediction model were developed
for accurate short-term and mid-term NDVI prediction; (3) the first decomposition and
synthesis strategy combining the DTW and LSTM models was developed, and experi-
ments revealed that the performance of the new strategy is better than that of the LSTM
model alone.

2. Study Area and Data
2.1. Study Area

The study was conducted in Hebei province (Figure 1) in northern China, located
between 36◦05′–42◦40′ N and 113◦27′–119◦50′ E. The terrain of Hebei province is relatively
elevated in the northwest and lower in the southeast, producing a slope to the southeast.
The landforms of Hebei province include plateaus, mountains, hills, basins, and plains.
The plains are generally located in the southeast, covering an area of 81,459 square meters
and accounting for 41.2% of the total area of Hebei province. Hebei province has a temper-
ate continental monsoon climate, and most areas have four distinct seasons. Hebei receives
2303.1 hours of sunshine annually, and the annual average precipitation is 484.5 mm.
The level of precipitation is higher in the southeast and lower in the northwest. The aver-
age temperature in January is below 3 ◦C, and the average temperature in July is between
18 ◦C and 27 ◦C. The most commonly cultivated crops in Hebei province include wheat,
corn, millet, rice, sorghum, and beans. The main local planting system is double crop
rotation, and winter wheat and corn are the most commonly used crops for this practice.
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2.2. Data
2.2.1. Remote Sensing Data and Preprocessing

MOD09A1 surface reflectance product data were used in this study. These data pro-
vide bands 1–7 at a 500-meter resolution in an 8-day gridded level-3 product, and geometric,
radiometric and atmospheric corrections were applied. The time series MODIS image
collection was then used to calculate the NDVI using Equation (1):

NDVI =
(ρNIR − ρRED)

(ρNIR + ρRED)
(1)

where ρNIR and ρRED are the surface reflectance values of the red band (0.62–0.67 µm)
and the near-infrared band (0.84–0.87 µm) of the Modis sensor, respectively. Continuous
long time series NDVI data were obtained from the Google Earth Engine (GEE) platform
(https://earthengine.google.com, accessed on 4 May 2021), which allows parallelized
processing of geospatial data on a global scale [36]. The time range of the data is from
1 January 2016 to 22 April 2020, with a spatial resolution of 500 meters and a temporal
resolution of 8 days. A total of 107 images were collected. In Hebei province, winter
wheat and corn are grown in a rotation, so the influence of corn data on the prediction of
the winter wheat NDVI must be removed. Winter wheat is generally planted in October,
returned to green jointing the following spring, and harvested in June. Therefore, in order
to predict the NDVI of winter wheat, in this study, we chose 1 January to 30 June of the year
after planting as the growth cycle of winter wheat for forecasting. The main phenological
phases of winter wheat occur during this time period.

2.2.2. Winter Wheat Map

The map of winter wheat agriculture in 2018 was provided by Zhao et al. [37]. The spa-
tial resolution of the map was 500 m and its overall accuracy was 94.74%. The total
winter wheat planting area in the study region changed by less than 2% from 2015 to 2020
(http://www.stats.gov.cn, accessed on 10 May 2021). Therefore, the distribution of winter
wheat fields was quite stable, and annual winter wheat maps were not required [38].

3. Methods

The method used in this paper is a combined DTW and LSTM method based on
the MODIS NDVI time series data and the winter wheat map described above. Firstly,
the winter wheat distribution and MODIS NDVI remote sensing data were combined
to generate a winter wheat NDVI time series, and 500 NDVI time series were randomly
selected for NDVI prediction. Secondly, the NDVI time series were decomposed into
low-frequency time series and high-frequency time series by using FFT for waveform
decomposition. Third, the low-frequency time series was predicted via DTW, and the
high-frequency time series was predicted via LSTM. The DTW and LSTM prediction
methods both used a rolling prediction method. A prediction value was predicted using
the historical NDVI, and then this prediction value was treated as the historical NDVI
value; the next value was predicted again, and after several iterations, multi-step prediction
was performed. Finally, the results predicted by the two methods were synthesized to
obtain the final prediction results and evaluate prediction accuracy (Figure 2).

3.1. FFT Decomposition

Using FFT, the signal can be transformed from the time domain to the frequency do-
main, allowing the spectrum structure and change law of the signal to be obtained [39–41].
FFT is often used for signal decomposition [33–35]. Loyarte et al. used the FFT to decom-
pose the NDVI time series to obtain the average signal and sinusoidal components, which
further leads to the average NDVI, amplitude and phase. Srivastava and Dikshit used FFT
decomposition to obtain the dominant frequencies representing seasonality. Kocaaslan et al.
used FFT for frequency analysis of drought indices. The process of signal decomposition
using FFT is generally in three steps. Firstly, we transformed the original signal using the

https://earthengine.google.com
http://www.stats.gov.cn
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FFT algorithm and transformed the signal from the time domain to the frequency domain.
Next, we filtered the signal using a high pass filter and a low pass filter. Finally, we trans-
formed the filtered signal by inverse FFT (IFFT) to obtain the decomposed high-frequency
and low-frequency signals.
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3.2. DTW Model

Suppose that the time series with two lengths m and n are: P = (P1, P2, P3, . . . ,Pm),
Q = (Q1, Q2, Q3, . . . , Qn). First, the distance matrix of two-time series D (Equation (2))
is constructed. Secondly, matrix Dc (Equation (3)) of the cumulative distance sequence
is calculated. According to the cumulative distance sequence matrix, DDTW(P, Q) can
be obtained.

D(m, n) = |Pm −Qn| (2)

DDTW(P, Q) = Dc(m, n) = D(m, n) + min[Dc(m− 1, n− 1), Dc(m− 1 , n), Dc(m, n− 1)] (3)

where DDTW(P, Q) is the DTW distance between time series P and Q, and Dc(m, n) is the
minimum cumulative distance from (1,1) to (m, n).

The schematic diagram of time series prediction using the DTW algorithm is shown in
Figure 3, the time series is X(t), 0 ≤ t ≤ nT+L, where T represents the length of a complete
winter wheat growth cycle, n represents the number of growth cycles, and XnT+L+1 is the
value to be predicted. The specific steps to obtain XnT+L+1 are as follows:

(1) Determine the two time -series A and B for which the DTW distance will be calculated.
A = {XnT,XnT+1,XnT+2, . . . XnT+L} and Bi = {Xi,Xi+1,Xi+2, . . . Xi+L}, 0 ≤ i < nT.
The length of the two time series is set to L.

(2) Calculate the DTW distance Ci between A and Bi, denoted as Ci = DDTW(A, Bi).
The specific method for DTW distance calculation is shown in Equations (2) and (3).

(3) Find the time series Bk. The DTW distance between Bk and A has the minimum value.
(4) The predicted XnT+L+1 value can be obtained by XnT+L+1 = Xk+L+1.
(5) Bring XnT+L+1 as known data into the original winter wheat NDVI time series,

and repeat steps (1) to (4).
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Algorithm 1 can be used to express the entire process:

Algorithm 1 Time series prediction algorithm based on the DTW algorithm

Input: X(t), 0 ≤ t ≤ nT + L is the historical winter wheat NDVI time series.
T represents the length of a complete winter wheat growth cycle.
n represents the number of growth cycles.
L represents length of the time series of the last incomplete cycle.
Output: XnT+L+1, XnT+L+2, . . . XnT+L+predict length

predict length is the length of the forecast. In this study, predict length is set to 5.
for i = 0: predict length -1 do

A =
{

XnT+i,XnT+1+i,XnT+2+i, . . . XnT+L+i
}

for j = 0: nT– L do

Bj =
{

Xj,Xj+1,Xj+2, . . . Xj+L

}
Cj = DDTW

(
A, Bj

)
The method of calculating DTW distance is shown in Equations (2) and (3).

end for
K = minindex(C)

XnT+L+i+1 = Xk+L+i+1
end for
return XnT+L+1, XnT+L+2, . . . XnT+L+predict length

The DTW prediction model used the similarity in the growth patterns of winter
wheat in different years to make predictions. Although the inter-annual NDVI curve of
winter wheat is affected by meteorological factors (e.g., temperature, precipitation), and the
waveform amplitude and phase will thus change, the overall similarity of the waveform is
high, so the DTW algorithm can be used to find the NDVI curve that is most similar to the
NDVI curve of the predicted year; this method is simple and easy to implement, and over-
fitting is difficult. In this study, since the low-frequency time series after decomposition
by FFT variation reflects the inter-annual and seasonal characteristics of winter wheat,
the low-frequency time series was predicted using the DTW model. However, the short-
term variation characteristics of the winter wheat NDVI reflected by the high-frequency
time series after FFT decomposition have low waveform similarity within each winter
wheat growth period, so this time series was not suitable for prediction by this model.
The LSTM model was used for high-frequency time series prediction in the present study.

3.3. LSTM Model

The LSTM model was first reported by Hochreiter et al. in 1997 [42]. The efficient
RNN structure of the LSTM model makes it well-suited for long-term dependent time
series data [31]. RNNs are mainly used for nonlinear time-varying problems. The internal
structure of a RNN makes it possible for data to advance and feedback backward. The na-
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ture of the feedback connection allows the algorithm to easily deal with the forward step.
The residual value or weight value is updated, and this characteristic is well-suited for time
series forecasting; it allows extraction of rules from the historical data of the time series
to predict the future value of the time series. However, RNNs do not solve the issues of
gradient disappearance and gradient explosion in network training.

The network structure of the general LSTM is shown in Figure 4, while a mathematical
representation of a single LSTM network unit is provided in Equation (4).
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ft = σ
(

W f .[ht−1xt] + b f

)
,

it = σ(Wi.[ht−1xt] + bi),

C′t = tanh(WC.[ht−1xt] + bC),

Ct = ft ∗ Ct−1 + it ∗ C′t,

ot = σ(Wo.[ht−1xt] + bo),

ht = ot ∗ tanh(Ct).

(4)

where ft, it, and ot represent the outputs of three sigmoid functions σ, which have values
between 0 and 1. ft controls the flow of information from the old cell state Ct−1, it controls
the flow of information from the cell activation Ct. The hidden state ht is obtained from the
output signal ot and the current cell state Ct. W f , Wi, WC, and Wo are the weights applied
to the concatenation of the new input xt and output ht−1 from a previous cell. b f , bi, bC,
and bo are the corresponding biases.

The purpose of LSTM neural network design is to overcome the issues of gradient
vanishing and gradient explosion, which are encountered when simple RNNs handle
long-term dependent time series. The LSTM neural network model adds an input gate,
an output gate and a forget gate [3,43]. The settings of relevant LSTM parameters are
shown in Table 1.

Table 1. Setting of LSTM parameters.

Parameter Value

Time_step 20
Rnn_unit 30

Batch_size 30
Input_size 1

Output_size 1
Learning_rate 0.0006
Predict_num 5
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Time step is the sequence segment length, Rnn unit is the number of nodes in the
fully connected layer, Batch size is the number of batches of sequence segments used for
training. Input size is the dimension of the input data, Output size is the dimension of
the output data, Learning rate is a hyper-parameter that determines the speed of training
convergence, and Predict num is the length of the forecast data.

3.4. DTW–LSTM Combination Model

Based on the advantages of DTW and LSTM, we developed a DTW–LSTM combina-
tion model to predict the NDVI. Firstly, we decomposed the NDVI time series into a low-
frequency signal and a high-frequency signal by FFT waveform decomposition. The low-
frequency signal reflected the inter-annual NDVI variation, whereas the high-frequency
signal reflected rapid NDVI changes caused by various factors. Secondly, we used DTW to
predict the low-frequency signal and LSTM to predict the high-frequency signal. Finally,
we combined the results of the DTW and LSTM predictions to obtain the final prediction.

3.5. Prediction Accuracy Evaluation

In this study, the Pearson correlation coefficient (r), mean absolute error (MAE), mean
absolute percentage error (MAPE) and root mean square error (RMSE) were used to determine
the predictive performance of the model. The r, MAE, and RMSE were defined as follows:

r =
∑n

i=1(yi − y)
(

y′i − y′
)

√
∑n

i=1 (yi − y)2
√

∑n
i=1

(
y′i − y′

)2
. (5)

MAE =
1
n

n

∑
i=1
|
yi − y′i

yi
| (6)

MAPE =
1
n

n

∑
i=1
|
yi − y′i

yi
| × 100% (7)

RMSE =

√
1
n

n

∑
i=1

(
yi − y′i

)2 (8)

where n represents the number of samples, yi is the observed NDVI value, y′i is the predicted
NDVI value, and y is the average observed NDVI value. y′ is the average predicted NDVI value.

4. Results
4.1. The Characteristics of Winter Wheat NDVI Time Series

The statistical characteristics of a winter wheat time series were analyzed (Figure 5).
The winter wheat time series had a cyclical trend and short time variation (Figure 5a). The NDVI
of winter wheat gradually changes every year from a small value to a large value, and then back
to a small value, consistent with the inter-annual variation of the greenness of winter wheat.
In January, the NDVI value is relatively small and fluctuates around 0.2. At this time, the wheat
is in the overwintering period. In February and March, the NDVI gradually increases to ap-
proximately 0.3 to 0.4. When wheat enters the greening up stage in April and May, the NDVI
increases rapidly and reaches its maximum value of approximately 0.6; this period corresponds
with the jointing and heading stages of wheat. In June, the wheat slowly enters the mature
period, when it gradually turns yellow, greenness decreases, and the NDVI gradually drops
to a very low level. In addition to inter-annual and seasonal characteristics, the NDVI curve
also has obvious short-term instantaneous changes. For example, in 2017, the NDVI decreased
suddenly, and this change was likely caused by winter snow cover. As shown in Figure 5b,
after a delay of order 30, most of the autocorrelation function values were outside the blue
baseline of two times the standard deviation, and their correlation coefficients did not decay
rapidly toward 0. This finding and the time series plot indicate a non-stationary time series.
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As shown in Figure 5c, the partial autocorrelation function (PACF) has similar characteristics to
the autocorrelation function. The quantile–quantile (QQ) plot is a type of scatter plot in which
the horizontal coordinate is the quantile of one sample and the vertical coordinate is the quantile
of another sample. By a quantile, we mean the point below which a given fraction (or percent)
of points lies. That is, the 0.2 (or 20%) quantile is the point at which 20% percent of the data fall
below that value and 80% fall above that value. The scatter plot consisting of horizontal and
vertical coordinates represents the quantile of the same cumulative probability. If the scatter plot
is distributed around the line y = x, the two samples have the same distribution. In Figure 5d,
we set the distribution of the horizontal coordinate sample to be normal. As shown in Figure 5d,
the scatter plot does not tend to be distributed around the straight line, y = x, so this winter
wheat time series does not conform to a normal distribution. A probability–probability (PP)
plot is a scatter plot drawn from the cumulative probability of a variable corresponding to the
cumulative probability of a particular theoretical distribution, and it is applied to determine
whether a set of sample data fits a particular probability distribution. As shown in Figure 5e,
the results of the PP plot are very similar to the QQ plot in Figure 5d; however, the PP plot
uses the cumulative ratio of the distribution for the test, while the QQ plot uses the quartiles
of the distribution. Since the scatter plot is not distributed on the straight line, y = x, this
result is further evidence that the winter wheat time series sample data do not conform to a
normal distribution.
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quantile plot (QQ). (e) Probability–probability plot (PP).

4.2. FFT Decomposition Results

Before NDVI prediction, it is necessary to perform FFT decomposition of the origi-
nal NDVI time series curve to obtain low-frequency signals and high-frequency signals.
Figure 6 shows the results of winter wheat NDVI time series curve decomposition using
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FFT. Figure 6a–c represent the original winter wheat NDVI time series and its amplitude–
frequency characteristics and phase–frequency characteristics, respectively. Figure 6d–f
represent the low-frequency time series and high-frequency time series after performing
FFT decomposition and the corresponding amplitude–frequency characteristics and phase–
frequency characteristics, respectively. As shown in Figure 6a, the winter wheat NDVI time
series has seasonal slow changes and short-term transient changes from the time domain.
As shown in Figure 6b, the winter wheat NDVI time series from the frequency domain
has significant amplitude variation in the lower frequency part, which indicates that this
winter wheat NDVI time series is mainly determined by this part, which corresponds to the
seasonal slow variation only in the time domain. In addition, there are many components
in the higher frequency part, but with small amplitude, and these components affect the
specific values of the NDVI, which corresponds to short-term transient changes in the time
domain. Figure 6c shows that the phase-frequency characteristic has no distinct features.
Figure 6d shows the low-frequency and high-frequency time series after decomposition by
FFT, which reveal that the NDVI values of the low-frequency time series are larger than
those of the high-frequency time series. The waveform indicates that the low-frequency
time series changes slowly, which corresponds exactly to the seasonal variation in the
winter wheat time series, while the high-frequency time series corresponds exactly to the
short-term transient variation. Figure 6e shows that from the frequency domain perspective,
the spectrum of the low-frequency time series is mainly concentrated in the low-frequency
part, and all of the high-frequency parts are 0. The spectrum of the high-frequency time
series is mainly in the high-frequency part; there is also a part of the spectrum in the
low-frequency part, but the amplitude of these components is small. Figure 6f shows the
phase spectrum of the decomposed low-frequency and high-frequency time series, which
reveal that the low-frequency time series has an approximately periodic pattern, while the
high-frequency part has no obvious change characteristics.
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of LF time series and HF time series.
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4.3. Prediction Accuracy and Analysis

Figure 7 shows the scatter plot of the predicted NDVI and real NDVI values from
500 winter wheat time series, which were predicted using the DTW–LSTM method pro-
posed in this paper. There are five prediction horizons in total. Because the time resolution
is 8 days, the corresponding horizon is 8, 16, 24, 32 and 40 days ahead. Figure 7 shows
that the predicted NDVI value is positively correlated with the observed NDVI value.
On each prediction horizon, most points are below the 1:1 line, which indicates that the
predicted NDVI value of most time series samples on each prediction horizon is less than
the observed NDVI value. The linear correlation between the observed and predicted
NDVI values weakens as the prediction horizon lengthens.

The r, MAE, MAPE and RMSE are shown in Table 2. The maximum value of r (0.825)
was reached on the 8th day, when the MAE, MAPE, and RMSE reached minimum values
of 0.065, 12.8% and 0.081, respectively. As the prediction horizon lengthens, r gradually
decreases, while MAE, MAPE and RMSE gradually increase. The smallest r value (0.592)
was measured on the 40th day, when the MAE, MAPE and RMSE reached 0.126, 20.6%,
and 0.153, respectively. These findings show that NDVI prediction performance worsens
due to accumulated error as the prediction scale increases.
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Table 2. r, MAE, MAPE and RMSE of predictions using the DTW–LSTM method for different
prediction horizons.

Prediction Length r MAE MAPE (%) RMSE

8 days 0.825 0.065 12.8 0.081
16 days 0.815 0.093 16.8 0.111
24 days 0.758 0.098 17.5 0.117
32 days 0.691 0.108 18.3 0.130
40 days 0.592 0.126 20.6 0.153

To further analyze the NDVI prediction performance of the combined model, we com-
pared the predicted NDVI value with the observed NDVI value for five prediction horizons
(Figure 8). The green box plots show the observed NDVI values, and the red box plots
show the predicted NDVI values. The change trend of the predicted five NDVI values is the
same as the observed five NDVI values, and the predicted NDVI values are generally lower
than the observed NDVI values. In addition, the variation ranges of the predicted NDVI
values are smaller than those of the observed NDVI values. As the prediction horizon
increases, the error between the predicted value and the observed value also increases
(Figure 9). The prediction error between the predicted average NDVI value on 21 March
and the observed average NDVI value is only 0.03. However, on 22 April, the prediction
error reached 0.10.
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5. Discussion
5.1. Comparison with the LSTM Method

Figure 10 shows a comparison of the combined DTW and LSTM method proposed in
this article and the LSTM method. The performance of the combined method proposed in
this study is better than that of the LSTM method for the five tested prediction horizons,
and the MAE, MAPE, and RMSE of the combined method are all lower than those of the
LSTM method. In terms of overall performance, the combined DTW and LSTM method
proposed in this paper is better than the single LSTM method. Specifically, in terms of r,
the LSTM method reached a value of only 0.745 on the 8th day, which is lower than that
of the combined DTW–LSTM method (0.825) proposed in this paper. As the prediction
horizon increases, r decreases gradually, and it drops to only 0.39 on the 40th day. Although
the r value of the combined DTW–LSTM method also decreases gradually as the prediction
horizon increases, the magnitude of the decrease is smaller than that of the LSTM method.
The r value of the combined DTW–LSTM on the 40th day is 0.592, which is significantly
larger than 0.39. In terms of MAE, although the MAE of both methods increases as the
prediction scale increases, that of the combined DTW–LSTM method does not increase as
much as that of the LSTM method, e.g., the MAE of the combined DTW–LSTM method
is 0.126 on the 40th day, which is much smaller than that of the LSTM method (0.207).
In terms of MAPE and RMSE, the trends are roughly the same as that of MAE.
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Figure 11 shows the prediction performance of the DTW–LSTM method and the LSTM
method in the context of the error distribution. The prediction errors of each method for
different prediction horizons were considered, and the kernel density of the prediction
error distribution was estimated using a Gaussian kernel [44]. As shown in Figure 11,
the kernel density estimate (KDE) curves of the prediction errors for the DTW–LSTM
model are denser than those of the LSTM method at the five prediction scales, with a
mean value closer to 0. In addition, the kernel density curves of the prediction errors for
the DTW–LSTM and LSTM methods become less dense as the prediction scale increases.
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On the 8th day, the prediction errors of the DTW–LSTM model are mainly distributed
between −0.2 and 0.2, and those of the LSTM method are mainly distributed between
−0.4 and 0.2. On the 40th day, the prediction errors of the DTW–LSTM model are mainly
distributed between −0.4 and 0.4, and those of the LSTM method are mainly distributed
between −0.6 and 0.4.
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5.2. Limitations and Future Perspectives

This study has several limitations. First, a rolling prediction strategy was used to
predict the decomposed high-frequency signal using LSTM, which allows multi-part
prediction by considering the predicted NDVI value as the real NDVI value to participate
in training and prediction to obtain the next predicted value. However, since there is
an error between the predicted NDVI value and the observed NDVI value, the error
accumulates as the number of prediction steps increases when multi-step prediction is
performed, which gradually decreases the prediction accuracy. This error accumulation is
confirmed by the prediction results in this paper. Second, NDVI prediction was performed
directly based on historical NDVI time series. However, NDVI values are affected by
meteorological factors such as temperature and precipitation, which can cause uncertainty
regarding NDVI data and decrease the accuracy of NDVI prediction. Therefore, it is
difficult to perform highly accurate predictions using NDVI time series only; accurate
NDVI prediction requires a combination of different types of meteorological data, such as
temperature and precipitation data.
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Based on the limitations described above, we plan to focus on the following areas
in our future research. In terms of methods, we can combine deep learning and crop
models for NDVI prediction in order to improve prediction accuracy. In terms of data
sources, predictions can be made by combining meteorological factors, such as temperature
and precipitation, on the basis of NDVI data. In terms of prediction period, multi-scale
predictions can be made to predict both short-term transient changes and long-term trend
changes. In addition, based on the predicted NDVI, phenological phases and yield can be
predicted more accurately.

6. Conclusions

In this paper, a combined DTW and LSTM method for predicting winter wheat NDVI
was proposed, which utilizes the advantageous characteristics of both methods to achieve
improved predictive performance in comparison with currently available models. This
method uses the characteristics of inter-annual and short-term changes in the winter wheat
NDVI. First, FFT is used to decompose the winter wheat NDVI sequence into two parts.
One part reflects stable inter-annual and seasonal changes and uses the DTW algorithm
for prediction, while the other part reflects random short-term NDVI changes and uses
LSTM for prediction. The prediction results obtained with the combined DTW–LSTM
model show that the prediction performance of the combined model is high when the
prediction time is short. The combined DTW–LSTM method proposed in this report can
also be applied to predict the NDVI of other crops.
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