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Abstract: Some essential water conservation areas in China have continuously suffered from various
serious problems such as water pollution and water quality deterioration in recent decades and thus
called for real-time water pollution monitoring system underwater resources management. On the
basis of the remote sensing data and ground monitoring data, this study firstly constructed a more
accurate retrieval model for total phosphorus (TP) concentration by comparing 12 machine learning
algorithms, including support vector machine (SVM), artificial neural network (ANN), Bayesian
ridge regression (BRR), lasso regression (Lasso), elastic net (EN), linear regression (LR), decision tree
regressor (DTR), K neighbor regressor (KNR), random forest regressor (RFR), extra trees regressor
(ETR), AdaBoost regressor (ABR) and gradient boosting regressor (GBR). Then, this study applied
the constructed retrieval model to explore the spatial-temporal evolution of the Miyun Reservoir and
finally assessed the water quality. The results showed that the model of TP concentration built by
the ETR algorithm had the best accuracy, with the coefficient R2 reaching over 85% and the mean
absolute error lower than 0.000433. The TP concentration in Miyun Reservoir was between 0.0380
and 0.1298 mg/L, and there was relatively significant spatial and temporal heterogeneity. It changed
remarkably during the periods of the flood season, winter tillage, planting, and regreening, and it
was lower in summer than in other seasons. Moreover, the TP in the southwest part of the reservoir
was generally lower than in the northeast, as there was less human activities interference. According
to the Environmental Quality Standard for the surface water environment, the water quality of
Miyun Reservoir was overall safe, except only for an over-standard case occurrence in the spring
and September. These conclusions can provide a significant scientific reference for water quality
monitoring and management in Miyun Reservoir.

Keywords: machine learning algorithm; retrieval model; remote sensing data; total phosphorus
concentration; Miyun Reservoir

1. Introduction

Water resource serves as the basis for human survival [1]. There has been serious
water shortage in a number of regions in northern and eastern China due to the increasing
demand for water [2,3]. The deterioration of water quality caused by water pollution has
further exacerbated the water shortage [4,5]. The negative impacts of the deterioration
of water quality have posed a huge threat to the sustainable use of water resources [6,7].
It is an urgent and difficult task to build a safe water environment, for which water
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quality monitoring is one of the most significant foundations [8]. Traditional water quality
monitoring is mainly based on field sampling, which is costly and time-consuming, and
the data obtained are discontinuous [9], which cannot meet the current requirements for
large-scale and real-time water body monitoring [10]. As for this point, remote sensing
technology has provided a new direction for water quality monitoring by its powerful
advantages [11]. It not only makes up for the shortcomings and defects of traditional
monitoring methods but also realizes the high-efficiency, low-cost, and large-scale real-time
monitoring in the real sense [10,12].

The principle of water quality monitoring based on the remote sensing data mainly
applies the surface spectral characteristics to extract the concentration of the water pol-
lution [12]. Pollutants in the water body have different reflection capabilities for the
electromagnetic waves, which brings about variations in reflectance information [7,13]. In
recent years, scholars and the government have achieved effective monitoring of water bod-
ies based on spectral reflectance information of remote sensing. Lai et al. [13] analyzed the
change of chlorophyll-a concentration in the Guanting reservoir based on remote sensing
data and ground monitoring data. Wang et al. [14] used the 3-D dynamic Environmental
Fluid Dynamics Code model to simulate the hydrodynamic and algae processes in the
Miyun Reservoir, and then the dissolved oxygen and chlorophyll-a were selected to evalu-
ate the water quality. At present, the researches on chlorophyll-a, suspended matter, and
water temperature are relatively mature, but the methodologies for the chemical indicators
of water quality parameters are still further needed to study [15].

Total phosphorus (TP) concentration is an important chemical indicator for water
quality monitoring [3,16]. As for the retrieval of TP concentration, it can be estimated by
its correlation with other indicators such as chlorophyll-a, suspended particles, etc. [17].
However, the correlation between the TP concentration and other water quality indica-
tors was not assured in different regions [17]. Claire et al. [15] provided an extensive
performance assessment for 48 chlorophyll-a retrieval algorithms of varying architectural
design. Huang et al. [8] developed experiential and semi-analytical models to retrieve the
TP concentration, then further explained the eutrophication of the water quality in the area.
A major limitation of conventional techniques is that they assume an explicit relationship
between measured biophysical parameters and spectral observations, thus limiting their
applicability to spatially complex data sets [16].

In recent years, Machine learning algorithms have been widely used in various fields
due to high-performance computing [18]. Water quality parameters can also be calculated
by using machine learning algorithms based on spectral information and ground monitor-
ing data [13]. Due to the high computational efficiency and nonlinear mapping capabilities
of machine learning algorithms, the functional relationship between spectral reflectance
information and TP concentration can be successfully established [19]. Nour et al. [20] ana-
lyzed the MODIS spectral reflectance information and proposed a model for the retrieval
of TP concentration by using the ANN algorithm. Sun et al. [21] established an SVR model
based on the spectral reflectance information of HJ1A/HIS image data to estimate the TP
concentration in Taihu Lake. These studies showed that the retrieval model based on the
machine learning algorithm can effectively avoid the defects of traditional methods with
low accuracy and low efficiency [22].

As a source of high-quality water, reservoirs generally have better water quality
than rivers and thus have become important drinking water sources in many regions of
China [23,24]. Therefore, water quality and the pollution monitoring of reservoir areas
have received great attention from scholars at home and abroad for a long time [25]. The
Miyun Reservoir, which was a significant drinking water source in Beijing, was selected as
the study area in this study. On the basis of the remote sensing data and ground monitoring
data, one of the more accurate algorithms was selected from 12 machine learning algorithms
to conduct a retrieval model for the TP concentration in Miyun Reservoir according to
their typical characteristics and applicable conditions. Then, this study explored the spatio-
temporal laws of the TP concentration in Miyun Reservoir and clarified the pollution level
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in the surface water. The findings can provide an important basis for the supervision and
protection of the Miyun Reservoir.

2. Materials and Methods
2.1. Study Area

Miyun Reservoir is located in the northeast part of Beijing and among the mountainous
area of Yanshan (Figure 1). It was built in 1960 and was the largest reservoir in north China.
The study area has a temperate semi-humid monsoon climate with an annual average
temperature of 10 ◦C and annual precipitation of 665 mm. The precipitation is concentrated
in the flood season, and the surface runoff formed by precipitation is the main supply source
for this reservoir. The upstream of Miyun Reservoir has a fragile ecological environment
and serious soil erosions, which can cause soil surface destruction, soil fertility decline,
and channel silt deposition [26]. At the same time, water as a carrier brings considerable
nitrogen, phosphorus, and other nutrients to the downstream water body, resulting in
excessive pollutants in this reservoir. Although exploitation and use of water and soil
resources are strictly restricted in the Miyun area to protect Miyun Reservoir and its
surrounding environment, social and economic activities still have considerable impacts
on the surrounding environment of the reservoir and pose a certain threat to the drinking
water supply of this reservoir [27].
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2.2. Data Sources and Processing
2.2.1. Remote Sensing Data

The Landsat 8 OLI_TIRS data used in this study was from the USGS website
(https://earthexplorer.usgs.gov/ accessed on 15 September 2019). Since Landsat 8 L1
T files had been topographically corrected, the coordinate accuracy can basically meet the
requirements of small and medium-size scale applications [28,29]. In this study, 24 scenes
of Landsat 8 OLI_TIRS data from April 2018 to March 2019 were selected. The radiometric
correction was performed by obtaining orthographic parameters in metadata by using the
Apply Flash Setting tool, and the radiometric calibration was tuned with the radiometric
calibration tools.

https://earthexplorer.usgs.gov/
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2.2.2. Ground Monitoring Data

In this study, 80 water samples were collected in the study area in October 2018 for the
retrieval model of TP concentration. In addition, another 32 water samples were collected
in April and July 2019 to verify the accuracy of the model, as shown in Figure 1, all of
which were taken from a depth of 0–20 cm. The TP concentration measurement was
in accordance with the GB/T 1893–1989 standard. The potassium persulfate was used
as the oxidant, and then the unfiltered water sample was digested. Finally, ammonium
molybdate spectrophotometry was used to measure the TP concentration, which includes
the dissolved, suspended, organic, and inorganic phosphorus amounts.

2.2.3. Data Set for Modeling

The spectral values of nine bands of Landsat8 remote sensing data were extracted,
including coastal band, three visible bands, near-infrared band, two short-wave infrared
bands, panchromatic band, and Cirrus band (Figure 2). After the spatial overlaying for the
ground sampling data and 9 bands data of Landsat8 remote sensing images, the data set
for modeling was extracted from the 9 bands in 80 points corresponding to the ground
sampling points. Among these, the spectral value of nine bands was taken as the input
training data, while the ground sample data of TP concentration were taken as the target
output data. Finally, the retrieval model of TP concentration was built based on the data
set for modeling.
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2.3. Methods

This study used twelve machine learning algorithms, including support vector ma-
chine (SVM), artificial neural network (ANN), Bayesian ridge regression (BRR), lasso
regression (Lasso), elastic net (EN), linear regression (LR), decision tree regression (DTR),
K neighbor regression (KNR), random forest regression (RFR), extra trees regression (ETR),
AdaBoost regression (ABR) and gradient boosting regression (GBR), to build the retrieval
model of TP concentration and then selected the most suitable one to calculate the TP
concentration in Miyun Reservoir. Finally, it was found that the ETR algorithm was the
best one for the retrieval of TP concentration. Therefore, the ETR algorithm was described
in detail as follows, while the other algorithms, please see Table 1 and the article links:
https://doi.org/10.1016/j.ecolind.2021.107356 (accessed on 18 September 2021) [29–68].

https://doi.org/10.1016/j.ecolind.2021.107356
https://doi.org/10.1016/j.ecolind.2021.107356
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Table 1. The main parameters and complexity of machine learning algorithms.

Algorithm Parameters Complexity

Linear Regression Estimated coefficient α = 0.1

O(np2)
Bayesian Ridge Regression Prior parameters (α, λ) = 10–6

Lasso Regression Estimated coefficient(α) = 0.1
K Neighbor Regressor K = 5

Elastic Net Estimated coefficient (α) = default

Decision Tree Regressor Number of nodes(min) = 20, Tree depth(max) = 30 O(m∗n∗log(n))
Support Vector Machine Penalty (C) = 1, Accuracy (ε) = 0.5, Nuclear (γ) = 1 O(m2∗n2)

Artificial Neural Network Number of nodes = 15, Hidden layers = 2 O(n·m·hk·o·i)
AdaBoost Regressor Tree number = 125

O(t∗n∗log(n))Random Forest Regressor Tree number = 125
ExtraTrees Regressor Tree number = 125, Depth = 25

Gradient Boosting Regressor Tree number = 125, Depth = 25

Where n is the number of samples, p is the sample dimension, m is the number of
features, k is the number of hidden layers, i is the number of iterations, o is the output
feature, h is the number of neurons, and t is the number of trees.

The ETR algorithm was a typical algorithm for the bagging series. The final results
can be obtained by voting or averaging on the basis of combining several weak learners
so that the model has high precision and generalization ability [56]. The ETR established
each decision tree by using all training samples, i.e., each decision tree originates from the
same training sample collection. Moreover, the ETR used just one attribute to achieve the
purpose of bifurcation [57]. The principle can be described as follows.

There were n samples randomly selected from the original input data set to obtain
a training set, and the rest were used as test data sets. It was assumed that m random
decision trees were generated in total.

D = {(x1, y1), (x2, y2), . . . , (xN , yN)} (1)

where D refers to the training data set, x is the input variable, and y is the output variable.
In the process of training a CART decision tree, the rule of sharding for each node is

to first randomly select K features from all features and then select the optimal sharding
point from these K features to make the division of left and right subtrees (Figure 3).
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Step 1: Choose the optimal splitting variable j and the cut point s to divide the left
and right subtrees. There are multiple feature variables, which are divided into binary
trees. The optimal segmentation variable j is the feature variable with the smallest partition
error. The cut point s is the optimal threshold of the left and right subtrees, namely the
node corresponding to the optimal segmentation variable.

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (2)

where j is the splitting variable, s is the cut point, and c is the output value of each sub-
intervals. Both R1 and R2 are the intervals that are divided, and y is the output variable.

Step 2: The selected (j, s) value is used to divide the feature space. In the ETR algo-
rithm, each selected feature variable is random; therefore, the above steps were repeated
until the corresponding sample number of all leaf nodes was less than or equal to mmin.

Step 3: Integrate all the decision trees, and the average method is used to determine
the final regression model. ym is used to represent the set of m decision trees and the test
data set T is used to verify one by one, and the average synthesis of m decision trees is
carried out according to the verification results.

f (x) = ym =
1
n

n

∑
i=1

ymi (3)

where f (x) is the final regression model and ym represents each decision tree.
As for the hyper-parameters, the more the number of random decision trees, the better

the model performance. The influence of the number of leaf nodes and feature number on
the algorithm performance will increase first and then decrease (Figure 4) [58]. Through
repeated testing, a set of appropriate hyper-parameters is set for the algorithm. The number
of trees was 125, and the maximum depth of the tree was set as 25 to improve the efficiency
of the operation, while the rest of the parameters took default values.
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3. Results
3.1. Retrieval Modeling and Validation for the TP Concentration

The machine learning algorithms were very sensitive to the input data set; thus, this
study firstly analyzed the model performance by the mean squared error (MSE) regression
loss based on the input data set and the K-fold cross-validation [37]. The 10-fold cross-
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validation was used to evaluate the accuracy of 12 machine learning algorithms. It divides
the sample data set into 10 subsets, 9 of them were taken as the training data, and the
remaining 1 was taken as the testing data. After 10 rounds of modeling, the average error
was calculated to evaluate the accuracy of these models [38]. It can avoid using the same
experimental data to test the model and represent the average accuracy of the retrieval
model of TP concentration. As seen from Figure 5, the negative value of MSE was used
as the evaluation criterion in Scikit-learn. The distribution of MSE of two algorithms of
ETR and GBR were relatively centralized, with a small gap between the upper and lower
limits. The median value was around 0.01, which was close to the middle part, indicating
that the distribution of MSE was relatively stable and had suitable performance. It should
be considered as the key modeling algorithm. In addition, the rationality of the ABR and
DTR algorithms was also higher than other algorithms. The abnormal value of the ANN
algorithm was extremely large, and its gap between the upper and lower limits was also
large; thus, the ANN algorithm was not ideal for retrievals of TP concentration.
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Based on the ground monitoring data and Landsat8remote sensing data, 12 machine
learning models were used to establish the retrieval model for the TP concentration in
Miyun Reservoir. The retrieval model was built in the Python environment, and the arcpy
library function was used to perform basic processes such as format conversion and mask
extraction on the remote sensing data. In this study, the integrated data set including
spectral information and ground sampling data of 80 sampling sites was used as the input
data set, and then the data set was separated. During the training process, it was found
that when the random seed was set as 7, the best results can be obtained. The input data
set was converted into a one-dimensional array based on the numpy library, the basic
models of 12 machine learning algorithms were loaded through the sklearn library, and the
library pickle was used to deploy the retrieval results. Thereafter, the retrieval results were
reconverted into the array format associated with the header file and then were reconverted
into raster format with the arcpy library function. Finally, the retrieval results of the TP
concentration in the Miyun Reservoir were obtained. In this model, 80% of the data was
selected as the training data set, while 20% was used for the validation.

This study also used the mean absolute error (MAE), the mean square error (MSE),
the explained variance score, and the determination coefficient (R2) to assess the model
performance (Table 2). Moreover, the comparison of the ground monitoring data and the
corresponding modeling results were offered in Figure 6 to visualize the model fit. As it was
seen from Figure 6, the worst performance was obtained with the ANN model. The fitting
curve was approximately a straight line indicating that the single-layer network model was
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not applicable to the sample data and it was not sensitive to the TP concentration obtained
from the field. Comparatively speaking, the models of Lasso, LR, KNR, BRR, and SVM
algorithms can achieve a certain degree of fitting, while the models of DTR, ETR, GBR
algorithms obtained the maximum fitting values for the input original data set (Figure 6
and Table 2).

Table 2. The assessment parameters of model performance for the TP concentration.

Algorithm Mean Absolute Error (mg/L) Mean Square Error (mg/L) Explained Variance Score R2

Linear Regression 0.001747 0.000007 0.598713 0.598713
Bayesian Ridge Regression 0.001608 0.000008 0.579374 0.579374

Lasso Regression 0.001723 0.000007 0.596967 0.596967
K Neighbor Regressor 0.001735 0.000007 0.598132 0.598132

Elastic Net 0.001447 0.000005 0.724383 0.724263
Decision Tree Regressor 0.000421 0.000003 0.850468 0.897365
Support Vector Machine 0.001953 0.00001 0.44061 0.432786

Artificial Neural Network 0.003344 0.000022 0 0
AdaBoost Regressor 0.001415 0.000005 0.739572 0.738588

Random Forest Regressor 0.000935 0.000003 0.814934 0.814851
Extra Trees Regressor 0.000433 0.000003 0.850468 0.850468

Gradient Boosting Regressor 0.000636 0.000003 0.844646 0.844646
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As seen from the assessment parameters of model performance, the two best-performing
algorithms were obtained to be DTR and ETR with the R2 values higher than 0.85, the MAE
lower than 0.000433 mg/L, and MSE lower than 0.000003 mg/L. Then it was followed by
the GBR and RFR with the R2 of 0.844646 and 0.814851, respectively (Table 1). It meant that
the fits were representative of the ground monitoring data by 84.5% and 81.5%, respectively.
For other algorithms, the fitting degree was lower. Although the assessment parameters of
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DTR and ETR were both excellent, this study selected the ETR. Because the distribution of
the MSE of the ETR algorithm was more centralized than that of the DTR algorithm, what
is more, the ETR algorithm was an integration of the DTR algorithm. Therefore, the ETR
algorithm was chosen as the retrieval model of the TP concentration to be performed in the
study area.

3.2. Retrieval Results of the TP Concentration and Its Water Quality Evaluation in
Miyun Reservoir
3.2.1. Accuracy Verification of the Retrieval Model

To further validate the accuracy and stability of the retrieval model for the TP con-
centration, this study used the ground monitoring data of TP concentration in another
32 sampling points, which were not included in the modeling sample, to verify the accuracy
of the model. The results showed that the retrieval model based on the ETR algorithm had
great accuracy with R2 of 0.813927, MSE of 0.0000125. The fitting scatter plot was shown in
Figure 7, which also indicated that the ETR algorithm can accurately achieve the retrieval
for the TP concentration.
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3.2.2. Spatio-Temporal Evolution of the TP Concentration in Miyun Reservoir

Based on the model built by using the ETR algorithm, the TP concentration variation
over the Miyun Reservoir was estimated at pixel level from April 2018 to March 2019.
The spatial distribution of TP concentration was provided on a monthly basis to analyze
their spatial-temporal evolution in Figure 8. The results showed that the fluctuation of
TP concentration was relatively high on a monthly basis. In April, the maximum TP
concentration value was 0.0662 mg/L while the minimum was 0.0632 mg/L, and the TP
concentration with a high value was observed to be in the southeast of the reservoir while
it was lower in the north and west. In May, the TP concentration decreased to a certain
degree, and its maximum value was 0.0646 mg/L, which was lower than that in April. On
the other hand, the minimum value increased to 0.0644 mg/L, and it indicated that the TP
concentration tended to be almost stable in the whole reservoir area for this month.

In June, the TP concentration fluctuation was relatively high, with a maximum value
of 0.0751 mg/L and a minimum value of 0.0554 mg/L. High-concentration areas appeared
in the west of the reservoir, which was near the tributaries of Miyun Reservoir, and the
pollutant migrated by tributary runoff or rainfall was the possible reason for this. The
fluctuation in June occurred in the west, spread to the east, and finally converged to the
east edge of the reservoir in July. The TP concentration in July seemed to be varying
from the maximum value of 0.0749 mg/L and the minimum value of 0.0561 mg/L. The
high-concentration areas were all distributed in the tributaries area or on the northeast
edge of the reservoir.
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The overall concentration variation decreased in August by observing a maximum
value of 0.0704 mg/L and a minimum value of 0.0622 mg/L. Relatively lower concentra-
tions were distributed in the east, and it showed an overall increasing trend from east to
west compared to July. In September, the maximum value of the concentration gradually
dropped to 0.066 mg/L while the minimum value was 0.0622 mg/L. It indicated that a
very small regional variation occurred in this month. In October, the maximum value of
TP concentration increased sharply to 0.1298 mg/L while the minimum value dropped to
0.0380 mg/L. Starting in October, the concentration fluctuated frequently. It firstly spread
inward from the west and south and then increased in the northeast in November.

The TP concentration increased again after late December, especially the increase that
occurred in the north and northeast. It reached a peak again in January. Although the
TP concentration gradually fell back in February, the concentration in the whole reservoir
was still high. In March, the TP concentration decreased in the center area due to the ice
melting, while a new concentration increase occurred at the edge of the reservoir, mainly
on the north and east coasts.

3.2.3. Water Quality Assessment Based on Surface Water Environmental Standards

In accordance with the Environmental Quality Standard for Surface Water GB3838-
2002, the range of retrieval results was compared with the standard limit value of basic
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items of Environment Quality Standard for surface water. The standard limit required the
TP concentration to be calculated by the amount of phosphorus element. However, the
phosphorus concentration obtained in the water quality measurement in this study was
the PO3−

4 concentration. Therefore, the concentration amounts should be multiplied by the
coefficient of 0.392, which was obtained from p/(p + 4O).

The standard limit values of the TP concentration in GB3838-2002 (SEPA, 2002) were
provided in Table 3. The distribution range of each class in this study was determined by
reclassifying the retrieval results of TP concentration. Due to the TP concentration in Miyun
Reservoir were mainly centered at the ranges of only one or two levels, each class was
equally subdivided into four intervals by the method of [(standard limit value of level I, the
standard limit value of level I + (standard limit value of level I + 1 standard limit value of
level I) ∗ (0.25 | 0.5 | 0.75 |1)] in order to better explore the change in the TP concentration.

According to the equal interval classification, the standard limit value of TP concen-
tration was divided into 12 categories, namely II-1, II-2, II-3, II-4, III-1, III-2, III-3, III-4, IV-1,
IV-2, IV-3, and IV-4. According to the TP concentration amounts obtained in this study, the
reclassification of the data was grouped into eight classes. The classification results of the
TP concentration in the Miyun Reservoir were offered in Figure 9 on a monthly basis.
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Table 3. The standard limit value of the TP concentration in GB3838-2002.

Level I II III IV V

TP concentration
(mg/L)

Standard limit value≤ 0.01 0.025 0.05 0.1 0.2

Range of the retrieval
results∈ Min = 0.014 Max = 0.051

As a whole, the water quality level in most of the water areas was classified with
the level of III-1 from April to May in 2018, and the water quality in the northwest of the
reservoir had been switched to class II from June to August. However, most of the areas
were labeled as III-1 in September. From October 2018 to January 2019, the water quality
showed an improving trend from the southwest and the north, especially near the Bai
River dam, where the water quality was classified as II-2. During the period of November
and December, the water quality was gradually getting better for most of the regions. On
the other hand, there were also some regions where it became worse and were labeled as
class III-2. The betterment of water quality areas began to decrease until the following
January in 2019, and the improved areas were concentrated mainly in the east and west of
the reservoir. The water quality returned to class III-1 until the following year in February.
However, the water quality in the north of the reservoir showed an improving trend to
class II in March 2019.

4. Discussion
4.1. Water Quality Evaluation Base on the Retrieval Model of TP Concentration

Water quality monitoring was particularly important in water environment manage-
ment, and the TP concentration was one of the most commonly used indicators. In this
study, we compared 12 machine learning algorithms to establish the retrieval model of TP
concentration in the Miyun Reservoir. The results showed that DTR, ETR, RFR, and GBR al-
gorithms can achieve high precision retrieval of water quality parameters. It meant that the
machine learning algorithms can better establish the functional relationship between spec-
tral information and TP concentration [68,69] as it has strong nonlinear mapping capability
ability, fault tolerance, and learning capability [19,20]. Compared with other machine learn-
ing methods [70–76], the ETR and DTR used in this study have relatively small errors. The
explained variance scores were above 0.85, and their MSE were lower than 0.000433 mg/L
and MSE lower than 0.000003 mg/L. What is more, their fitting performances were better
than the other algorithms. Considering the mean squared error regression loss of ETR
and DTR, the ETR was chosen for the retrieval model of TP concentration in this study.
Compared with the retrieval model (R2 = 0.685) established by Xu et al. [62], the ETR
model used in this study had higher accuracy and wider applicability. As the ETR took
all the original training data sets as the training samples and randomly selected features,
which made the retrieval model more accurate, and the results had better generalization
ability [67]. In addition, the retrieval results based on the remote sensing data can realize
large-area grid-scale simultaneous observations in Miyun Reservoir [68]. It effectively
avoids the area limitation of unmanned aerial vehicles (UAV) due to its short flight time
and can fully understand the characteristics of the temporal and spatial evolution in the
whole reservoir. However, sometimes it is also limited due to the lower spatial resolution
in the study of higher-precision [69].

Then this study explored the spatio-temporal variation of the TP concentration in
Miyun Reservoir from April 2018 to March 2019. It can be found that the TP concentration
showed a decreasing trend in April, the first fluctuation started from the west of the
reservoir in June and converged to the east of the reservoir in July, finally fell back to be
stable in September, and the study of Qiu et al. [63] on the TP pollutant load of Miyun
Reservoir confirmed this law. The TP concentration migration in June may be caused by
the runoff erosion during the flood season, which brought the upstream pollutants into the
reservoir. On the one hand, rainwater during the flood season supplemented the water
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source of the reservoir. On the other hand, it also brought about the expansion of the
pollution area. Therefore, it is urgent to carry out small watershed management, improve
the vegetation coverage, reduce surface runoff erosion and reduce the phosphorus load
into the reservoir due to soil erosion. The second fluctuation of TP concentration occurred
in October, which started in the southwest and spread to the northeast, then decreased
until January and increased again in March. This is basically consistent with the study of
Zhang et al. [64]. There were a number of villages and towns in these two areas, frequent
human activities, such as fishery, agriculture, and other activities, have aggravated water
pollution and caused TP pollutants to accumulate within a certain range in a short period
of time. Therefore, it is necessary to carry out special water quality optimization work
for the management of living and agricultural sources in the watershed near villages and
towns, the use of chemical fertilizers and pesticides should be further reduced, and sewage
discharge is strictly prohibited, and then the water pollution will be reduced through
cleaner production.

In addition, this study classified the water quality in Miyun Reservoir based on the
Environmental Quality Standard for Surface Water GB3838-2002. The results showed that
the water quality of Miyun Reservoir represented by TP concentration was at the level
of III-1 most of the time, and it improved slightly in March, June, July, and August and
reached a level of II in the southwest of the reservoir. This is due to the long-term protection
of the Miyun Reservoir, Although the concentration of pollutants has been concentrated
in some areas since June, the water quality in other areas has improved significantly, and
the overall water quality level has been improved. The regional variation of water quality
became obvious in October. The water quality in the west of the reservoir was improved
significantly to II-2, but in the northeast was deteriorated to III-2, then it leveled off in the
following February. This is consistent with the results conducted by Qin et al. [65] and
Gang et al. [66]. On the whole, surface pollution was prominent during the flood season,
and non-flood season point source pollution was the dominant factor, which showed that
the runoff caused by rainfall was an important reason for the deterioration of water quality.
The reason that the water quality in the southwest of the reservoir was generally better
than in the northeast may be related to pollution emissions from the human activities in
the upstream to the northeast area, such as free-range poultry and near-shore farming.
Therefore, water quality protection and monitoring in the upper and middle reaches of
Miyun Reservoir can not be ignored. Due to the limited self-purification capacity of the
water body, some pollutants will be adsorbed in the bottom mud. When the water velocity
increases, the pollutants in the bottom mud will be released again. Therefore, the discharge
of different pollution sources in the river basin should be controlled.

4.2. Limitation in the TP Concentration Retrieval Model

Although the accuracy of the total phosphorus concentration retrieval model built in
this study for Miyun Reservoir had met the requirements, there were still some shortcom-
ings to be further explored. Firstly, the number of ground monitoring sampling data used
in this study was 80, which were collected during the same period, while no multi-phase
data were collected. However, the water quality parameters in Miyun Reservoir signifi-
cantly varied with time and space. Therefore, more long-time data would be useful for
further improvement of the model, and more accumulated ground data would contribute
to a more accurate retrieval model and realistic analysis. Additionally, the integration
of multi-period historical data and other ancillary data can be used as validation data to
support the model’s reliability. For example, flood information, planting information, etc.,
can influence the change of pollutant concentration so that they should be considered while
constructing the retrieval model to have a better model accuracy.

5. Conclusions

In this study, Landsat 8 remote sensing data and ground monitoring data were used
to build a more accurate retrieval model for the TP concentration in the Miyun Reservoir
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by comparing 12 machine learning algorithms. The performance of 12 machine learning
algorithms was assessed and compared by using the MSE, the explained variance score, the
determination coefficient R2 and the fitting line. It was concluded that the ETR was the most
accurate and suitable algorithm for the retrieval model of TP concentration. Afterward, the
TP concentration was estimated at pixel level by the built retrieval model, and the spatial-
temporal evolution and assessment of water quality were explored. The results showed
that the TP concentration in Miyun Reservoir was between 0.0380 and 0.1298 mg/L, but it
fluctuated from June to July and October to the following January, and this is consistent
with the results of a study by Zhang et al. [64] at the same time. The fluctuations generally
occurred along the west side of Miyun Reservoir, then spread to the center, showing a
trend of gathering to the northeast bank. Moreover, TP concentration in summer was lower
than that in other seasons, and TP concentration in the southwest part of the reservoir was
generally lower than in the northeast, as there was less human activities interference. The
water quality was generally safe in line with the Environmental Quality Standard for the
surface water environment, except only an over-standard case occurrence in the spring and
September. These conclusions could provide a scientific reference for water monitoring
and water management in Miyun Reservoir.
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