A Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS
Abstract
:1. Introduction
2. Related Work
2.1. Building Model Simplification in the Geospatial Industry
2.2. Building Model Simplification in the Context of BIM/GIS Integration
2.2.1. BIM/GIS Integration
2.2.2. Surface Building Model Simplification in BIM/GIS Integration (IFC-to-CityGML)
2.2.3. Solid Building Model Simplification in BIM/GIS Integration
3. Materials and Methods
3.1. Semantics-Based Approach for Solid Model Simplification
3.1.1. Semantic Information in IFC
3.1.2. Geometric Information in IFC
3.1.3. The Overall Framework of This Study
3.2. Building-Level Model Simplification
3.2.1. Defining s-LoD and Grouping Building Elements for Solid Models
3.2.2. Implementing s-LoDs
- (1)
- Identifying external objects
- (2)
- Distinguishing between slabs
- (3)
- Generating valid external walls for s-LoD2 and s-LoD3
3.3. Component-Level Simplification
3.3.1. Simplification of Doors and Windows
3.3.2. Simplifying External Walls for s-LoD2 and s-LoD3
3.4. IFC-to-Shapefile Conversion
3.5. Method Evaluation
4. Results
4.1. Generated Solid Building Models
4.2. Effectiveness of Model Simplification
4.2.1. Whole Building Model
4.2.2. Windows, Doors, and Walls
4.3. Reliability of the Proposed Methods
4.3.1. Determining Externality of Objects
4.3.2. Retrieving Building Story Heights
4.3.3. Influence of Erroneous Semantic Information
4.4. Assessing Solid Models by Comparing with Surface Models
4.4.1. Model Appearance
4.4.2. File Size
5. Discussion
5.1. Adopting Solid Model to Facilitate BIM-to-GIS Data Conversion
5.2. New Opportunities and Challenges Brought by BIM to Model Simplification
5.3. The “Quality Issue” of BIM Models in BIM/GIS Integration
5.4. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolbe, T.H.; Gröger, G.; Plümer, L. Citygml–3d city models and their potential for emergency response. In Geospatial Information Technology for Emergency Response; Zlatanova, S., Li, J., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 257–274. [Google Scholar]
- Goetz, M. Towards generating highly detailed 3d citygml models from openstreetmap. Int. J. Geogr. Inf. Sci. 2013, 27, 845–865. [Google Scholar] [CrossRef]
- Mahdjoubi, L.; Moobela, C.; Laing, R. Providing real-estate services through the integration of 3d laser scanning and building information modelling. Comput. Ind. 2013, 64, 1272–1281. [Google Scholar] [CrossRef]
- Prieto, I.; Izkara, J.L.; Béjar, R. A continuous deployment-based approach for the collaborative creation, maintenance, testing and deployment of citygml models. Int. J. Geogr. Inf. Sci. 2018, 32, 282–301. [Google Scholar] [CrossRef] [Green Version]
- Geiger, A.; Benner, J.; Haefele, K.H. Generalization of 3d ifc building models. In 3d Geoinformation Science; Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P.V., Benner, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 19–35. [Google Scholar]
- Donkers, S.; Ledoux, H.; Zhao, J.; Stoter, J. Automatic conversion of ifc datasets to geometrically and semantically correct citygml lod3 buildings. Trans. GIS 2016, 20, 547–569. [Google Scholar] [CrossRef] [Green Version]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. Bim Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Mehran, D. Exploring the adoption of bim in the uae construction industry for aec firms. Procedia Eng. 2016, 145, 1110–1118. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Cheng, J.C.; Anumba, C. A framework for 3d traffic noise mapping using data from bim and gis integration. Struct. Infrastruct. Eng. 2016, 12, 1267–1280. [Google Scholar] [CrossRef]
- Arroyo Ohori, K.; Diakité, A.; Krijnen, T.; Ledoux, H.; Stoter, J. Processing bim and gis models in practice: Experiences and recommendations from a geobim project in the netherlands. ISPRS Int. J. Geo-Inf. 2018, 7, 311. [Google Scholar] [CrossRef] [Green Version]
- Volk, R.; Stengel, J.; Schultmann, F. Building information modeling (bim) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, P.; Shen, G.Q.; Wang, X.; Teng, Y. Mapping the knowledge domains of building information modeling (bim): A bibliometric approach. Autom. Constr. 2017, 84, 195–206. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, J.; Wang, J.; Su, D.; Zhang, H.; Guo, M.; Guo, M.; Li, Z. Outdet: An algorithm for extracting the outer surfaces of building information models for integration with geographic information systems. Int. J. Geogr. Inf. Sci. 2019, 33, 1444–1470. [Google Scholar] [CrossRef]
- OGC. OGC Standard, CityGML. Available online: https://www.ogc.org/standards/citygml (accessed on 15 May 2020).
- Mignard, C.; Nicolle, C. Merging bim and gis using ontologies application to urban facility management in active3d. Comput. Ind. 2014, 65, 1276–1290. [Google Scholar] [CrossRef]
- Deng, Y.; Cheng, J.C.; Anumba, C. Mapping between bim and 3d gis in different levels of detail using schema mediation and instance comparison. Autom. Constr. 2016, 67, 1–21. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P. Towards effective bim/gis data integration for smart city by integrating computer graphics technique. Remote Sens. 2021, 13, 1889. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P.; Chen, M.; Kim, M.J.; Wang, X.; Fang, T. Automatically processing ifc clipping representation for bim and gis integration at the process level. Appl. Sci. 2020, 10, 2009. [Google Scholar] [CrossRef] [Green Version]
- Kada, M. Automatic generalization of 3d building models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 243–248. [Google Scholar]
- Forberg, A. Generalization of 3d building data based on a scale-space approach. ISPRS J. Photogramm. Remote Sens. 2007, 62, 104–111. [Google Scholar] [CrossRef]
- Fan, H.; Meng, L.; Jahnke, M. Generalization of 3d buildings modelled by citygml. In Advances in Giscience; Springer: Berlin/Heidelberg, Germany, 2009; pp. 387–405. [Google Scholar]
- Baig, S.U.; Rahman, A.A. A three-step strategy for generalization of 3d building models based on citygml specifications. GeoJournal 2013, 78, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Nan, L. Feature-preserving 3d mesh simplification for urban buildings. ISPRS J. Photogramm. Remote Sens. 2021, 173, 135–150. [Google Scholar] [CrossRef]
- Kim, J.-S.; Li, K.-J. Simplification of geometric objects in an indoor space. ISPRS J. Photogramm. Remote Sens. 2019, 147, 146–162. [Google Scholar] [CrossRef]
- Zhu, J.; Wright, G.; Wang, J.; Wang, X. A critical review of the integration of geographic information system and building information modelling at the data level. ISPRS Int. J. Geo-Inf. 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Ren, Y. Integrated application of bim and gis: An overview. Procedia Eng. 2017, 196, 1072–1079. [Google Scholar] [CrossRef]
- OGC. OGC City Geography Markup Language (CityGML) Encoding Standard. Available online: https://portal.opengeospatial.org/files/?artifact_id=47842 (accessed on 17 August 2019).
- ESRI. Esri Shapefile Technical Description. Available online: https://support.esri.com/en/white-paper/279 (accessed on 26 January 2019).
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A framework for a microscale flood damage assessment and visualization for a building using bim–gis integration. Int. J. Digit. Earth 2016, 9, 363–386. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, Y.; Wang, X.; Wu, P. Bim/gis integration for web gis-based bridge management. Ann. GIS 2021, 27, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Song, Y.; Zhu, J.; Long, Q.; Wang, X.; Cheng, J.C.P. Optimizing lift operations and vessel transport schedules for disassembly of multiple offshore platforms using bim and gis. Autom. Constr. 2018, 94, 328–339. [Google Scholar] [CrossRef]
- Niu, S.; Pan, W.; Zhao, Y. A bim-gis integrated web-based visualization system for low energy building design. Procedia Eng. 2015, 121, 2184–2192. [Google Scholar] [CrossRef] [Green Version]
- Göçer, Ö.; Hua, Y.; Göçer, K. A bim-gis integrated pre-retrofit model for building data mapping. Build. Simul. 2016, 9, 513–527. [Google Scholar] [CrossRef]
- Irizarry, J.; Karan, E.P. Optimizing location of tower cranes on construction sites through gis and bim integration. J. Inf. Technol. Constr. (ITcon) 2012, 17, 351–366. [Google Scholar]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating bim and gis to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- BIMForum. Level of Development Specification. Available online: https://bimforum.org/lod/ (accessed on 20 May 2020).
- NATSPEC. Bim and Lod—Building Information Modelling and Level of Development. Available online: https://bim.natspec.org/images/NATSPEC_Documents/NATSPEC_BIM_LOD_Paper_131115.pdf (accessed on 30 May 2020).
- Kang, T.W.; Hong, C.H. A study on software architecture for effective bim/gis-based facility management data integration. Autom. Constr. 2015, 54, 25–38. [Google Scholar] [CrossRef]
- Isikdag, U.; Zlatanova, S. Towards defining a framework for automatic generation of buildings in citygml using building information models. In 3d Geo-Information Sciences; Springer: Berlin/Heidelberg, Germany, 2009; pp. 79–96. [Google Scholar]
- Kang, T.W.; Hong, C.H. Ifc-citygml lod mapping automation using multiprocessing-based screen-buffer scanning including mapping rule. KSCE J. Civ. Eng. 2018, 22, 373–383. [Google Scholar] [CrossRef]
- Bansal, V.K. Use of gis to consider spatial aspects in construction planning process. Int. J. Constr. Manag. 2020, 20, 207–222. [Google Scholar] [CrossRef]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A bim-gis integration method in support of the assessment and 3d visualisation of flood damage to a building. J. Spat. Sci. 2016, 61, 317–350. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Chen, M.; Wu, P.; Kim, M.J. Integration of bim and gis: Ifc geometry transformation to shapefile using enhanced open-source approach. Autom. Constr. 2019, 106, 102859. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Wang, P.; Wu, Z.; Kim, M.J. Integration of bim and gis: Geometry from ifc to shapefile using open-source technology. Autom. Constr. 2019, 102, 105–119. [Google Scholar] [CrossRef]
- Boyes, G.; Ellul, C.; Irwin, D. Exploring bim for operational integrated asset management-a preliminary study utilising real-world infrastructure data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Isikdag, U.; Aouad, G.; Underwood, J.; Trodd, N. Investigating the Applicability of Ifc in Geospatial Environment in Order to Facilitate the Fire Response Management Process. Available online: https://core.ac.uk/download/pdf/104426.pdf (accessed on 2 April 2019).
- ESRI. Arcgis Data Interoperability. Available online: http://www.esri.com/software/arcgis/extensions/datainteroperability (accessed on 12 August 2019).
- Inc, S.S. Fme—The Simple Solution for Complex Integration. Available online: https://www.safe.com/ (accessed on 12 February 2019).
- buildingSMART. Industry Foundation Classes 4.0.2.1. Available online: https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/ (accessed on 21 December 2020).
- ESRI. Arcgis Enterprise. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-enterprise/overview (accessed on 9 June 2020).
- Isikdag, U.; Underwood, J.; Aouad, G. An investigation into the applicability of building information models in geospatial environment in support of site selection and fire response management processes. Adv. Eng. Inform. 2008, 22, 504–519. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, P.; Wang, X. An assessment of paths for transforming ifc to shapefile for integration of bim and gis. In Proceedings of the 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–5. [Google Scholar]
- El-Mekawy, M.; Östman, A.; Shahzad, K. Towards interoperating citygml and ifc building models: A unified model based approach. In Advances in 3D Geo-Information Sciences; Kolbe, T.H., König, G., Nagel, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 73–93. [Google Scholar]
- Zhu, J.; Wu, P. A common approach to geo-referencing building models in industry foundation classes for bim/gis integration. ISPRS Int. J. Geo-Inf. 2021, 10, 362. [Google Scholar] [CrossRef]
- IfcWiki. Kit Ifc Examples. Available online: http://www.ifcwiki.org/index.php?title=KIT_IFC_Examples (accessed on 25 January 2019).
- Technology, K.I.O. Kit Citygml Examples. Available online: http://www.citygmlwiki.org/index.php?title=KIT_CityGML_Examples (accessed on 14 August 2019).
- Isikdag, U. Towards the Implementation of Building Information Models in Geospatial Context. Ph.D. Thesis, University of Salford, Salford, UK, 2006. [Google Scholar]
- Noardo, F.; Harrie, L.; Arroyo Ohori, K.; Biljecki, F.; Ellul, C.; Krijnen, T.; Eriksson, H.; Guler, D.; Hintz, D.; Jadidi, M.A. Tools for bim-gis integration (ifc georeferencing and conversions): Results from the geobim benchmark 2019. ISPRS Int. J. Geo-Inf. 2020, 9, 502. [Google Scholar] [CrossRef]
- Chen, Y.; Shooraj, E.; Rajabifard, A.; Sabri, S. From ifc to 3d tiles: An integrated open-source solution for visualising bims on cesium. ISPRS Int. J. Geo-Inf. 2018, 7, 393. [Google Scholar] [CrossRef] [Green Version]
- buildingSMART. Model View Definitions (Mvd). Available online: https://www.buildingsmart.org/standards/bsi-standards/model-view-definitions-mvd/#:~:text=A%20Model%20View%20Definition%20(MVD,the%20need%20of%20the%20receiver.&text=The%20definition%20of%20exchange%20requirements,Information%20Delivery%20Specifications%20(IDS) (accessed on 7 March 2021).
- buildingSMART. Mvd Database. Available online: https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/ (accessed on 7 March 2021).
- Xu, Z.; Zhang, L.; Li, H.; Lin, Y.-H.; Yin, S. Combining ifc and 3d tiles to create 3d visualization for building information modeling. Autom. Constr. 2020, 109, 102995. [Google Scholar] [CrossRef]
- Kutzner, T.; Chaturvedi, K.; Kolbe, T.H. Citygml 3.0: New functions open up new applications. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 43–61. [Google Scholar] [CrossRef] [Green Version]
IFC Classes | Representation Type/Modeling Method | ||||
---|---|---|---|---|---|
Sweeping | CSG/Clipping | B-Rep | Not Specified | ||
Building elements | IfcBeam, IfcColumn, IfcMember, IfcPlate, IfcRamp, IfcRampFlight, IfcSlab, IfcWall | x | x | ||
IfcCovering, IfcStair, IfcStairFlight | x | ||||
IfcDoor | x | x | |||
IfcWindow, IfcCurtainWall | x | ||||
IfcBuildingElementProxy, IfcChimney, IfcFooting, IfcPile, IfcRailing, IfcRoof, IfcShadingDevice | x | ||||
Spatial structure elements | IfcSite, IfcBuilding, IfcBuildingStorey | x | |||
IfcSpace | x | x | x |
Level | Sketch | Contained Building Elements |
---|---|---|
s-LoD0 | Footprint or roof edge. | |
s-LoD1 | Footprint (of base slab) extruded to the height of building. | |
s-LoD2 | Roof, base slab, and external wall. | |
s-LoD3 | Roof, base slab, external wall, external door, external window, and other external objects. | |
s-LoD4 | All elements in the original BIM model. |
IFC Class | “IsExternal” Defined? | IFC Class | “IsExternal” Defined? | IFC Class | “IsExternal” Defined? |
---|---|---|---|---|---|
IfcBeam | Yes | IfcFooting | No | IfcRoof | Yes |
IfcBuildingElementProxy | Yes | IfcMember | Yes | IfcShadingDevice | Yes |
IfcChimney | Yes | IfcPile | No | IfcSlab | Yes |
IfcColumn | Yes | IfcPlate | Yes | IfcStair | Yes |
IfcCovering | Yes | IfcRailing | Yes | IfcStairFlight | No |
IfcCurtainWall | Yes | IfcRamp | Yes | IfcWall | Yes |
IfcDoor | Yes | IfcRampFlight | No | IfcWindow | Yes |
Types | s-LoD | Criteria |
---|---|---|
Base slab | s-LoD2, s-LoD3, s-LoD4 | 1. IfcSlab, providing boundary to a space and the predefined type is base slab, or 2. IfcSlab, the predefined type is floor and on the lowest building story. |
External slab | s-LoD3 | 1. IfcSlab, not providing boundaries to space. |
Floor | s-LoD4 | 1. IfcSlab, providing boundary to a space, the predefined type is floor and not on the lowest building story. |
Roof | s-LoD2, s-LoD3, s-LoD4 | 1. IfcRoof, or 2. IfcSlab, providing boundary to a space and the predefined type is roof. |
IFC Class | Quantity of Components | ||
---|---|---|---|
House | Institute | Smiley | |
IfcBeam | 4 | - | 10 |
IfcColumn | - | 2 | 20 |
IfcDoor | 5 | 77 | 170 |
IfcMember | 42 | - | - |
IfcRailing | 2 | 12 | 120 |
IfcRoof | - | - | - |
IfcSlab | 4 | 26 | 120 |
IfcStair | 1 | 4 | 30 |
IfcWall | - | - | 281 |
IfcWallStandardCase | 13 | 121 | 270 |
IfcWindow | 11 | 206 | 80 |
Total | 82 | 448 | 831 |
House | Institute | Smiley | ||||
---|---|---|---|---|---|---|
External | Internal | External | Internal | External | Internal | |
s-LoD1 | ||||||
s-LoD2 | ||||||
s-LoD3 | ||||||
s-LoD4 |
Model | Size | s-LoD4 | s-LoD3 | s-LoD2 | s-LoD1 |
---|---|---|---|---|---|
House | Absolute size | 1588.4 KB | 264.4 KB | 20.6 KB | 1.9 KB |
RRS1 | 100.0% | 83.4% | 98.7% | 99.9% | |
RRS2 | NA | 83.4% | 92.2% | 90.8% | |
Institute | Absolute size | 3818.9 KB | 1064.9 KB | 137.1 KB | 2.8 KB |
RRS1 | 100.0% | 72.1% | 96.4% | 99.9% | |
RRS2 | NA | 72.1% | 87.1% | 98.0% | |
Smiley | Absolute size | 16,146.5 KB | 4950.7 KB | 85.4 KB | 14.6 KB |
RRS1 | 100.0% | 69.3% | 99.5% | 99.9% | |
RRS2 | NA | 69.3% | 98.3% | 82.9% |
Non-Simplified | Simplified | Reduced by | |||||
---|---|---|---|---|---|---|---|
Shape | Quantity of Parts | File Size | Shape | Quantity of Parts | File Size | ||
Door 1 | 32 | 70.4 KB | 1 | 1.9 KB | 97.3% | ||
Door 2 | 14 | 70.1 KB | 1 | 1.9 KB | 97.2% | ||
Window 1 | 7 | 14.3 KB | 1 | 1.9 KB | 86.7% | ||
Window 2 | 11 | 127.8 KB | 1 | 29.9 KB | 76.6% | ||
Wall | 4 | 16.8 KB | 1 | 8.9 KB | 47.0% |
Windows | Doors | |||||
---|---|---|---|---|---|---|
Original | Simplified | Reduced by | Original | Simplified | Reduced by | |
House | 349.7 KB | 68.0 KB | 80.6% | 132.8 KB | 5.4 KB | 95.9% |
Institute | 1284.4 KB | 219.8 KB | 82.9% | 255.4 KB | 82.2 KB | 67.8% |
Smiley | 498.8 KB | 85.4 KB | 82.9% | 7857.7 KB | 181.4 KB | 97.7% |
Model | Class | External Objects | Internal Objects | Not Defined Objects | Total | ||||
---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | ||
House | IfcBeam | 0 | - | 3 | - | 1 | - | 4 | - |
IfcDoor | 0 | 2 | 0 | 3 | 5 | 0 | 5 | 5 | |
IfcMember | 0 | - | 0 | - | 42 | - | 42 | - | |
IfcRailing | 0 | - | 0 | - | 2 | - | 2 | - | |
IfcSlab | 0 | 3 | 0 | 1 | 4 | 0 | 4 | 4 | |
IfcStair | 0 | - | 1 | - | 0 | - | 1 | - | |
IfcWallStandardCase | 0 | 8 | 0 | 5 | 13 | 0 | 13 | 13 | |
IfcWindow | 0 | 11 | 0 | 0 | 11 | 0 | 11 | 11 | |
Sub total | 0 | - | 4 | - | 78 | - | 82 | - | |
Institute | IfcColumn | 0 | - | 0 | - | 2 | - | 2 | - |
IfcDoor | 0 | 1 | 0 | 76 | 77 | 0 | 77 | 77 | |
IfcRailing | 0 | - | 0 | - | 12 | - | 12 | - | |
IfcSlab | 0 | 22 | 0 | 4 | 26 | 0 | 26 | 26 | |
IfcStair | 0 | - | 0 | - | 4 | - | 4 | - | |
IfcWallStandardCase | 0 | 44 | 0 | 77 | 121 | 0 | 121 | 121 | |
IfcWindow | 0 | 206 | 0 | 0 | 206 | 0 | 206 | 206 | |
Sub total | 0 | - | 0 | - | 448 | - | 448 | - | |
Smiley | IfcBeam | 10 | - | 0 | - | 0 | - | 10 | - |
IfcColumn | 20 | - | 0 | - | 0 | - | 20 | - | |
IfcDoor | 70 | 77 | 90 | 93 | 10 | 0 | 170 | 170 | |
IfcRailing | 118 | - | 0 | - | 2 | - | 120 | - | |
IfcSlab | 90 | 90 | 25 | 30 | 5 | 0 | 120 | 120 | |
IfcStair | 0 | - | 30 | - | 0 | - | 30 | - | |
IfcWall * | 152 | 145 | 110 | 122 | 19 | 14 | 281 | 281 | |
IfcWallStandardCase | 141 | 145 | 110 | 122 | 19 | 3 | 270 | 270 | |
IfcWindow | 80 | 80 | 0 | 0 | 0 | 0 | 80 | 80 | |
Sub total | 540 | - | 255 | - | 36 | - | 831 | - |
Story 1 | Story 2 | Story 3 | Story 4 | Story 5 | ||
---|---|---|---|---|---|---|
House | Floor height (m) | 0.20 | 0.20 | - | - | - |
Wall height (m) | 2.70 | 3.50 | - | - | - | |
Gross height (m) | 2.70 | 2.00 | - | - | - | |
Institute | Floor height (m) | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Wall height (m) | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | |
Gross height (m) | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | |
Smiley | Floor height (m) | 0.25 | 0.18 | 0.18 | 0.18 | 0.20 |
Wall height (m) | 2.38 | 2.60 | 2.52 | 2.52 | NA | |
Gross height (m) | 2.56 | 2.78 | 2.70 | 2.70 | 2.70 |
(s-)LoD | Exterior | Interior | ||
---|---|---|---|---|
CityGML | Shapefile | CityGML | Shapefile | |
1 | ||||
2 | ||||
3 | ||||
4 |
(s-)LoD4 | (s-)LoD3 | (s-)LoD2 | (s-)LoD1 | |
---|---|---|---|---|
Shapefile | 1605.9 KB | 262.8 KB | 22.2 KB | 1.9 KB |
CityGML | 4099.5 KB | 283.4 KB | 16.1 KB | 7.4 KB |
CityGML * | NA | 716.8 KB | NA | NA |
Geospatial Industry (Traditional Surface-Based) | BIM/GIS Integration Approach | ||
---|---|---|---|
Traditional Approach (Surface-Based) | Proposed Approach (Solid-Based) | ||
Source model | High-LoD surface models | Solid models from BIM | Solid models from BIM |
Target model | Surface models | Surface models | Solid models |
Conversion type | Surface-to-surface | Solid-to-surface | Solid-to-solid |
Geometry conversion pattern | High-to-low LoD conversion [22] | 1. High-to-low LoD conversion [16] 2. Generation from parameters [6] | Generation from parameters [43,44,57] |
Information used | Geometric information | Geometric information and part of semantic information | Geometric information and full semantic information |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Wu, P.; Anumba, C. A Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS. Remote Sens. 2021, 13, 4727. https://doi.org/10.3390/rs13224727
Zhu J, Wu P, Anumba C. A Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS. Remote Sensing. 2021; 13(22):4727. https://doi.org/10.3390/rs13224727
Chicago/Turabian StyleZhu, Junxiang, Peng Wu, and Chimay Anumba. 2021. "A Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS" Remote Sensing 13, no. 22: 4727. https://doi.org/10.3390/rs13224727
APA StyleZhu, J., Wu, P., & Anumba, C. (2021). A Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS. Remote Sensing, 13(22), 4727. https://doi.org/10.3390/rs13224727