
remote sensing  

Article

PM2.5 Modeling and Historical Reconstruction over the
Continental USA Utilizing GOES-16 AOD

Xiaohe Yu 1 , David J. Lary 2,* and Christopher S. Simmons 3

����������
�������

Citation: Yu, X.; Lary, D.J.; Simmons,

C.S. PM2.5 Modeling and Historical

Reconstruction over the Continental

USA Utilizing GOES-16 AOD. Remote

Sens. 2021, 13, 4788. https://doi.org/

10.3390/rs13234788

Academic Editor: Hanlim Lee

Received: 29 October 2021

Accepted: 23 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Geospatial Information Science, The University of Texas at Dallas, Richardson, TX 75080, USA;
xxy160430@utdallas.edu

2 Hanson Center for Space Science, The University of Texas at Dallas, Richardson, TX 75080, USA
3 Cyber-Infrastructure & Research Services in the Information Technology Office, The University of Texas at

Dallas, Richardson, TX 75080, USA; csim@utdallas.edu
* Correspondence: David.Lary@utdallas.edu

Abstract: In this study, we present a nationwide machine learning model for hourly PM2.5 estimation
for the continental United States (US) using high temporal resolution Geostationary Operational
Environmental Satellites (GOES-16) Aerosol Optical Depth (AOD) data, meteorological variables
from the European Center for Medium Range Weather Forecasting (ECMWF) and ancillary data
collected between May 2017 and December 2020. A model sensitivity analysis was conducted on
predictor variables to determine the optimal model. It turns out that GOES16 AOD, variables from
ECMWF, and ancillary data are effective variables in PM2.5 estimation and historical reconstruction,
which achieves an average mean absolute error (MAE) of 3.0 µg/m3, and a root mean square error
(RMSE) of 5.8 µg/m3. This study also found that the model performance as well as the site measured
PM2.5 concentrations demonstrate strong spatial and temporal patterns. Specifically, in the temporal
scale, the model performed best between 8:00 p.m. and 11:00 p.m. (UTC TIME) and had the highest
coefficient of determination (R2) in Autumn and the lowest MAE and RMSE in Spring. In the spatial
scale, the analysis results based on ancillary data show that the R2 scores correlate positively with
the mean measured PM2.5 concentration at monitoring sites. Mean measured PM2.5 concentrations
are positively correlated with population density and negatively correlated with elevation. Water,
forests, and wetlands are associated with low PM2.5 concentrations, whereas developed, cultivated
crops, shrubs, and grass are associated with high PM2.5 concentrations. In addition, the reconstructed
PM2.5 surfaces serve as an important data source for pollution event tracking and PM2.5 analysis.
For this purpose, from May 2017 to December 2020, hourly PM2.5 estimates were made for 10 km by
10 km and the PM2.5 estimates from August through November 2020 during the period of California
Santa Clara Unite (SCU) Lightning Complex fires are presented. Based on the quantitative and
visualization results, this study reveals that a number of large wildfires in California had a profound
impact on the value and spatial-temporal distributions of PM2.5 concentrations.

Keywords: PM2.5 reconstruction; machine learning; GOES-16 AOD; California wildfire; ECMWF;
spatial-temporal analysis

1. Introduction

Aerosols are collections of solid or liquid particles suspended in the air [1]. Generally,
aerosol refers to airborne particulate materials that originate from a variety of sources, such
as fossil fuel, biomass burning, desert dust, and marine [2]. A number of environmental
issues are associated with aerosols, including haze, acid rain, and greenhouse effect [3–5].
Aerosol particulates vary in size and shape, such as PM2.5 (the particle diameter is 2.5 mi-
crons or less) and PM10 (the particle diameter is 10 microns or less). Among these aerosol
particulate types, PM2.5 raises the most research interest because of its inhabitable fine
size. It has been found that PM2.5 has a negative impact on human health and are linked
to many diseases such as lung cancer, asthma, and cardiovascular diseases [6–11]. These
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diseases can further cause behavioral effects, such as absenteeism and poor performance
at school [12–14]. Understanding the distribution of PM2.5 in a high temporal and spatial
resolution is essential to address health concerns.

Aerosol particles are usually too small to be seen by the human eye, but they exist
everywhere in the atmosphere with highly varying properties across space and time [1].
Because aerosols are highly inhomogeneous in space and time, continuous observation
is essential for a comprehensive study. In situ monitoring networks, such as the United
States Environmental Protection Agency (EPA) PM2.5 monitoring networks [2,15], which
include more than 500 sites across the country, are considered to be the most reliable type
of sources providing aerosol information. However, the sparse coverage and unbalanced
distribution of these monitoring networks do not provide sufficient data to determine the
public’s risk of exposure to PM2.5. Thus, a wide range of studies have been conducted to
either improve the scope and accuracy of PM2.5 acquisitions, or model and estimate PM2.5
concentrations by considering a variety of variables. The following section summarizes
some important trending PM2.5 studies.

1.1. An Overview of PM2.5 Modeling and Estimation Approaches

Some research focuses on increasing the number of monitoring networks to extend
the observation scope by utilizing machine learning [16–18]. For example, a machine
learning-based calibration method was used for low-cost airborne particulate sensors,
which helps to improve the measurement accuracy of cheap sensors and allows these
sensors to be a complementary monitoring network for environmental agencies [19]. This
research expands the scope of the currently available airborne particulates monitoring
networks and allows for a finer resolution on a regional scale.

On the other hand, some studies focus on fusing ground PM2.5 measurements and
satellite derived products for PM2.5 modeling and estimation [20–30]; of these studies,
some of the most comprehensive in terms of contextual variables considered were [20,21].
In addition to satellite variables, meteorological variables including relative humidity,
planetary boundary layer high, wind and direction, and the vertical aerosol structure
distribution are found to be important factors in PM2.5 modeling [27,28].

There have been studies that have explored machine learning methods for PM2.5 mod-
eling. Tree-based methods, deep networks, and the combination of traditional machine
learning methods with ancillary data were found to be effective methods in PM2.5 mod-
eling [22,29,31–35]. Statistical methods and physical or chemical theories based methods
were also found capable in PM2.5 modeling, such as the urban fine scale PM2.5 estimation
by using Landsat 8 images [36], Gaussian processes modeling in a Bayesian hierarchical
setting [10], long-term estimation using remote sensing products and chemical transport
models [37], and the estimating of PM2.5 using a hybrid method that combines multiple
sub-models [38].

These studies have one or more of the following three major limitations. First, the
relationship between PM2.5 concentrations and remote sensing data was explored at a local
scale or under strict assumptions, which is not easily extended to a larger scale. Second,
the low temporal resolution remote sensing product is used, which does not allow high
temporal PM2.5 estimation. Third, many influential factors are not considered, thus limiting
the representativeness of the model.

1.2. A Machine Learning Approach Using Data from Geostationary Satellites

Some of the widely used satellite products for PM2.5 estimation are summarized in
Table 8. Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible In-
frared Imaging Radiometer Suite (VIIRS) provide high spatial but low temporal resolution
Aerosol Optical Depth (AOD) products as a result of their polar orbit characteristics, pass-
ing through both poles in one rotation. The time interval between two satellite “brushes”
in a specific area causes the PM2.5 estimation gaps [28,29]. These temporal gaps pose
difficulties for applications and studies that need high temporal PM2.5 estimation, such as
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detecting extreme environmental pollution and human health research. In such circum-
stances, a geostationary satellite that is on orbit above the equator at a height of 35,786 km
and that follows the rotation of the earth would be able to obtain high-resolution spatial
and temporal data from the area being observed.

Using the data collected from May 2017 to December 2020, and building on the
approach used previously by [20,21], this study develops machine learning models for
estimating hourly PM2.5 concentrations at a 10 km spatial resolution. European Centre for
Medium-Range Weather Forecasts (ECMWF) meteorological parameters, Geostationary
Operational Environmental Satellites (GOES-16) AOD products, and ancillary variables are
collected for model training. Hourly observations from 586 EPAs collected across the US
along with GOES-16 AOD and ancillary variables as predictors allow PM2.5 estimations on
the continental US with unprecedented temporal resolution. Once the model is established,
the performances are evaluated on influential variables. In addition, historical hourly
PM2.5 surfaces are estimated and the historical surfaces under the influence of wildfires are
presented.

The contributions of this study can be summarized in these aspects. First, the GOES-16
continuously monitors the US territory and generates AOD surfaces every five minutes at
a native spatial resolution of two kilometers. By contrast to the widely used polar orbit
AOD product, such as MODIS, the high temporal resolution of the satellite enables the
estimation of PM2.5 surfaces covering the U.S. territory in a high temporal resolution. These
reconstructed PM2.5 surfaces across the country are valuable data sources for monitoring
high dynamic pollution events, such as wildfires, and for epidemiological studies in a con-
tinuous spatial domain. Challenges still exist because the training and the reconstruction
process is extremely computation intensive, in which hundreds of CPUs and multiple TB
of memory are required. Hence, the second contribution of the study comes in utilizing
multiple high performance computing platforms to make the hourly nationwide PM2.5
reconstructions from May 2017 to December 2020. These reconstructed PM2.5 surfaces are
also delivered in daily and monthly resolutions. The high platforms include the Texas
Advanced Computing Center (TACC) and the Texas Research and Educational Cyberin-
frastructure Service (TRECIS). Third, data from a wide range of predictor variables are
included, including data from ECMWF, location-specific solar angles, elevation, population
density, soil type, landcover type, and lithology (see Table 1). These predictors provide a
comprehensive description of the environmental and geological variations that are essential
to capture the PM2.5 variation in time and space, and thus enable a robust estimation model.
The model performances are systematically investigated by taking into account the time of
day, seasons, elevation, population density, and land cover type in order to gain a more
in-depth understanding of PM2.5 distribution patterns and their application potential.

Table 1. The predictor variables used for the nationwide PM2.5 study as well as their source and
descriptions are listed.

Source Var Name Description

ECMWF

u10 Eastward component of 10 m wind

v10 Northward component of the 10 m wind

d2m Dewpoint temperature at 2 m

t2m Temperature at 2 m

lai_hv Leaf area index, high vegetation

lai_lv Leaf area index, low vegetation

sp Surface pressure

blh Boundary layer hight
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Table 1. Cont.

Source Var Name Description

GOES-16
AOD Aerosol Optical Depth

DQF Data Quality Flag

Solar Angles
SAA Solar Azimuth Angle

SZA Solar Zenith Angle

Ancillary Data

popden Population Density

landcover Landcover Type

soil Soil Type

glim Global Lithology Type

gebco Elevations

2. Materials and Methods
2.1. Data Sources and Pre-Processing
2.1.1. Nation Level PM2.5 Ground Observations

The EPA provides PM2.5 ground observations for the past six months through the
AirNow API and all other historical PM2.5 archive data via the Air Quality System (AQS)
API. PM2.5 observations are collected at hourly intervals from 685 monitoring (see Figure 1)
sites between May 2017 and December 2020 through AQS APIs. The EPA has a long-
standing convention of allowing negative data into the AQS. If the atmosphere is very
clean and there is noise in the measurement, negative values could be generated due to the
equipment error, which are excluded in this research.

Figure 1. The map illustrates the 685 PM2.5 monitoring sites providing the training data.

2.1.2. ECMWF Grid

The ECMWF climate data store provides hourly ERA5 land reanalysis data from 1979
to present. The gridded EAR5 file comes in the GRIB format with a 0.1◦ × 0.1◦ horizontal
resolution and hourly temporal resolution in global coverage. Historical gridded EAR5
data from May 2017 to December 2020 are collected and matched with the PM2.5 grid.
A total of eight meteorological parameters have been selected for PM2.5 modeling and
estimation (see Table 1).
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2.1.3. GOES-16

GOES-16 AOD data are available every five minutes in NetCDF format on Amazon S3.
The raw data have its own GOES-R ABI fixed grid projection. The projection coordinate
system is converted to a geographic coordinate system based on the perspective point
height and sweep angle axis information in the metadata before any value can be from the
file. AOD’s values are ready to be retrieved after the conversion is complete. The AOD
and the Data Quality Flag (DQF) from May 2017 to December 2020 are retrieved from
AWS in 2 km spatial resolution and 5 min temporal resolution. For matching purposes,
the projection coordinate system is converted from a fixed grid projection to a geographic
coordinate system.

2.1.4. Ancillary Data

Different types of ancillary data were used in the study, including solar angles, land-
cover, soil types, lithology types, and Gebco elevations (see sample images in Figure 2). The
data were in different spatial extents and projection coordinate formats. Before aligning
these ancillary data with the PM2.5 values, pre-possessing work is completed, including
data cropping and coordinate conversion. The solar azimuth angle and solar zenith angle
are calculated according to geographic placement and time.

Figure 2. The ancillary raster images which include landcover, elevation, soil type, lithology, and
population density.

2.2. Data Matching

EPA ground observations, ECMWF meteorological data, and AOD from GOES-16 are
all collected at different times and in different formats. It is necessary to match up these
datasets into a consistent timetable for model training. Figure 3 illustrates the three stages
of the data matching process. In stage 1, the coordinates and the time stamp information of
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each PM2.5 ground observation are retrieved, which are used as query parameters to obtain
AOD, meteorological parameters from GOES-16 and ECMWF respectively based on the
nearest search method. During Stage 2, a grid of 10 × 10 km is generated and overlaid on
the matched data, and the values within each grid cell are averaged. In stage 3, the ancillary
data including solar zenith angle, solar azimuth angle, population density, landcover, soil
type, lithology and elevation information are aligned with each grid cell.

Figure 3. An overview of the three stages of data matching and gridding.

In stage 1, there are always grid pixels from AOD and ECMWF that do not perfectly
match the coordinate and timestamp from the PM2.5 observations. In these cases, the
nearest search method is used. As a specific example, in the temporal domain, PM2.5
observations and the ECMWF are recorded hourly, while the AOD is recorded every five
minutes. Consequently, the AOD, a file whose timestamp is closest to the PM2.5 observation
timestamp, is selected for matching. In the spatial domain, both the AOD and ECMWF
surfaces are composed of equal distance grids. Each grid’s coordinates are assigned at its
grid center. As a result, a perfect coordinate match between PM2.5 and grid files is a rare
case. Practically, a nearest search method is adopted to match the values between these
data sources by adding a distance tolerance value. Tolerance values are defined as the
same as the resolution of target files. Once the matching is complete, a timetable containing
PM2.5 observation values, meteorological factors, and AOD is generated. The observations
with failed matching values are deleted.

2.3. Experiment Design

In order to investigate the effectiveness of selected variables in the PM2.5 modeling,
four types of models with different predictor variables were developed—the base model,
the AOD model, the ancillary model, and the full model. Only ECMWF meteorological
variables are used as predictors in the base model. In addition to the ECMWF variables, the
AOD model includes the AOD product from GOES-16 as an additional predictor. Rather
than the AOD product, variables from ancillary sources are used as predictors in the
ancillary model. Finally, all the variables discussed are included in the full model. Once the
hyper-parameters have been optimized using the 10-folder cross-validation technique, the
best model with its optimized parameters is finalized and validated on the training and test
datasets. Then, the performance of the model is examined on a temporal and spatial scale.

A gridded timetable is generated from the three-stage matching process. The timetable
includes 1,420,810 entries between May 2017 and December 2020, and includes all the
variables that are listed in Table 1. The timetable is divided into training and testing groups
with a 90/10 ratio for machine learning model training and testing. Based on the choices of
predictors, four types of machine learning models are developed. The hyper-parameter
optimization is implemented on the four models based on a 10-fold cross-validation
optimization technique. In this process, the training set has been split into 10 groups.
Among each unique group, one group is held out and the remaining groups are used as
training data. Then, a model is fitted on the training set and is evaluated with the hold out
dataset. The performance of the model is summarized after ten iterations. As a result, the
best performing predictors and hyper-parameters are utilized to establish a final model on
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the entire training dataset. Validation of the model is performed on the test dataset once
it has been finalized. Validation results, including the Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and the R2, are analyzed spatially and temporally. Figure 4
shows the workflow including the process of model training, validation, hyperparameter-
optimization, and testing.

Figure 4. The flow chart illustrates the process of model training and finalization.

2.4. Machine Learning Approach

In PM2.5 modeling and estimation, various approaches have been employed, which
can be divided into statistical and machine learning approaches. The statistical approach
achieves relatively high model accuracy; however, they have strict assumptions, which
limit their applicability. On the other hand, machine learning applications in environmental
studies remain an active research topic [39,40], particularly for air pollution issues due to its
non-parametric features and efficiency. PM2.5 concentration could be affected by a number
of factors, including, but not limited to, the variables in Table 1. Its non-parametric nature
enables the machine learning approach to be an effective PM2.5 study method due to the lack
of theories that describe the correlation between variables and PM2.5 concentrations. The
most common ones are deep neural network, XGBoost, random forest, and neural network.
Among these approaches, tree-based approaches including random forest, Boosting tree,
and Bagging tree have unique advantages in PM2.5 studies in three aspects. In the first
place, it provides an explanation of the contribution each predictor variable makes to the
model. Secondly, it is faster than other machine learning approaches when dealing with
large datasets. Third, the ensemble of weak learners is effective in controlling variance
and bias [41]. A total of 1,420,810 observations with 17 predictor variables are used in
this study for model training and testing. The 17 predictor variables were collected from
different sources with different spatial and temporal resolutions. As a result, noise could
get introduced as the data are matched and gridded. Hence, the extra tree regressor (ET),
a variation of tree-based ensemble methods based on random forest, is utilized for PM2.5
modeling for the three considerations. First, ET has been explored in some regional PM2.5
studies [42], and turns out to be an effective method in PM2.5 modeling based on AOD and
meteorological variables. However, its application potential with various predictors from
different sources over the entire US are under explored. Second, ET introduces a greater
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randomness to the system than random forest, making it more effective at controlling
variances and bias, as long as fewer irrelevant predictor variables are included in [43].
Thirdly, ET is faster than random forest by bypassing the optimal split point searching
process. Random forest and ET are compared in details below.

2.4.1. Random Forest

A random forest is an ensemble of decision trees. Each tree in a random forest model
provides a prediction output independently, and the prediction with the most votes or the
average of all predictions is the final prediction output. The advantage of random forest
over decision trees is its ability to generate less biased prediction results by aggregating
the output from many low-correlated tree models, thereby making tree model errors
compensate for each other and contributing to the overall direction of the model [41]. The
key to an effective random forest is the low correlation between the tree models. In the
case of high correlations, the random forest model would not benefit from the ensemble
approach and would produce similar results with individual trees. The Bagging technique
(bootstrap aggregation) is used for model training. Instead of dividing the whole training
dataset into K chunks in K-cross validation, bagging randomly draws N (the same number
as the size of the training dataset) samples from the training dataset with replacement
and feeds that N training data to each tree model. Moreover, feature bagging, which is
also known as “feature selection”, is also used to generate feature randomness. Usually,
features are chosen randomly (from the whole feature pool) for each tree within the random
forest model.

2.4.2. Extra Tree

The extra tree and random forest are both ensemble methods of decision trees, but
differ mainly in two aspects. On one hand, as an alternative to bootstrapping with re-
placement in a random forest, extra tree trains each individual tree model using the entire
learning sample, helping to reduce bias. On the other hand, unlike a random forest, which
selects the optimal local cutting point based on information gain, the extra tree selects the
cut-points randomly. Then, out of all these randomly chosen cut-points, the one that yields
the most accurate result is chosen as the cut-point of the tree learner. It skips the process
of cut-point optimization, which helps to reduce the model variance and speeds up the
tree-building process [43].

3. Results
3.1. Model Comparison and Finalization

Four types of models with different predictor variables are established (Table 2). The
hyper-parameters of these models are optimized through Bayesian Optimization based
on 10-fold cross-validation. More specifically, the training dataset is divided into ten
folds, nine of which are used to train the model and one fold is used for validation. In
each hyper-parameter setting, the model performances are evaluated by repeating the
10-fold cross-validation process three times. The optimization process has 20 iterations,
and 10 evaluations are made during each iteration. When the optimized hyper-parameters
have been determined, the 10 R2 scores for each model type with the best hyper-parameter
settings are plotted in Figure 5. The mean and standard deviation of the R2 scores are
summarized in Table 2. The base model has the lowest R2 score of all four model types.
Both ancillary data and the AOD product could improve the performance of the base
model. The full model with all the variables has the highest overall R2 score. Once the best
model type is identified, it will be trained on the entire training data with the optimized
hyper-parameter settings.
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Figure 5. Box plot for the R2 scores from the 10-fold cross-validation with the optimized hyper-
parameters. The orange line represents the median; the green triangle represents the mean; the
box represents the inter quantile range (IQR); top and bottom short lines correspond to the 1.5 IQR
extension of the first and third quantiles, respectively.

Table 2. Predictor variables sources as well as the 10-fold cross-validation results are listed. The
Mean R2 represents the average value of the 10 R2 scores with the best hyper-parameter settings, and
the STD represents the standard deviation of the 10 R2 scores for each model.

Model Name ECMWF AOD Ancillary Mean R2 STD

Base Model X 0.467 0.012
Base_Ancillary Model X X 0.532 0.01
Base_AOD Model X X 0.538 0.01
Full Model X X X 0.586 0.01

A predictor importance rank chart is plotted once the model is finalized to illustrate
the importance of all variables in the full model (see Figure 6; variable names can be found
in Table 1). A tree model’s importance value indicates its ability to reduce impurities across
the entire training dataset. Variables with a high importance score contribute more to
model prediction than variables with a low importance score. As in the figure, the top
6 variables are AOD, temperature, dewpoint, boundary layer height, wind magnitude, and
the month of the year.

Figure 6. The predictors importance plot. Red and orange bars represent the top six important
variables. Names on the y-axis are the abbreviation for predictor variables and the values on the
x-axis represent the importance score. These variables in this plot are described in Table 1.
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3.2. Model Validation by Seasons

Once the model is finalized by training on the entire training dataset, it will be
validated on the testing data in the temporal and spatial scale. Multiple scatter plots are
generated between the estimated PM2.5 concentrations and the monitor measured PM2.5
values. There are a total of 142,081 PM2.5 values in the testing data set, and most of the
values are within the range of 0 to 40. To better visualize the large number of overlapped
points, the color-adjusted density distributions are represented by the power unit based on
a color gradient from white to black.

Figure 7 displays the seasonal scatter diagrams. The overall performance of ET is
reasonable, with MAE, RMSE, and R2 values of 3.0 µg/m3, 5.8 µg/m3, and 0.58, respectively.
Based on these metrics, model performance varies from season to season. In Autumn, R2

reaches a maximum of 0.62 and decreases to 0.47 in Spring, whereas MAE and RMSE are
relatively high in Autumn and low in Spring.

Figure 7. The seasonal scatter diagrams on the testing dataset. The x-axis represents the estimated
PM2.5 values and the y-axis represents the monitor measured PM2.5 values. Blue line and red line are
the 1:1 reference line and the fit line, respectively. The gradient color from white to back represents
different points densities. The four scatter diagrams are for the four seasons and the top one is for all
seasons. N, MAE, RMSE, and R2 represent the number of observations, mean absolute error, root
mean square error, and the determination of correlation coefficient, respectively.
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To examine the spatial distribution of model estimation residuals, four MAE maps
corresponding to the four seasonal scatter plots (Figure 7) are generated in Figure 8. The
dots in the maps represent monitor stations, and the colors indicate their MAE values. The
MAE distribution patterns varies with seasons. During the spring and winter, MAE values
do not display high spatial variation, while high MAE clusters appear during the summer
and autumn in California, Washington, and Montana. The most obvious MAE clusters in
the three states are found in Autumn.

Figure 8. The seasonal site based MAE maps. Different colors of dots represent the MAE values of
each monitoring station. The four maps correspond to the station based MAE value distributions
in Spring (March to May), Summer (June to August), Autumn (September to Nov), and Winter
(December to February).

3.3. Model Validation by Time of Day

AOD from GOES-16 is only available during the daytime, and the quality and avail-
ability of data greatly depend on the time of day. Because of this, the model performance is
analyzed according to the time of day in UTC. Sixteen of the 24 h are included for analysis,
while the remaining eight hours (UTC: 2:00 a.m.–9:00 a.m.) are removed since AOD is not or
barely available during these U.S. night hours. As in Figure 9, the values of R2, MAE, RMSE
range from 0.35 to 0.74, 2.7 to 3.6, and 4.3 to 7.5, respectively, at different hours. In terms of
R2 scores, the model has the best performances at UTC 8:00 p.m.–11:00 p.m. (R2 ≥ 0.68)
and has the worst performances at UTC 11:00 a.m.–1:00 p.m. (R2 ≤ 0.4). In terms of MAE,
the model has the best performances at UTC 8:00 p.m.–11:00 p.m. (MAE ≤ 2.8) and worst
performances at UTC 1:00 p.m.–2:00 p.m. (MAE ≥ 3.3). In terms of RMSE, the model has
the best performance at UTC 10:00 a.m. with a RMSE of 4.3, and the worst performance at
UTC 2:00 p.m. with a RMSE of 7.5.

3.4. Model Validation by Ancillary Data

In this study, ancillary data are incorporated for PM2.5 estimation. Model performance
metrics as well as monitoring stations distribution maps on elevation, population density,
and landcover types are generated to better explore the relationship between ancillary data
and model performance.

3.4.1. Model Validation by Elevation and Population Density

Population density and elevation have been investigated in relation to PM2.5 concen-
trations [44,45]. To better explore the model performance on these factors, the performance
metrics as well as the ground observations are summarized in Tables 3 and 4. Jenk’s natural
break method was used to sort and divide the elevation and population density values
of the 685 stations into six bins. The values in the Breaks column are the upper bounds
of each bin and the unit is km for elevation bins and person/km2 for population density
bins. Then, the measured mean (MM), MAE, RMSE, and R2 are calculated for each bin. N
represents the number of observations from all the monitoring stations within each bin.
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Figure 9. Scatter diagrams (same as Figure 7) for the model estimations classified by the time of day.
Each plot corresponds to an hour.

Table 3. The model performance is summarized by elevation bins. Breaks are the upper bound
of each bin and MM are the measured mean PM2.5 values. MAE, RMSE, and R2 are the model
performance metrics for all sites in each bin. N represents the number of observations gathered from
the sites in each bin.

Bin Breaks (m) MM (µg/m3) MAE RMSE R2 N

1 121 9.5 3.2 6.2 0.63 53,668

2 271 8.9 3 5.1 0.54 43,415

3 538 7.8 2.7 4.7 0.47 28,284

4 976 7.1 2.8 4.9 0.67 8362

5 1444 8.2 3.1 5.6 0.64 3861

6 3021 8.3 3.1 8.6 0.53 4411

Table 4. The model performance summarized on population density bins. The meaning of MM,
MAE, RMSE, R2, and N are the same as in Table 3.

Bin Breaks (Person/km2) MM MAE RMSE R2 N

1 957 8.7 3 5.6 0.56 67,034

2 2413 8.6 3 6 0.56 41,015

3 4065 9.1 2.8 4.9 0.73 21,309

4 6467 9.2 3.1 5.7 0.61 8294

5 13,254 9.4 3 5 0.62 2007

6 22,391 8.2 2.5 3.5 0.44 230

As in Table 3, the measured mean PM2.5 values are decreasing as the elevation value
increases for the first four bins. For bins 5 and 6, the high elevation stations also have high
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mean measured PM2.5 values. For population density (Table 4), high population density
bins are associated with high MM and R2 values for the first five bins. Bin 6 is an exception,
as it has the highest population density, but the lowest MM and R2 values. An interesting
observation is that high R2 scores are not always associated with low MAE and RMSE.

To better understand the bins with unusual high or low values, two maps are plotted
in Figure 10 to show the spatial distributions of sites in these bins. Figure 10a shows the
high-elevation stations with unusual high PM2.5 concentration values, which are located
in the Rocky Mountains, New Mexico, and California. Stations with high population
density are commonly near major cites and typically have higher PM2.5 concentrations than
stations with low population density. However, the stations with high population density
in bin6 are observed to have lower PM2.5 concentrations than expected. After investigating
Figure 10b, it turns out that the two monitoring stations in bin 6 are located near New
York City and Boston. Two factors can account for the population density and low MM
values of bin 6 high. First, Bin 6 contains 230 samples, which is too few for representational
validation. As a second reason, the two stations are located close to the east coast, where
the coastal breeze alleviates the PM2.5 concentrations.

(a) (b)
Figure 10. The monitoring sites distributions. (a) shows the sites distributions for the two bins
with the highest elevations; (b) shows the sites distributions for the bin with the highest population
density.

3.4.2. Model Validation by Landcover

Landcover types have been identified as an important factor affecting PM2.5 concentra-
tions [46]. For this reason, landcover data are collected from National Land Cover Database
(NLCD) as a part of the PM2.5 study’s predictors. A total of 16 landcover types are included
in the landcover dataset, which are regrouped into 8 main types in this study due to the
similarity of some categories and the uneven distribution of samples in each category (see
Table 5).

The machine learning model performance is evaluated by considering its landcover
categories. According to Table 5, among the eight landcover types, water, forests, and
wetlands have the lowest MM values, while cultivated crops, shrublands, and grasslands
have the highest MM values. The developed category, which includes low, open space,
medium intensity, and high intensity developed areas, ranks fourth in MM values. There is
a direct correlation between high MM values and high MAE and RMSE across all land types.
Although the value of MAE and RMSE are not found to be consistently related to R2, the
three largest R2 values (0.62, 0.6, 0.58) have been observed to be connected with the three
large MM values (10.1 µg/m3, 8.8 µg/m3, 9.2 µg/m3). For a better understanding of how
landcover types differ spatially, Figure 11 is plotted to show landcover type distributions.
As in Figure 11a, forest, wetland stations are mainly in the east of the US; pasture and water
stations are located in the middle and east of the country; cultivated and developed stations
spread out the country; and shrubland and grassland are located in the west. Figure 11b
shows the location of shrubland and grassland stations only. Shrubland and grassland
have demonstrated the ability to sequester pollutants, thereby improving air quality [47].
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However, the results found in this study contradict the theory due to the location of the
shrubland and grassland stations. Training and testing data were collected from May 2017
to December 2020, a period during which 8 out of the top 20 fire events in California history
occurred (see Table 6). Thus, those monitoring stations clustered in California that have
specific landcover types have higher MM values than expected.

Table 5. The model performance summarized on landcover types. The meaning of MM, MAE, RMSE,
R2, and N are the same as in Table 3.

Landcover Type MM (µg/m3) MAE RMSE R2 N

Water 7.6 2.5 3.6 0.52 3205

Forest 7.7 2.6 4.1 0.55 8111

Wetland 7.7 2.7 3.9 0.48 1881

Hay/Pasture 8.3 2.9 4 0.46 3079

Developed 8.8 2.9 5.4 0.6 111,585

Cultivated Crop 9.2 3.5 6.3 0.58 6100

Shrub 9.6 4.4 9.9 0.54 3895

Grass 10.1 4.2 9.6 0.62 3650

(a) (b)
Figure 11. The monitoring sites distributions by landcover types. (a) shows the sites distributions for
all of the eight landcover types, and the (b) shows the sites distributions for the the two landcover
types with the highest MM values.

Table 6. The eight top ranked fire events in California between July 2017 and December 2020.

Main Fires Start Date

AUGUST COMPLEX 20 August
MENDOCINO COMPLEX 18 July
SCU LIGHTNING COMPLEX 20 August
CREEK 20 September
LNU LIGHTNING COMPLEX 20 August
NORTH COMPLEX 20 August
THOMAS 17 December
CAAR 18 July

According to the results, sites within or near California tend to have higher MM
values. Some of these can be attributed to population density and elevation, but some can
be caused by fire events. PM2.5 data that are collected during California fire events between
May 2017 and December 2020 have been separated from others to investigate the effect
of fires on MM values. Figure 12A shows the measured mean PM2.5 concentrations for
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each site, including observations with and without fire events. In California, there are the
highest site values, as well as the largest number of high value sites. Then, the observations
during the period of fire events (Table 6) are separated and plotted in Figure 12B. Sites in
California have a significant amount of high PM2.5 sites, as shown in the map. Figure 12C
shows the mean site values during the period without fire events. As shown in the map,
after excluding the observations during the California fire periods, mean site values have
dropped significantly compared to those in Figure 12A.

The measured PM2.5 of each site with and without the California fires are summarized
in Table 7, respectively. During fire periods, the site mean PM2.5 values are significantly
higher than the value during non-fire periods. This agrees with the map in Figure 12.

Figure 12. The site measured mean PM2.5 values in fire and non-fire cases during July 2017 to
December 2020. (A) is the measured mean values for all time; (B) is the measured mean values
during fire events; and (C) is the measured mean values for the period without fire events.

Table 7. The mean, median, and standard deviation (µg/m3) of the measured PM2.5 values, which
are calculated during the period of fire only, non-fire, and all time. These metrics are summarized in
CA and Nationwide, respectively.

CA Nationwide

Cases Mean Median Std Mean Median Std

Fire 17.6 15 11.8 9.8 8.7 5.7

Without Fire 9 8.2 3.5 7.7 7.6 2.4

ALL 11.7 11 4.6 8.4 8.2 2.9

3.5. PM2.5 Reconstruction and Fire Events Visualization

The study’s primary innovation is the use of the AOD product from the GOES-
16 geostationary satellite, which allows the reconstruction of PM2.5 at a high temporal
and spatial resolution during the daytime. Although the AOD products from polar orbit
satellites, such as MODIS and VIIRS, also have high spatial resolution, their coarse temporal
resolution makes them only ideal for modeling, but not for PM2.5 estimation in a high
temporal manner. The temporal and spatial resolutions for the common instruments are
summarized in Table 8.
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Table 8. AOD product platforms and instruments are summarized. Geos represents Geostationary orbit.

Platform Instrument Spatial Resolution Temporal Resolution Orbit

Terra/Aqua MODIS 10/3/1 km 1 to 2 days Polar

Suoni NPP VIIRS 0.75/6 km 12 h Polar

Himawari8 AHI 2 km 10/2.5 min Geos

GOES-16 ABI 2 km 5 min Geos

In this section, the established machine learning model is used to reconstruct the
daytime hourly PM2.5 concentrations on 10 km by 10 km grids between 2017 and 2020.
Due to large spatial coverage gaps in AOD data, the reconstructed PM2.5 surfaces prior
to 2018 have been removed. Raw outputs cover the daytime period of the US at hourly
intervals. However, the area covered varies significantly by time of day. Therefore, a daily
and monthly average is derived from the hourly estimations. The air quality has been
impacted by several fires that top the California fire history ranking in the years between
2017 and 2020 (see Table 6). Depending on the fire emissions and atmosphere condition,
fire can inject a long distance into the air and migrate with wind. A large area could be
polluted, and chronic diseases’ risks would increase [48–50]. Four of these fires occurred
between July and October of 2020. Therefore, PM2.5 surfaces during this time range are
constructed at hourly intervals to track the air pollution caused by fire, which serve as a
valuable data source for studies related to fire pollution and human health. The hourly
PM2.5 reconstruction surfaces are then averaged daily and monthly to capture the PM2.5
concentrations dynamically as the fire propagates.

Map visual interpretation can be affected by the color bar range selection. According
to the WTO guide, the PM2.5 concentration above 25 µg/m3 in 24 h mean could cause a high
risk of health effect [51]. Thus, the 25 µg/m3 is used as the upper bound for visualization,
which also turns out to be effective to separate fire related high PM2.5 concentration zones
from others.

The Santa Clara Unit (SCU) Lightning Complex fire is the third largest fire in California
history, which is ignited by dry lightning. It started on 16 August and was contained in
early October. Figure 13 includes the reconstructed PM2.5 estimation surfaces on the
several days before and after the start of the fire. As in the figure, the PM2.5 estimation
surface on the 15th does not have obvious high pollution zones before the fire starts. The
estimated surfaces on 16 January and 17 January, at the time of the lightning strikes, show
some high PM2.5 concentration spots in California. Starting from the 18th, the high PM2.5
concentration zones are expanding and migrating to the states in the northeast direction
on the 19th and 20th. On 19 August, a high concentration zone was captured in Colorado,
which corresponds with the fact that Deter-Winters and Shamrock fires occurred on the
same day in Colorado.

Figure 14 shows a set of monthly averaged PM2.5 estimation surfaces covering the SCU
Lightning Complex. The SCU Lightning Complex fire started in August, and the estimated
surface in August indicates a high concentration of PM2.5 in California, and extends to the
western states. Deter-Winters and Shamrock, two smaller Colorado fire events, are also captured
as small red patches. As the SCU Complex fire spreads in September, the polluted area reaches
the maximum, including Washington, Montana, Wyoming, Arizona, Utah, Colorado, among
others. In addition, in September, two additional fire events named Middle Fork and East
Troublesome occurred in Colorado and resulted in high PM2.5 concentrations on the map.
Having contained the SCU Lightning Complex fire in October, the fire’s impact (yellow on map)
on the high PM2.5 area has been dramatically reduced. In November, the fire’s influence on air
quality is almost gone and most states are back to their normal PM2.5 levels.
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Figure 13. The 10 km × 10 km daily averaged PM2.5 reconstruction surfaces from 15th to 20th of
August 2020. Red colors depict the area with PM2.5 concentration above the 25 µg/m3 threshold.

Figure 14. The 10 km × 10 km monthly averaged PM2.5 reconstruction surfaces in August, September,
October, and November in 2020.

4. Discussion

In this study, the hourly PM2.5 concentrations from in situ monitoring observations as
well as meteorological variables from ECMWF analyses, remotely sensed GOES-16 AOD,
and ancillary data from May 2017 to December 2020 are utilized for machine learning model
training. The extra tree is employed due to its satisfactory performance in previous studies
and its high computational efficiency. Comparing the four models with different predictor
variables using the 10-fold cross validation, AOD and the variables from ancillary data were
found to be able to improve the model performance significantly. Among all the variables,
the AOD, temperature, dewpoint, wind magnitude, and boundary layer height have the
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most contributions to the model prediction, and the ancillary data as well as solar angles
also contribute to the model performance. The finalized model has an overall performance
of 3.0 µg/m3, 5.8 µg/m3, and 0.58 as of MAE, RMSE, and R2 on the testing dataset. During
the validation process, the monitoring sites in the west-coast and north-west have higher
MAE values than the other monitoring sites. The MAE and RMSE tend to be higher in
winter than in other seasons. Analyzed by the time of day, the model performs best from
8:00 p.m. to 11:00 p.m. UTC (afternoon in north America). As a result of evaluating
based on ancillary data, it appears that the measured mean PM2.5 concentration values
of each monitoring site are positively related to the population density and negatively
related to the elevation. Some of the exceptions with unusual high or low PM values can
be explained by the fire events in high elevation area, as well as the special meteorological
conditions in near sea locations. The lowest site mean PM2.5 values are associated with
water, forest, and wetland landcover types, whereas developed, cultivated crop, shrub, and
grass are associated with the highest PM2.5 concentrations. After investigating the spatial
distribution of shrubland and grassland, the unusual high PM2.5 concentrations are related
to a series of wildfires that happened in California between 2017 and 2020. Furthermore,
the model MAE, RMSE, and R2 scores are positively correlated with the MM values of each
site, which challenges the expectation that high R2 is always correlated with low MAE
and RMSE. The results are consistent with many previous studies, which have shown that
studies in high PM2.5 areas (such as China) tend to achieve higher model R2 scores than
those in low PM2.5 areas (such as US).

The established machine learning model allows reconstruction of PM2.5 estimation
surfaces at the hourly, daily, and monthly levels. These estimated surfaces are important
data sources for PM2.5 monitoring, especially in tracking the PM2.5 changes in a high
temporal manner. The reconstructed PM2.5 estimation surfaces during the California fire
event match the timeline of the SCU Lightning Complex fire propagation process. There
are several monitoring sites showing unusually high levels of PM2.5, which appear to
have been affected by the fire, including the high elevation sites in Figure 10a and the
shrub/grass landcover sites in Figure 11b.

5. Conclusions

Many factors influence PM2.5 concentrations, including, but not limited to, mete-
orological conditions, democratic features, topography environments, and geological
circumstances. The relationship between these factors and PM2.5 concentrations varies
significantly in time and space. Therefore, the inclusion of ancillary data describing these
factors over a period as long as possible is essential for developing a robust PM2.5 and
representative model. GOES-16’s AOD product is another important data source that can
enhance model performance. Its geostationary characteristics also allow the reconstruction
of PM2.5 estimation surfaces in a highly dynamic manner, which is very beneficial for
tracking air pollution events, such as wildfires. The comprehensive spatial coverage and
the high temporal resolution of meteorological variables from ECMWF and AOD make the
reconstruction of historical PM2.5 surfaces possible. These reconstructed PM2.5 surfaces
become an important data source for those air pollution related epidemiological studies,
such as asthma and acute respiratory distress. Compared to traditional PM2.5 monitoring
sites, these reconstructed PM2.5 surfaces are continuous in space with a high frequency
in time.
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