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Abstract: Compared with traditional optical and multispectral remote sensing images, hyperspectral
images have hundreds of bands that can provide the possibility of fine classification of the earth’s
surface. At the same time, a hyperspectral image is an image that coexists with the spatial and
spectral. It has become a hot research topic to combine the spatial spectrum information of the image
to classify hyperspectral features. Based on the idea of spatial–spectral classification, this paper
proposes a novel hyperspectral image classification method based on a segment forest (SF). Firstly,
the first principal component of the image was extracted by the process of principal component
analysis (PCA) data dimension reduction, and the data constructed the segment forest after dimension
reduction to extract the non-local prior spatial information of the image. Secondly, the images’ initial
classification results and probability distribution were obtained using support vector machine (SVM),
and the spectral information of the images was extracted. Finally, the segment forest constructed
above is used to optimize the initial classification results and obtain the final classification results.
In this paper, three domestic and foreign public data sets were selected to verify the segment forest
classification. SF effectively improved the classification accuracy of SVM, and the overall accuracy of
Salinas was enhanced by 11.16%, WHU-Hi-HongHu by 15.89%, and XiongAn by 19.56%. Then, it
was compared with six decision-level improved space spectrum classification methods, including
guided filtering (GF), Markov random field (MRF), random walk (RW), minimum spanning tree
(MST), MST+, and segment tree (ST). The results show that the segment forest-based hyperspectral
image classification improves accuracy and efficiency compared with other algorithms, proving the
algorithm’s effectiveness.

Keywords: hyperspectral image; image classification; decision-level fusion; segment forest

1. Introduction

Hyperspectral image (HSI) is widely used in target detection [1], land cover classi-
fication [2], stereo matching [3], and other fields with strong ground object recognition
and great classification ability with nanoscale spectral resolution. Remote-sensing research
focusing on image classification has long attracted the attention of the remote-sensing
community because classification results are the basis for many domanial applications [4].
Traditional machine learning algorithms are widely used in hyperspectral image clas-
sification, such as the multi-classification support vector machine (SVM) [5], to build a
hyperplane as a decision surface to achieve classification. Its advantage lies in the limited
training set. SVM showed the best generalization ability. Active learning (AL) [6], as a
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semi-supervised machine learning method, can obtain better hyperspectral classification
results in the case of limited sample sets by iteratively inputting unlabeled samples into
the training set. Other machine learning algorithms such as logistic regression (LR) [7],
artificial neural networks (ANNs) [8], kernel sparse representation classification (KSRC) [9],
etc., have achieved a good classification effect.

In addition to providing rich spectral information, the hyperspectral image also has
problems such as low signal-to-noise ratio and great data redundancy. In addition, the
Hughes phenomenon may occur in the process of classification (that is, when the number
of training samples is limited, the classification accuracy increases with the increase in the
number of image bands; after reaching a certain extreme value, the classification accuracy
decreases with the increase in the number of bands). Therefore, many dimensionality
reduction methods for HSI data have been proposed. Feature selection methods are
mainly divided into two categories: feature extraction (FE) and dimension reduction (DR).
Feature extraction refers to the mapping of data from high-dimensional feature space
to low-dimensional subspace. Commonly used feature extraction methods include: CA
(canonical analysis) [10], PCA (principal component analysis) [11], linear discriminant
analysis (LDA) [12], etc. Feature selection is to select some bands from all bands based
on the needs of data users, such as the band selection based on spatial autocorrelation
in [13] or the embedded band selection scheme proposed in [14]. Data dimension reduction
retains the main information of hyperspectral data while reducing the dimension of feature
space, which is a vital preprocessing technology for hyperspectral images.

Image classification using only spectral information can no longer meet the needs
of image classification. Traditional machine learning algorithms only use the spectral
information of the image but ignore the rich spatial information contained in the image.
The spatial information of the image includes the position of the object in the image, the
spatial relationship between the objects, and the internal texture of the object. The addi-
tion of spatial information makes the classification technology of remote sensing images
achieve better classification results, especially making the classifier have good noise re-
sistance. Spatial–spectral hyperspectral image classification methods are categorized into
feature-level fusion, decision-level fusion, and deep learning. The main idea of feature-
layer fusion is to input the extracted texture features and image spectral data as part of
the image into the classifier. For example, the gray-level co-occurrence matrix (GLCM)
extracts image texture information and combines spectral information to improve clas-
sification accuracy [15]. Another feature-layer fusion, such as the classification method
based on sparse representation [16], can effectively extract the image’s spatial information
by combining the image’s multi-scale information, thus improving the classification ac-
curacy. Decision-level fusion is to cascade the probabilistic output of each classification
pipeline and use soft-decision fusion rules to merge the results of classifier integration [17],
such as guider filter (GF) [18], Markov random fields (MRF) [19], and random walker
(RW) [20]. GF as a local method, window size selection is particularly critical. MRF is
a global method, but it is difficult to calculate the penalty coefficient in estimating the
spatial relationship. As a worldwide method, RW also has a relatively good performance in
terms of accuracy. However, the algorithm needs to calculate large sparse linear equations
about data, which leads to a tremendous amount of calculation and is not friendly to
hyperspectral images with a large amount of data. Finally, while the traditional methods
encounter bottlenecks due to limited data fitting and representation capabilities, the deep
learning method obtains good classification results due to the extraction of high-frequency
information (including spatial information) of images, such as CNN [21]. Autoencoder
is used to enhance HSI nonlinear features and shallow CNN is used to extract features
and apply them to HSI classification [22]. In addition, [23] proposed a HSI classification
method based on a multi-view deep autoencoder model. The feature of the method is that
a small amount of training data can be used to integrate image spectral information and
spatial information, and the method has achieved a good classification effect. Cao et al. [24]
proposed a new supervised HSI segmentation algorithm based on deep learning and MRF
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under the unified Bayesian framework. However, models generated by deep learning are
complicated to explain, resulting in poor mobility of the algorithm. Moreover, due to the
high cost of acquiring image mark samples and the high requirement of training samples’
numbers, the application of deep learning in hyperspectral image classification algorithm
is limited. In addition, the vast data volume of remote sensing images also challenges the
time efficiency of classification algorithms. In view of a large amount of calculation and
data of remote sensing images, [25,26] analyzed the global discrete grid system in the cloud
computing environment and proposed an optimization method for the time efficiency of
remote sensing images.

The minimum spanning tree (MST) [27] proposed an idea to analyze the connections
between pixels to obtain spatial information. Segment tree (ST) [28] realizes classification
by changing the rules of the spanning tree based on MST. ST generates a tree from all
the points in the image. Although there are very few tree connections between different
categories, these connections lead to the interaction and influence between different types in
filtering, thus affecting the final classification results. Inspired by ST, this paper realized the
classification of segment forest (SF) hyperspectral images. Based on the initial classification
results, SF extracted spatial information from hyperspectral images after feature extraction
to optimize the classification results. Experiments show that the SF algorithm has improved
classification accuracy and computational efficiency.

As mentioned, compared to traditional machine learning, spatial–spectral classifi-
cation can significantly improve its accuracy by utilizing spatial information of images.
Although deep learning can learn data dependency and hierarchical feature representation
directly from raw data, the spatial–spectral classification method is more interpretable and
flexible. Specifically, our contributions are threefold:

1. The spatial information of the HSI image was used to construct the segment forest, and
the spectral information of the HSI image was combined to improve the classification
accuracy and calculation efficiency;

2. Based on the segment tree method, the merging and filtering of trees are improved.
The reason for accuracy improvement is discussed from the perspective of spatial
information;

3. The existing spatial–spectral methods are comprehensively summarized and vali-
dated on three data sets, respectively. Experimental results show that the proposed
method is superior to other HSI classification methods. The characteristics and prob-
lems of spatial–spectral classification are discussed based on classification results.

The rest of this article is organized as follows. Section 2 mainly introduces the data set
used in this paper. Meanwhile, SF’s construction and optimization strategies are stated.
Section 3 is concerned with the comparison and discussion between the proposed method
and other spatial–spectral methods. The conclusion of this study is presented in Section 4.

2. Materials and Methods
2.1. Materials

In the experiment of this paper, three data sets were selected to evaluate the proposed
SF classification method and other spatial–spectral classification methods, namely Salinas,
WHU-Hi-HongHu, and XiongAn. The following mainly introduces the basic information
of the data set from the aspects of band number, image size, spatial resolution, the label
corresponding to truth image, etc.:

1. Salinas. The Salinas hyperspectral data were collected by NASA’s AVIRIS sensor in
California’s Salinas Valley, one of the most fertile agricultural regions in the United
States. The data consist of 224 bands with 512 × 217 and a spatial resolution of
3.7 m. The corresponding truth value images include 16 categories, including Fallow,
Celery and Grapes_untrained, etc. In the training set, 30 points of each type were
selected from the labeled data for training, and the test set was the labeled data in the
panoramic image.
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2. WHU-Hi-HongHu. The data set was collected on 20 November 2017, in HongHu City,
Hubei Province, using a 17 mm focal headwall nanoscale super-resolution imaging
sensor on the DJI Matrix 600 Pro UAV platform. The image size is 940 × 475 pixels,
with a total of 270 bands, and the spatial resolution is about 0.043 m. The experimental
area is a complex agricultural landscape with various crops, including Cabbage, Rape,
Celtuce, Broad Bean, tree, and 22 types. The training set selects 100 points from
each category of labeled data for training and the test set is the labeled data in the
panoramic image.

3. XiongAn. XiongAn hyperspectral data developed by the Chinese Academy of Sci-
ences, Shanghai Institute of Technical Physics, high particular aviation system full
spectrum section of the multimodal imaging spectrometer, the main gathering area,
male Ann, for China’s Hebei province under the jurisdiction of the national district,
located in the hinterland of Beijing, Tianjin, and Baoding. There are 256 bands of
data, the image size is 3750 × 1580, and the spatial resolution is 0.5 m. The true
value of the corresponding image includes Willow, Rice, White wax, rice stubble, Bare
area, Pear, Architecture, and a total of 20 kinds of feature classes. Labels are mainly
composed of the land for agriculture and forestry. The training set selects 100 points
from each category of labeled data for training, and the test set is the labeled data in
the panoramic image.

The detailed information of the above data set is shown in Table 1. The ground truth
image of the data set is shown in Figure 1.

Table 1. Details of the hyperspectral image data set used in the experiment.

Bands Image Size Spatial
Resolution

Feature
Classes

Number of Training
Samples per Class

Salinas 224 512 × 217 3.7 m 16 30
WHU-Hi-HongHu [29] 270 940 × 475 0.043 m 22 100

XiongAn [30] 256 3750 × 1580 0.5 m 20 100
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Figure 1. Three data sets used in this paper: (a) Salinas; (b) WHU-Hi-HongHu; (c) XiongAn.

2.2. Methods

Segment forest is a tree-based classification method. The basic idea is to optimize the
initial results by using the spatial information of the image. The main steps of segment
forest are as follows:

1. Obtain the initial classification results. Part of the labeled data was extracted as
training data and input into SVM to obtain the probability value of initial classification.
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2. Obtain the first principal component of the original hyperspectral image. In order
to improve the efficiency of the algorithm, principal component analysis (PCA) was
used to project the original image hyperspectral data onto a new orthogonal space
and extract the first main component.

3. According to the weights of the edges in the tree structure, the vertices are combined
to construct a segment forest. The vertices are combined by calculating the weights of
edges in the first principal component of the image. In order to prevent all vertices
from merging into a single tree, the subtree is merged if the edge weight is less than a
certain value. Finally, to prevent noise from affecting the subsequent result, subtrees
with less than a fixed number of vertices in the tree are merged into the tree with the
lowest weight.

4. Calculate the aggregation probability of vertices in the tree and determine the classifi-
cation of each vertex. To carry out the filtering inside the independent tree of forest
segmentation, not only to calculate the aggregation probability of each vertex, but
also to complete the filtering from leaf to root and root to leaf and obtain the final
classification result. Figure 2 shows the technical roadmap.
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2.2.1. The Initial Classification Results

The basic idea of SVM is to solve the separation hyperplane, which can divide the
training data set correctly and has the maximum geometric interval. Radial basis function
(RBF) was used as the kernel function to classify the hyperspectral images in the experiment.
Cross-validation was implemented using the LIBSVM software package to determine the
optimal parameters C and Gamma values. Then the parameters were used to achieve the
initial classification of hyperspectral images.

Suppose the size of HSI is H*W*B. The initial probability value obtained is a matrix,
where the row data is the probability that the pixel point belongs to all labels:

Mk
p= Pk(i, j); iε[1, H], jε[1, W], kε[1, N] (1)

where, Mk
p is the probability that point (i,j) belongs to class K, and N is the maximum value

of the label.
The label with the largest probability value of each pixel is assigned to the classification

of this point. The visual result of the probability result is shown in Figure 3a.
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2.2.2. Constituting the Segment Forest

There is a significant amount of spectral redundancy that exists in HSI data, so some
level of signal compression or dimension reduction is appropriate [31]. The first principal
component is also implemented by the PCA function of the Python scikit-learn library.
n_components parameter is set to 1 to represent the first principal component of the extracted
image. The image of the first principal component of Salinas is shown in Figure 3b.

On the other hand, a remote sensing image is usually stored in a grid structure, and
the connection of the tree structure is beneficial to the algorithm to extract the spatial
information of the image. Different from the graph structure, the tree structure has no
closed loop connection. Each pixel in the first principal component is regarded as a vertex,
denoting V, and the relationship between each pixel is considered to be an edge, indicating
E, so that the first principal component can be expressed as G ={V, E}. The edge weight
is expressed by the absolute value of the pixel value. That is, the weight of the two vertices
in the image isωe:

ωe =
∣∣xi−xj

∣∣ (2)

where, xi and xj represent the pixel values of vertices.
Each pixel in the first principal component image obtained by HSI is regarded as

an independent subtree. The weights of edges are sorted from smallest to largest, and
the vertices with the weights from smallest to largest are joined to merge the subtree. A
restriction (Formula 3) is added in merging the subtree to prevent all vertices from merging
to one root node.

ωe ≤ min
(

max
(
ωTp

)
+

k
Vp

, max
(
ωTq

)
+

k
Vq

))
(3)

where ωe is the weight of the edge between the subtrees Tp and Tq, Vp and Vq are the
number of vertices in the subtrees p and q, and k is a constant parameter. In other words, if
the coefficients between two subtrees meet certain conditions, they will be merged. This
condition includes the coefficients of internal edges of each subtree and the number of
internal vertices. It can be seen from Formula (2) that the number of vertices in a subtree is
negatively correlated with the possibility of merging. That is, the more vertices in a subtree,
the less likely it is to be merged. Under the limitation of Formula (2), some independent
vertices must not be merged with other trees, resulting in some noise in the segment forest,
as shown in Figure 3c. In order to prevent noise generated in segment forest from affecting
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the optimization results, the minimum number of vertices in subtrees is set to be no less
than a certain number in this paper. If the number of vertices in subtrees is less than this
threshold value, that is:

min
(
Vp

)
< A (4)

Then the subtree is merged into the tree with the smallest edge weight for the second
filtering. Where, Vp is the number of vertices in the subtree, and A is a constant parameter.

Finally, each tree generated is regarded as a complete segment forest, and a segment
forest composed of segment trees is generated on the whole image. Figure 3d shows the
segment forest constructed by Salinas, in which one color represents a segment tree in the
forest. As can be seen from the results, segment forest provides another perspective of
classification results based on the spatial information of the image.

In the previous part of this paper, subtrees are merged according to the weight of the
edge, which is the generation process of the minimum spanning tree (MST). In this paper,
two merge restrictions are added based on the MST so that the final segmentation results
are a set of some trees, so it is named the segment forest.

2.2.3. Segment Forest Optimization Classification

In this paper, the essence of filtering is to calculate the aggregation probability of
samples, that is, to modify the results of spectral classification by aggregating spatial
information. Since the samples to be calculated are not necessarily two samples with
edge connection, to calculate the spatial relationship of images, the weight function S(p, q)
between the samples is first calculated. The weight function is composed of the edge of the
path between the two samples. The formula is shown in (5):

S(p, q) = exp(− ∑
iεpath(p,q)

ωei

γ
) (5)

where,ωei is the weight of the edge connecting p and q, and γ is a constant parameter.
Then the aggregation probability Md

p is:

Md
p = ∑

qεTq

S(p, q)Md
q (6)

Tq is the segment tree where point q is located.
Filtering completes the part covered by each tree in the forest through filtering from

leaf to root and from root to leaf.
Firstly, filtering from leaf to root is carried out. The formula is shown in (7):

Md↑
p = Md

p + ∑
qεc(p)

S(p, q)Md↑
q (7)

where c(p) is the set of child nodes of point q. Then, filtering from the root to the leaf,

Md
p = S(f(p), p)Md

f(p) +
(

1− S2(f(p), p)
)

Md↑
q (8)

where f(p) is the parent node of p.
The filtering results of SF are shown in Figure 3e. Based on the initial classification

results of SVM and combined with spatial information, the classification results are further
optimized to obtain good classification results.

3. Results
3.1. Parameter Analysis

In this paper, there are three main parameters of image classification accuracy: K, A,
and γ. K represents the possibility of merging subtrees, and the greater the value of K, the
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easier the merging will be. A represents the number of vertices in the tree with the fewest
vertices in the partition forest. γ represents the influence between vertices in calculating
the probability of aggregation. The smaller γ is, the less influence p has on q.

In order to verify the impact of parameters on the classification results, Salinas is
mainly used to ascertain the effects of parameters on the results. When demonstrating
the influence of parameter K on classification accuracy, parameter A is set to 1500 and
parameter γ is set to 387. When verifying A and γ, the other two parameters are also set
to fixed constants. The verification results are shown in Figures 4–6. Parameter A and
parameter γ have the most negligible impact on classification accuracy, and the curve
fluctuation is slight, while parameter K significantly impacts the classification accuracy.
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3.2. Influence of Training Data Set

In this section, we discuss and evaluate the images of training samples on the accuracy
of the SF method from two aspects. First, we evaluate how the number of training samples
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affects the classification accuracy of the proposed method. Figure 7 shows that training
samples ranged from 10 points per category to 70 points per category. With the increase in
the number of training samples, the classification accuracy increases. Moreover, when the
number of training samples is small, SF can also achieve better optimization results based
on initial classification.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 6. Impact of γ on classification accuracy. 

3.2. Influence of Training Data Set 
In this section, we discuss and evaluate the images of training samples on the 

accuracy of the SF method from two aspects. First, we evaluate how the number of 
training samples affects the classification accuracy of the proposed method. Figure 7 
shows that training samples ranged from 10 points per category to 70 points per category. 
With the increase in the number of training samples, the classification accuracy increases. 
Moreover, when the number of training samples is small, SF can also achieve better 
optimization results based on initial classification. 

 
Figure 7. Classification accuracy of Salinas with the different number of training samples. 

Secondly, we randomly select different sample points from the Salinas data set for 
training and analyze the classification accuracy of SF from the perspective of the 
randomness of samples. 

As shown in Figure 8, after five times randomly selected training data sets and 
calculation of classification accuracy, it can be seen from the results that the classification 
accuracy of the SF method fluctuates slightly but remains within an acceptable range. The 
stability of the algorithm is proved. Additionally, in the process of parameter adjustment, 
when the constant parameter A value is in the range of 1300 to 1900, it maintains the 
highest classification accuracy. The other two parameters, K and γ, float only in small 
ranges. Therefore, it is speculated that the setting of constant parameters has a great 
relationship with the image itself (possibly the size of the classified object in the image or 
the size of the whole HSI image) but has little relationship with the selected training data 
or the spatial position of the vertex of the training data in the image. 

Figure 7. Classification accuracy of Salinas with the different number of training samples.

Secondly, we randomly select different sample points from the Salinas data set for
training and analyze the classification accuracy of SF from the perspective of the random-
ness of samples.

As shown in Figure 8, after five times randomly selected training data sets and
calculation of classification accuracy, it can be seen from the results that the classification
accuracy of the SF method fluctuates slightly but remains within an acceptable range. The
stability of the algorithm is proved. Additionally, in the process of parameter adjustment,
when the constant parameter A value is in the range of 1300 to 1900, it maintains the
highest classification accuracy. The other two parameters, K and γ, float only in small
ranges. Therefore, it is speculated that the setting of constant parameters has a great
relationship with the image itself (possibly the size of the classified object in the image or
the size of the whole HSI image) but has little relationship with the selected training data
or the spatial position of the vertex of the training data in the image.
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3.3. Comparison of Different Spatial–Spectral Methods

This section mainly selects six improved spatial–spectral classification methods based
on decision level and compares them with the SF. The main selected comparison experiment
methods are divided into two categories: One is graph-based optimization methods such
as GF, MRF, and RW, and the other is tree-based optimization methods such as MST, MST+
(this paper defines this method as the noisy filtering method of SF above), and ST. The
above methods are based on the initial classification results of multi-classification SVM
to optimize the final classification results further. Table 2 lists the data parameters in
the figure.
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Table 2. Parameters of segment forest experiment.

SF Parameter Salinas XiongAn WHU-Hi-HongHu

K 4680 20000 2630
A 1500 16000 710
γ 387 1490 115

The main advantage of GF is that the image edge retention effect is better and its
primary parameter is the size of the filter window [18], which is related to the size of the
classified target in the hyperspectral image. The window size used by GF in different
hyperspectral images is also different. MRF, also known as the undirected graph model,
mainly shows that pixels influence each other without apparent causality in the image.
Each pixel has a certain connection with the surrounding points but has little influence on
the pixels farther away. This is consistent with the actual spatial relationship in remote
sensing images, so MRF performs well in image classification. However, the matrix-penalty
factor matrix, which represents the relationship between pixels in the image, is challenging
to obtain and has not formed a unified method. It is often determined independently
according to specific models [32,33]. RW is a graph-based classification method whose
basic idea is to extract spatial information according to the relationship of each edge in
the image, corresponding to the possibility of random walkers crossing that edge. In the
implementation of RW, large sparse linear equations need to be calculated [20]. Suppose
the direct iterative method is used for calculation. In that case, a large amount of memory
will be consumed, and even the existing hardware is difficult to meet the calculation
requirements when the amount of data is large. To solve this problem, BiCGSTAB class
in the Eigen library [34] is called in this paper, and the incompleteLUT preconditioner
matrix is used to speed up convergence. As a global method, RW also has a relatively good
performance in the aspect of accuracy. However, due to the complexity of the operation of
the above matrix, there is a problem of low efficiency.

The minimum spanning tree (MST) is proposed to provide a way for us to analyze the
connections between pixels to obtain spatial information. ST (segment tree) classification
is based on MST, adding the condition of vertex merging. Many individual trees were
generated on remote sensing images. Then merge all the subtrees in the graph into a
single tree to form the segment tree. Then the segment tree is used to optimize the initial
classification from the spectral information, and a good result is obtained. ST uses the tree
structure to rearrange the spatial relations in the image, thus affecting the classification
results of spectral information. However, ST still combines all vertices into a tree, and there
are still interactions between different categories in the filtering process, thus affecting the
final classification result. In this paper, inspired by ST, the classification of segment forest
(SF) hyperspectral images is realized. SF is different from ST but regards the subtrees of
MST with conditional constraints as independent trees, and then regards the whole image
as a segment forest composed of trees. Finally, the independent trees in the segment forest
are used to filter the initial classification results of the image regions covered by them.
Experimental results show that the SF algorithm has better classification accuracy and
computational efficiency than other spatial–spectral classification methods.

Three data sets are used in this paper to compare proposed method with other spatial–
spectral methods, and the results are shown in Figures 9–11. The above spatial–spectral
methods all depend on the initial classification results. As shown in the red box in Figure 9,
SVM classification results are poor. After adding spatial information, the above spatial–
spectral methods also have unsatisfactory classification accuracy for the areas with poor
classification results. In particular, the GF method showed a slight improvement in SVM
results, but SF still offered the most potent error correction ability. As a global method,
MRF and RW perform well in a large continuous classification area, as shown in the red
box in Figure 10. However, when MRF classification areas are not uniform in size, small
regions are easily swallowed by labels in large areas, resulting in classification errors, as
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shown in the blue box in Figure 10. As the trees constructed by MST and MST+ contain a
lot of noise, the final filtering results obtained are also full of noise, as shown in Figure 9f,g.
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Figure 9. Salinas’ (a) ground-truth and classification obtained by spatial–spectral method. The methods are: (b) SVM; (c) GF;
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Overall, SVM only uses spectral information to classify hyperspectral images, which
produces a lot of noise, while the spatial–spectral method can suppress the noise to a
certain extent. In addition to MST and MST+, other methods have a better effect on noise
suppression. However, the spatial–spectral methods all depend on the initial classification
results of support vector machines. Suppose the proportion of incorrect labels in the initial
SVM classification in a certain region of the image is large. In that case, the classification
results of these context-combined classification methods (except MRF) will also have severe
errors in an extensive range.

The classification results of the three data sets are shown in Table 3, including overall
accuracy, average accuracy, Kappa coefficient, and the time consumed in the process of
using spatial information to optimize the image after the initial classification of SVM. All
experiments were run on Intel(R) Core(TM) i7-8700 CPU @ 3.20ghz 3.19ghz processor.
According to the classification results in Table 3, the SF proposed in this paper effectively
improves the classification accuracy based on SVM. The overall accuracy of Salinas, WHU-
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Hi-HongHu, and XiongAn is improved by 11.16%, 15.89%, and 19.56%, respectively.
Compared with other spatial–spectral classification methods, SF has achieved better results.
In terms of algorithm efficiency, as shown in XiongAn in Table 3, SF effectively improves
efficiency and has obvious advantages when the data volume is large.
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Figure 10. WHU-Hi-HongHu’s (a) ground-truth and classification obtained by spatial–spectral method. The methods are:
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Table 3. Statistics of hyperspectral image classification results.

Data Set Evaluation Index SVM GF MRF RW MST MST+ ST SF

Salinas

OA 82.86% 88.13% 93.72% 90.87% 90.50% 90.99% 92.54% 94.02%
AA 90.72% 94.29% 96.67% 95.31% 95.03% 95.66% 91.26% 95.07%

Kappa 80.96% 86.78% 92.98% 89.82% 89.41% 89.96% 91.66% 93.33%
Time(s) \ 3.194 0.372 7.36 0.368 0.333 0.317 0.283

WHU-Hi-
HongHu

OA 75.87% 90.82% 91.44% 91.48% 91.01% 90.95% 90.86% 91.76%
AA 72.95% 89.15% 87.97% 86.12% 87.88% 87.50% 87.26% 87.79%

Kappa 70.65% 88.45% 89.20% 89.18% 88.67% 88.60% 88.46% 89.59%
Time(s) \ 17.970 5.922 56.860 3.587 1.281 1.162 0.709

XiongAn

OA 61.15% 79.28% 80.08% 79.40% 74.10% 78.83% 80.59% 80.71%
AA 72.62% 84.56% 91.21% 90.45% 86.85% 84.12% 84.87% 82.46%

Kappa 57.17% 76.77% 77.66% 76.98% 71.21% 76.27% 78.23% 78.35%
Time(s) \ 207.295 261.480 842.326 445.684 42.691 59.706 36.571
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4. Conclusions

In this paper, a spatial–spectral hyperspectral image classification method, segment
forest, was proposed. In hyperspectral images, the first principal component is obtained
through data dimension reduction, which forms segment forest, and the spatial information
of the image is extracted. Then the initial results of SVM classification, namely the spectral
information, are optimized to obtain the final classification results.

The experimental results show that the segment forest-based hyperspectral image
classification improves the accuracy of hyperspectral image classification, which is better
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than the other spatial–spectral classification methods, such as GF, MRF, RW, MST, MST+,
and ST, and has been verified on the three data sets. Secondly, the spatial–spectral classifi-
cation method depends on the initial spectral classification results to a large extent. If the
initial classification results have high accuracy, the spatial information optimization can be
significantly improved, otherwise the optimization effect is poor. Therefore, the quality of
the spectral classifier is vital to the spatial–spectral classification method. Finally, when the
amount of hyperspectral data is largely increased, the computational efficiency of SF is also
greatly improved, the larger the data set is, the more pronounced the efficiency advantage
will be.

In the following research, we will further study the following two aspects. Firstly,
other spectral classification methods and spatial information extraction methods will be
studied to obtain the best classification effect. On the other hand, considering the rapid
development of deep learning in remote sensing image classification in recent years, com-
bining spatial information with deep learning will be applied to improve the classification
accuracy of the algorithm.
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