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Abstract: Stem biomass is a fundamental component of the global carbon cycle that is essential for
forest productivity estimation. Over the last few decades, Light Detection and Ranging (LiDAR)
has proven to be a useful tool for accurate carbon stock and biomass estimation in various biomes.
The aim of this study was to investigate the potential of multispectral LiDAR data for the reliable
estimation of single-tree total and barkless stem biomass (TSB and BSB) in an uneven-aged structured
forest with complex topography. Destructive and non-destructive field measurements were collected
for a total of 67 dominant and co-dominant Abies borisii-regis trees located in a mountainous area in
Greece. Subsequently, two allometric equations were constructed to enrich the reference data with
non-destructively sampled trees. Five different regression algorithms were tested for single-tree BSB
and TSB estimation using height (height percentiles and bicentiles, max and average height) and
intensity (skewness, standard deviation and average intensity) LiDAR-derived metrics: Generalized
Linear Models (GLMs), Gaussian Process (GP), Random Forest (RF), Support Vector Regression
(SVR) and Extreme Gradient Boosting (XGBoost). The results showcased that the RF algorithm
provided the best overall predictive performance in both BSB (i.e., RMSE = 175.76 kg and R2 = 0.78)
and TSB (i.e., RMSE = 211.16 kg and R2 = 0.65) cases. Our work demonstrates that BSB can be
estimated with moderate to high accuracy using all the tested algorithms, contrary to the TSB, where
only three algorithms (RF, SVR and GP) can adequately provide accurate TSB predictions due to
bark irregularities along the stems. Overall, the multispectral LiDAR data provide accurate stem
biomass estimates, the general applicability of which should be further tested in different biomes
and ecosystems.

Keywords: stem biomass; multispectral LiDAR; remote sensing; regression analysis

1. Introduction

Stem volume and biomass are among the most significant productivity and carbon
sequestration factors since they are vital for sustainable forest management and climate
change mitigation [1]. According to [2], plant biomass (above and below ground) is the
main conduit for CO2 removal from the atmosphere, storing more than 80% of the total
aboveground carbon [3,4].

In recent decades, there has been an increasing demand for accurate and timely vege-
tation biomass estimation due to the rising consumption of biomass products, especially in
managed forests. Above-ground biomass (AGB) is defined as the sum of the dry mass of
every tree component standing above the soil level (e.g., stem, leaves, needles, branches,
bark), typically expressed as mass at the individual tree level [5–7]. Among the differ-
ent AGB components, the stem biomass is considered to be the most crucial, being the
dominant material for timber products and paper production [8]. Traditionally, biomass
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estimation has been performed through destructive sampling, providing accurate and
precise results, yet it is time-consuming, costly and laborious [6,9]. For decades, AGB
estimates have mostly been based on allometric models [10], the development of which
requires destructive sampling of a significant amount of trees [11] and measurement of their
structural parameters, such as diameter at breast height (DBH) and/or tree height [12–14].
Depending on the stem biomass allometric equation type, the total stem biomass (TSB) and
the barkless stem biomass (BSB) are most frequently estimated, since the TSB is necessary
for the AGB and carbon pool estimations, while the BSB is essential for logging productivity
estimation. Nowadays, a large number of allometric equations has been established for
the vast majority of species in different biomes [15–19], reducing the need for destructive
sampling [20]. However, the specific biomass estimation method is rather limited in terms
of spatial coverage and the need for equation reconstruction at regular temporal intervals.

Remote sensing technologies provide timely, low-cost, and reliable estimates on
biomass and other forest attributes, especially over large and/or remote areas [21]. Op-
tical remote sensing data, such as aerial photography [22–26], multispectral satellite
imagery [27–33], synthetic aperture radar (SAR) [34–39], light detection and ranging (re-
spectively) [40–47] and multisource approaches [48–53], have been widely used for forest
biomass and carbon quantification. Multispectral image analysis is the most common
approach for large-scale biomass estimation [21], although the main limitation is the signal
saturation over forested areas with high AGB values [54]. SAR systems have been success-
fully applied in biomass estimation, due to their canopy penetration capabilities which
depend on the wavelength and the canopy characteristics [55]. However, SAR data also
present significant limitations, including saturation, high cost, and complex processing
methods, especially over forested areas with complex topography [56]. On the contrary,
Light Detection and Ranging (LiDAR) data usually offer more accurate forest biomass
estimates [57], due to the ability of the emitted pulses to penetrate the forest canopy and,
therefore, provide 3D information about all forest vegetation layers [58].

Several studies have shown that LiDAR data provide accurate and efficient biomass
estimates using either plot- or tree-level approaches. The first approach has been examined
in different biomes [9,42,44,59–62] and includes the implementation of height percentiles
and other LiDAR-derived metrics in order to predict forest characteristics at the plot or
stand level. However, modeling biomass and forest characteristics using the plot level
approach requires a sufficient amount of field plot measurements in order to establish the
relationship between the LiDAR-derived features and the reference data [63].

On the contrary, the tree-level approach requires high pulse densities [64] and is
primarily based on single-tree segmentation, aiming to derive height and intensity metrics
for each individual tree [65]. The effectiveness of this approach is closely related to the
accuracy of tree detection and tree crown delineation, which highly depends on the point
cloud density and forest structure [66]. Several algorithms have been proposed for accurate
crown segmentation and evaluated in different forest ecosystems [59,65,67–69], utilizing
both point clouds and canopy height models (CHMs). According to [70], tree crown
delineation over broadleaved forests resulted in lower detection rates than the conifers, due
to the complex shape and crown structure. Nevertheless, the specific approach provides
reliable biomass estimates in mixed stands using species-specific models [71] and valuable
information for forest management purposes, while requiring a lower amount of field work
compared to the plot-based method [72]. Although the plot-level approach is the most
widely used approach, tree-level AGB estimation is becoming increasingly popular due
to the development of small-footprint and UAV-based LiDAR systems that are capable of
providing high-density 3D point clouds.

Regardless of the estimation approach, various regression methods have been applied
along with LiDAR data for forest biomass estimation, such as Support Vector Regression
(SVR) [73], Random Forest (RF) regression [74], cubist regression trees, Linear Mixed-
Effects (LME) [44], Gaussian Process (GP) regression [75], nonparametric regression [76]
and Artificial Neural Networks (ANNs) [77]. In particular, [44] compared the effective-
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ness of different machine learning (ML) algorithms for biomass estimation using both
single-tree and plot-based approaches on LiDAR-derived point clouds, reporting that SVR
produced the most accurate biomass models. In addition, the authors stated that manual
crown delineation does not necessarily result in more accurate biomass estimates since
the relationship between the accuracy of both crown delineation and biomass estimation
is rather complex. In [78], the authors performed a comparative analysis between the
tree-level and area-based approach suggesting their combined implementation for reliable
AGB estimation in a boreal forest using the nearest neighbor algorithm.

Although BSB is considered to be the most significant parameter for growth models,
stem volume, biomass and carbon allocation among tree species [79], most of the LiDAR-
based studies focus on the TSB and AGB estimation. Recently, [75] presented a comparison
between the potential of multispectral single-photon and linear-mode LiDAR systems in
plot-based TSB estimation, using GP regression. The results showcased that the linear mode
LiDAR systems outperformed the single-photon systems in terms of Root Mean Square
Error (RMSE). In [74], the authors predicted TSB in a boreal forest, using measurements
derived from 1476 trees, low-density LiDAR data and two regression algorithms (RF and
linear). According to their findings, the estimation accuracy was similar using RF and
linear regression in terms of RMSE and the coefficient of determination (R2), although
the RF provided more consistent results over the trials [74]. The stem volume and TSB of
individual pines were also examined using full-waveform [1] and discrete-return LiDAR
data [80]. As reported by [1], the full-waveform-derived metrics do not improve the volume
and biomass estimates significantly compared to the discrete data, due to the limitations of
single-tree delineation. In [80], the authors employed the crown geometric volume (CGV)
method on LiDAR point cloud to estimate the TSB for three different tree density classes.
According to the results, the low tree density sites provided the most accurate stem volume
estimates (R2 = 0.68) compared to the others (i.e., R2 = 0.62 for the medium and R2 = 0.44
for the dense), since the high tree density leads to large tree segmentation errors.

Recent developments in LiDAR technology have led to commercial multispectral
systems, which provide essential information on the vertical distribution of physiological
processes [81]. The intensity of multispectral LiDAR channels contains complementary
information for improved land cover and species classification [82–85]. Until now, the
intensity features have been most widely used for land cover and species classification but
few studies have examined their contribution to forest inventory parameters and biomass
estimation [75,86]. More specifically, [86] compared the capability of multispectral and
conventional LiDAR data for modelling and predicting forest characteristics (e.g., AGB,
Ginis coefficient of DBHs, Shannon diversity index, and number of trees per hectare) at the
plot level in a boreal forest. The results showcased that the multispectral data improved
the AGB estimations (i.e., R2 = 0.87 for the multispectral and R2 = 0.72 for the single
spectral). In 2020, [87] compared the suitability of monospectral and multispectral LiDAR
for canopy fuel parameter estimations in a boreal forest. According to their findings, the
multispectral LiDAR provided improved canopy fuel estimates compared to the monospec-
tral LiDAR. Additionally, multispectral LiDAR data are more capable for individual tree
detection compared to the monospectral data due to the spectral differentiation of the
vegetation objects [88].

Although many different tree species have been examined in the literature, few studies
have explored the potential of multispectral LiDAR remote sensing in biomass estimation
of the different Abies species [89–91], and there are still no studies related to the biomass
estimation of the Abies borisii-regis. Furthermore, compared to the vast majority of studies
on the biomass estimation in plantations and semi-natural regenerated forests, only a
handful of studies have been conducted in uneven-aged structured forests [12,92–96]. In
order to fill this literature gap, the present study aims to estimate TSB and BSB in an
uneven-aged structured Abies borisii-regis forest employing multispectral LiDAR-derived
predictive models. More specifically, two allometric equations were built to derive TSB
and BSB estimates, respectively, which were used as additional reference data. Next, a
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set of regression algorithms (i.e., Generalized Linear Models-GLMs, GP, RF, SVR and
Extreme Gradient Boosting—XGBoost) was examined using LiDAR-derived height and
pulse intensity information in order to investigate their potential in reliable TSB and
BSB estimation.

2. Study Area and Dataset Description
2.1. Study Area

The study was conducted in Pertouli University Forest, located on the southeast side
of Mount Pindos in Thessaly, Greece (latitude 39◦32′–39◦35′N, longitude 21◦33′–21◦38′E)
(Figure 1). The forest has been under the management of the Aristotle University of Thes-
saloniki since 1934 for research and education purposes. It covers almost 33 km2, and the
altitude ranges between 900 and 2050 m, with an average of 1350 m. The climate is charac-
terized as transitional Mediterranean/Mid-European with high variability among seasons.
Uneven distribution of the annual precipitation is observed, ranging from 1213.9 mm
of rainfall and 328.2 mm of snow in winters to 298.8 mm during the vegetative period.
As for the geology, the area’s soil type is classified as Cambisol, and the main rocks are
flysch and limestones which, along with the mountainous terrain, are quite vulnerable to
weathering and erosion.

Figure 1. Map of the study area, including the vegetation cover and the road network.

Almost 90% of the forest area is dominated by Abies borisii-regis, and the remain-
ing area is covered by individual trees of Scots pine and black pine (Pinus silvestris and
Pinus nigra), beech (Fagus moesiaca), Austrian oak (Quercus cerris), willows (Salix caprea
and Salix eleagnos), English yew (Taxus baccata), maple (Acer optusatum), European hop-
hornbeam (Ostrya carpinifolia), laburnum (Cytisus laburnum), linden (Tilia cordata) and
plantations of foreign species. The forest is divided into 173 management compartments,
with a 10-year management rotation, and the selective harvesting approach is applied.

Trees of the genus Abies are tall evergreen conifers of the Pinaceae family, native to
high mountain regions in the North Temperate Zone, and Abies borisii-regis is the natural
hybrid between Abies alba and Abies cephalonica [97]. Abies borisii-regis composes all-
aged stands with many small trees and natural regeneration in the understory and mature
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trees in the overstory. Trees of the same age can have different heights, mostly due to
biological characteristics, tree to tree competition, and soil quality type.

2.2. Dataset Description
2.2.1. Airborne LiDAR Data

Multispectral LiDAR data were acquired in October 2018 over the Pertouli University
Forest, using a RIEGL VQ-1560i-DW laser scanner sensor mounted on an airplane, and
included information derived from two spectral channels, namely the Green and Near
Infrared (NIR) (532 nm and 1064 nm, respectively). Before their delivery, the preprocessing
of the LiDAR data was performed by the provider (i.e., GEOSYSTEMS HELLAS S.A.),
including the transformation of the full-waveform dataset (i.e., 19 pulses/m2) to discrete
returns. As a result, the delivered data included a georeferenced point cloud in the
Universal Transverse Mercator zone 34 coordinates system based on World Geodetic
System 1984, along with trajectory files. The point cloud density for both channels was
almost identical (i.e., 44.65 points/m2 for the Near Infrared and 44.85 points/m2 for the
Green), with identical nominal pulse spacing of 0.15 m and 0.18 m, respectively, up to seven
returns per pulse and a scan angle range from−32◦ to +32◦. In addition, aerial photographs
were acquired simultaneously with the LiDAR data, providing high resolution images of
the entire forest.

2.2.2. Field Survey

Field measurements were conducted in May 2019 and July 2020. The first field survey
included non-destructive sampling of tree clusters in six parts of the forest, while during the
second survey, destructive sampling of 32 trees was performed in a predetermined forest
compartment (Figure 2). We chose to enrich the dataset with non-destructive sampling
in order to keep the forest disturbance to a minimum, due to the invasive nature of
destructive sampling.

Figure 2. Cont.
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Figure 2. ALS-generated canopy height model of Pertouli University Forest, showing the sampled
trees; (a–f) plots employed for non-destructive sampling (i.e., measurement of DBH for stem biomass
estimation using allometric equations); (g) area of interest for destructive sampling.

Non-destructive sampling of stem biomass was carried out in six fixed plots, each
of which covered an area of 1000 m2 (40 m × 25 m). The distribution of the sampling
plots across the study area was performed according to the different tree density, DBH
distribution, and topographic features. This information was derived from the forest census
data, of the 10-year forest management plan conducted in 2018. In each plot, only overstory
trees that were detectable by the LiDAR sensor were measured. More specifically, DBH
was recorded for each selected tree using a Haglof Mantax Blue caliper. Tree locations were
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determined using a Garmin eTrex 30x touch with an average horizontal position accuracy
of 4 m. As a result, a set of 35 non-destructively sampled trees was recorded and correctly
identified in the point cloud.

Destructive stem biomass sampling was carried out in one specific forest compartment
due to legal restrictions regarding timber harvesting in the study area. As in the previous
sampling method, in each plot the measurement was performed only to the trees that could
be detected by the LiDAR sensor. The selection of the specific sample trees was based on
the different stem diameters, heights and soil qualities with the aim to collect representative
samples from all forest conditions. DBH was recorded on the standing trees using a Haglof
Mantax Blue caliper, and their locations were determined using a Garmin eTrex 30x touch.
Tree height was obtained after the felling of each tree using a Leica Disto D2 laser distance
meter and a ruler. In particular, the laser distance meter was used for the measurement of
the distance between the top of the tree and the bottom of the trunk, and the ruler was used
to measure the length of the above-ground stump portion. The trunk was then separated
from the foliage and divided into three different sections according to its shape (neiloid,
cone, and paraboloid) [98,99]. A disk sample was taken from each section and the distance
between the disks was measured. Likewise, the fresh weight of the disks was measured
using a handheld scale. For smaller trees, with a height lower than 10 m, two samples were
taken due to the invariable shape of the trunk.

The bark from each sample was removed and stored in separate paper bags. The
circumference and the width of each disk without the bark were measured using a tape
measure and converted to diameter under the assumption that the tree’s stem is circu-
lar [100]. The separated bark samples and the wood were dried at 85 ◦C for at least 72 h and
weighed [98]. The ratio of the measured dry to fresh mass of the stem particles represents
the tree wood and bark density. Next, the stem volume was calculated using the following
functions (Equations (1)–(3)) [101]:

vneiloid =
π

4
×H× (r2

1 + r
2
3
1 × r

4
3
2 + r

4
3
1 × r
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2

)
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(
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3
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s
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where H is the distance between the two disks, r1, r2, and r3 are the radius of the first, second,
and third disk, respectively, and rs is the radius at the end of the merchantable height.
Eventually, the wood and bark density of the samples was multiplied with the volume of
each stem partition for the TSB and BSB biomass calculation (Table 1 and Figure 3).

Table 1. Single-tree biomass metrics based on destructive sampling.

Biomass Mean (kg) Standard
Deviation (kg) Minimum (kg) Maximum (kg)

Barkless Stem Biomass 556.02 311.79 3.25 1088.66
Total Stem Biomass 642.37 355.45 4.23 1260.59
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Figure 3. The barkless stem biomass (BSB) (a) and the total stem biomass (TSB) (b) calculated for each tree based on the
destructive sampling implementation.

3. Methods

The methodology for the LiDAR-based TSB and BSB estimation is composed of three
separate parts, namely the LiDAR processing, the allometric equations development and
the model construction along with its’ cross-validation. Figure 4 illustrates the flowchart of
the entire workflow, which is described in detail in the following sections (Sections 3.1–3.3).

Figure 4. Workflow of the barkless and total stem biomass (BSB and TSB, respectively) estimation using destructive
sampling and ALS data in an uneven-aged structured coniferous forest.

3.1. LiDAR Data Processing

LiDAR data processing was performed using the free and open-source R [102] and
Spyder software [103]. First, the collected GPS points from the trees’ positions were
buffered to 4 m radius, which represents the radius of the GPS error. This buffered area was
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used for the identification of the exact field-measured tree within the LiDAR point cloud.
Considering that large scan angles can have a significant impact on the LiDAR-derived
canopy structure metrics [104] and intensity values are highly affected by the large scan
angles [105], echoes with scan angles greater than ±15◦ were removed to avoid errors
originating from off-nadir angles.

Subsequently, range intensity normalization of the point cloud was performed. Since
single and first-of-many returns are located higher in the canopy and they are significantly
stronger than the intermediate returns, the differences in intensity values are influenced by
the large variety of the vegetation materials (i.e., foliage and wood) intercepting with the
pulse [106,107]. Furthermore, intensity differences between intermediate and last returns
are highly affected by the pulse energy losses sustained at the previous returns and by
the pulse discretization procedure [107]. However, it is valid to assume that single and
first-of-many returns have no significant transmission loss before being reflected back to the
sensor [108]. Therefore, only the single and first-of-many returns were used for the range
intensity normalization process, where both incidence angle and target reflectance were
considered as constants [9,107,109]. The range normalized intensity (Inorm) was calculated
as according to the following equation (Equation (4)):

Inorm = Iobs ×
(

Ract

Rref

)f
(4)

where Iobs is the observed intensity, Ract is the LiDAR-to-object range, Rref is a reference
range and the exponent f represents the rate of energy losses by the pulse due to the travel
to and from the target [110]. The reference range parameter was set to the average flight
altitude and the parameter f was set according to the radar theory [111,112] as f = 2 for
targets larger than the footprint [113]. The intensity normalization was performed for each
separate flightline and channel (i.e., Green and NIR).

The intensity normalized point cloud was merged with the intermediate and last
returns for each tree area and noise removal was performed based on the Statistical Outliers
Removal algorithm [114]. The point cloud was classified into ground and non-ground
measurements using cloth simulating filtering [115]. Subsequently, the digital terrain model
(DTM) was generated, and point cloud height normalization was performed employing
the triangulated irregular network (TIN) algorithm. The TIN was preferred over other
interpolation algorithms due to its’ effectiveness in areas of steep slopes and densely
distributed point clouds [116]. The pit-free algorithm was subsequently employed for
CHM generation, since it provides significantly improved tree detection accuracy in high-
density LiDAR data [117]. Both the terrain and CHM had a resolution of 0.42 m, which
was calculated by the following (5) [118]:

pixel size = 2

√
1

nominal pulse spacing
(5)

Additionally, morphological erosion with a cross-shaped structuring element was
applied to the CHM to reduce the over-segmentation phenomenon of the watershed
algorithm [119]. It is also essential to mention that, in this study, the segmentation algorithm
was employed without providing treetops or any kind of local maxima feature. Next, single-
tree segmentation was performed using the watershed algorithm and the CHM. It is worth
noting that a series of established tree segmentation algorithms provided by the package
lidR was tested (e.g., [67,69,75]), and the watershed was found to significantly outperform
the other algorithms.

Next, a crown normalization process was employed, inspired by the Ptrees algo-
rithm [68], where the correlation between the reference and normalized elevations of each
echo is exploited [117]. A simple subtraction of the terrain height from the vegetation
points’ height can cause irregularities in the normalized canopy structure in sloped terrains,
resulting in a significant impact on the biomass estimation accuracy (Figure 5) [120]. To
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eliminate the terrain effects to each segmented tree, the highest reference elevation was
denoted as the treetop, and the height difference between the treetop’s reference elevation
and normalized elevation was calculated. Finally, this height difference was subtracted
from the reference height of each echo resulting in the normalized point cloud.

Figure 5. Effects of the simple DTM-based normalization on the crown structure and the derived parameters. (a) An
illustration of the unnormalized tree as it is registered by the LiDAR sensor, where D is the height difference from a specific
canopy point to the treetop. (b) The normalized tree using the typical DTM-based normalization procedure, resulting in
irregularities in the canopy representation (D > D′) and false detected treetops (red point). (c) The normalized tree using
the tree-based normalization procedure, eliminating the effects of the normalization procedure in the canopy structure
(Dnorm = D).

In order to confirm that the point cloud of each individual segmented tree actually
corresponded to the one measured on the field, we used very-high resolution aerial pho-
tographs and field observations, according to the method described in [64]. As a result, all
trees measured through destructive sampling and 35 out of 55 tree measurements derived
from the non-destructive sampling were successfully identified. Finally, a suite of LiDAR-
derived height and intensity metrics were calculated, a summary of which is presented
in Table 2.

Table 2. LiDAR-derived metrics calculated for the stem biomass estimation. All the height metrics
were calculated using all the echoes of each point cloud (Green and NIR channels), and the intensity-
related metrics were obtained using only first-of-many and single returns.

LiDAR Metrics Description

p10, p20 . . . p95, p99 Height Percentiles
b10, b20 . . . b95, b99 Height Bicentiles

Hmax Max Height
Havg Average Height
Hstd Height Standard Deviation

int_skew Intensity Skewness
int_std Intensity Standard Deviation
int_avg Average Intensity

3.2. Single-Tree Biomass Estimation Using Allometric Equations

As mentioned in the introductory section, stem biomass is usually calculated using the
DBH and tree height as inputs in empirical allometric equations. However, no allometric
equations are available for stem biomass in Abies borissi-regis. As a result, new species-
specific allometric equations were created, using the destructively sampled trees, for total
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(wood and bark) and woody stem biomass. The most commonly used allometric equation
form for biomass estimation is presented below (6):

y = axb (6)

where a and b are the scaling coefficient and scaling exponent, respectively, y is the esti-
mated biomass and x is a tree dimension variable [121]. The ordinary least squares linear
(OLS) regression was used to create two allometric equations based only on DBH. The
tree height was not employed so that errors derived by incorrect measurements could
be avoided. Such errors can arise since tree height measurement on the field constitutes
a rather laborious task, difficult to be performed on standing trees with very high accu-
racy [122]. Finally, the measured diameters (DBH), TSB and BSB of the 35 non-destructively
sampled trees were log-transformed and employed into an OLS regression to determine
the scaling coefficients [123]. The performance of the allometric equations was evaluated
based on the Relative Square Error (RSE), R2, and Adjusted R2 (adjR2).

3.3. Single-Tree Biomass Estimation Using Regression Algorihtms

In this study, five different regression algorithms, namely Generalized Linear Models
(GLMs), Gaussian Process (GP), Random Forest (RF), Support Vector Regression (SVR), and
Extreme Gradient Boosting (XGBoost), were examined for their potential to reliably predict
both TSB and BSB. Prior to the statistical analysis, all the predictors (i.e., reference data)
were “Center” scaled and divided into two sets, namely training (70%) and testing (30%).
Additionally, a nested k-fold cross-validation was applied in each training set to obtain the
training accuracy of each model, using 10-fold in the outer and 3-fold in the inner loop. The
best estimation model was selected based on the arithmetic mean of estimates (i.e., Mean
Absolute Error—MAE, Mean Square Error—MSE, relative bias—rbias, RMSE, and R2) in the
k-fold cross-validation partitions [77]. The following sections (Sections 3.3.1–3.3.6) present
a brief description of each examined algorithm and the respective tuning parameters.

3.3.1. Generalized Linear Models

Introduced by Nelder and Wedderburn [124], generalized linear models provide
a wide range of statistical analysis methods [125]. In the present research, a normal
error distribution was assumed, and the log link function was employed for the GLM.
Furthermore, an exhaustive screening variable selection was applied and a maximum
threshold of three variables was defined to avoid overfitting due to the small sample size.
During this process, the Small-Sample Corrected Akaike Information Criterion [126] was
employed to select the best five models in each fold. Hereafter, the five models were
imported to the internal 3-fold cross-validation and the model with the minimum MSE was
selected. Last, the best model was selected utilizing the statistics MAE, MSE, and rbias.

3.3.2. Gaussian Process

The GP is a non-parametric technique consisting of a group of random variables,
any finite number of which has a joint Gaussian distribution, specified by its mean and
covariance function [127]. In regression problems, a Gaussian Process Regression (GPR)
model can make predictions utilizing a priori knowledge about similarities between pairs
of examples in a domain (kernels) [128] and provide uncertainty measures over predic-
tions [129]. In this study, the radial basis function (rbf) and the linear kernel were tested.
As far as the rbf kernel is concerned, a grid search for the sigma inverse width parameter
was used, in contrast to the linear kernel, where no hyperparameters were optimized.

3.3.3. Random Forest

Random Forest, introduced by [130], combines several randomized decision trees
and ensembles their performance by averaging [131]. According to this approach, a large
number of trees are grown from a different bootstrap sample of the data and the predictor
variables at each node are randomly selected [132]. In this paper, two hyperparameters
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were tuned: the number of trees to grow and the number of predictors for each tree. The
number of trees to be grown was varied from 50 to 500 with a 50 step, and the number of
selected predictors was defined as the number of predictors divided by three [133].

3.3.4. Support Vector Regression

Support Vector Machine (SVM) was initially developed for classification and later
extended for regression problems [134]. In regression, the use of a kernel function, the
Vapnik–Chervonenkis control of the margin and the number of support vectors are con-
sidered as the main characteristics of the SVR [135,136]. The epsilon-SVR algorithm was
applied in this study, according to which a nonlinear mapping transforms the input data
into an m-dimensional feature space, and a linear model is established [137]. In our work,
the rbf kernel was employed and two hyperparameters were optimized, namely the cost of
violation of restrictions and sigma parameter.

3.3.5. Extreme Gradient Boosting

The Gradient Boosting algorithm (XGBoost) [138] is an ML technique for regression
and classification problems, providing a model in the form of linear combinations of simple
predictors by solving an infinite-dimensional convex optimization problem [128,139]. The
XGBoost provides a linear model solver and tree learning algorithm based on “boosting
decision trees” for regression and classification tasks, preventing over-fitting problems [129].
In this study, the linear-based algorithm was employed, and a set of hyperparameters
presented in Table 3 was optimized.

Table 3. Candidate hyperparameters used for the “XGBoost” algorithm.

Hyperparameter Values

Number of boosting iterations 50 to 1000, with 50 step
Maximum depth of the tree 1 to 5

Step size of each boosting step 0.01 to 0.07, with 0.01 step
Minimum loss reduction (gamma) 1 to 10

Subsample ratio of columns when constructing each tree 0 to 1, with 0.1 step
Minimum sum of instance weight needed in a child 5 to 30, with 5 step

Subsample ratio of the training instance 0 to 1, with 0.1 step

3.3.6. Model Performance and Evaluation

The performance of each model was assessed in terms of the MAE, MSE, rbias, R2,
and RMSE. The regression models were validated to an independent testing set (i.e., 30% of
the total number of samples), which was randomly split from the training data (i.e., 32 de-
structively and 35 non-destructively in total), to obtain the predictive performance of each
algorithm. In addition, the relative importance of individual predictors in each model was
evaluated using the variable importance plots [140]. The variance importance, calculated
using a model-agnostic procedure [141], provides a list of the ten most significant variables
for each model, in descending order. The least important variable could potentially be
excluded from the predictive models, decreasing the computational cost [77]. However, in
the GLM case, the feature importance represents the percentage of GLMs containing each
variable after the training procedure.

4. Results

In the present study, BSB and TSB were estimated using five different regression algo-
rithms. More specifically, allometric equations were initially developed and evaluated for
their accuracy to enrich the reference dataset with samples collected by the non-destructive
method. Subsequently, five regression algorithms (i.e., GLM, RF, SVR, GP, and XGBoost)
were evaluated for their potential in reliably estimating BSB and TSB. In addition, the Pear-
son’s correlation coefficient was used to evaluate the potentially existing linear association
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between the LiDAR-derived variables employed in each model (Figure 6) [93]. The results
are presented in detail in the following Sections 4.2 and 4.3.

Figure 6. Pearson’s correlation matrix between predictor variables derived from multispectral
LiDAR data.

4.1. Allometric Equations

Considering that the number of samples (i.e., 32) collected on the field through the
destructive sampling method was rather limited, we developed two allometric equations
for the BSB and TSB estimation. The development of both models was solely based on the
use of DBH without the tree height due to the possible inaccuracy of height measurements.
Table 4 presents the results of the allometric TSB and BSB estimation models. The R2 and
adjR2 for both models amounted to 0.96; however, the TSB one resulted in higher RSE.

Table 4. Parameter values, residual standard error, R2 and adjusted R2 for total, and woody stem
biomass estimation based on DBH.

Equation Parameter RSE R2 adjR2

Total Stem Biomass
a = 8.3488

0.3014 0.9597 0.9584b = 2.5691

Barkless Stem Biomass
a = 8.2480

0.1317 0.9612 0.9599b = 2.6342

4.2. Barkless Stem Biomass

As described in Section 3.3, the BSB of individual trees was predicted using five
different regression algorithms (i.e., GLM, RF, SVR, GP, and XGBoost) and the LiDAR-
derived intensity and height-related point cloud metrics (Table 2). Table 5 presents the
testing performance of the models. The model fits are illustrated in Figure 7, showing the
difference between the regression and the hypothetical 1:1 lines.
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Table 5. Average testing performance of the employed algorithms for barkless stem biomass (BSB)
estimation using multispectral LiDAR data (i.e., 20 testing samples).

Model MAE MSE rbias RMSE R2

Generalized Linear Model 121.71 35,585.08 1.89 167.09 0.72
Gaussian Process (linear) 195.44 64,833.22 –5.3 254.26 0.56

Gaussian Process (rbf) 162.23 33,970.03 –6.47 184.24 0.75
Random Forest 152.65 30,911.8 –5.08 175.76 0.78

Support Vector Regression 161.87 35,494.6 –6.43 188.32 0.73
XGBoost 157.29 38,154.86 –5.08 195.25 0.69

Figure 7. Scatterplots (a–f) of the observed versus the predicted barkless stem biomass (BSB) for the testing set (i.e.,
20 samples). The blue line represents the fitted line, and the red line represents the 1:1 line.

In general, all the models achieved a reasonable prediction with R2 greater than 0.7 and
RMSE lower than 195 kg, except for the GP with the linear kernel. More specifically, the
developed GLM with three predictors achieved the highest performance in terms of MAE
and RMSE, although the highest R2 was obtained by the RF. The RF provided better results
compared to the other algorithms (i.e., LR, GP, SVR, XGBoost), with a MAE of 152.65 kg,
−5.08% rbias, RMSE of 175.76 kg, and R2 of 0.78. The application of the GP algorithm
with the rbf kernel led to the lowest MAE (162.23 kg) and RMSE (184.24 kg), while R2 was
higher (i.e., R2 = 0.75) compared to the linear kernel. Both the SVR and the GLM resulted
in similar estimation performance, as evidenced by the R2 (0.73 and 0.72, respectively). The
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XGBoost model gave slightly lower results in terms of R2 (0.69) compared to the RF, GP
and GLM algorithms, with the second-highest RMSE (195.25 kg), an MAE of 157.29 kg,
and an rbias of −5.08%. Additionally, Table 6 presents the best- and worst-performing
linear models, according to the calculated statistical evaluation measures (i.e., MAE, MSE,
rbias, RMSE and R2), and the correlation between the variables was examined, showing
low correlation (<0.5) between selected predictors (Figure 7).

Table 6. The best- and worst-performing GLMs selected for the barkless stem biomass (BSB) estima-
tions, using the exhaustive screening variable selection (described in Section 3.3.1).

Model MAE MSE rbias RMSE R2

p10 + p70 + int_std_green 74.34 9443.85 0.83 97.10 0.85
p95 + b95 + int_ske_green 190.68 115,204.1 2.09 336.79 0.43

Regarding the relative predictors’ importance for the BSB estimation (Figure 8), the GP
(both examined kernels) and the SVM models indicated the Hmax as the most important
variable, followed by the p99, p95 and p90. The same height percentiles were selected
by the RF algorithm, which proved to be the best-performing algorithm in terms of R2,
followed by the int_std of the NIR channel. The p90 was considered as the most important
variable for the XGBoost model as well. On the contrary to the ML algorithms, the int_std
of the Green channel was identified as the most important variable presenting the highest
frequency of occurrence, alongside the Hmax, p99 and p95 (Table 7). Overall, regarding
the ML models, it is evident that the significance of the height-derived LiDAR metrics is
considered higher compared to that of the intensity metrics (i.e., int_std_nir), as opposed
to the GLM, where the intensity metrics (i.e., int_std_green and int_ske_green) are among
the most valuable for the BSB estimation.

Figure 8. Demonstration of the relative importance of the predictors for each tested ML algorithm (BSB).
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Table 7. Demonstration of feature importance for the GLM for the barkless stem biomass (BSB)
estimation. In this table, the frequency represents the percentage of linear models containing each
variable after the testing procedure.

Variable Frequency (%)

int_std_green 35.71
Hmax 10.71

p99 10.71
p95 10.71

int_ske_green 7.14
b95 7.14
p10 7.14
p70 3.57
b80 3.57

4.3. Total Stem Biomass

The performance of the five different regression algorithms for TSB estimation is
presented in this section (Table 8). Additionally, the models’ fit is illustrated in Figure 9,
showing a comparison between the regression and the hypothetical 1:1 line. Table 9
presents the best- and worst-performing linear regression models for TSB estimation.

Figure 9. Scatterplots (a–f) of the observed versus the predicted total stem biomass (TSB) for the testing set (i.e., 20 samples).
The blue line represents the fitted line, and the red line represents the 1:1 line.
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Table 8. Average testing performance of the employed algorithms for the total stem biomass (TSB)
estimation using multispectral LiDAR data (i.e., 20 testing samples).

Model MAE MSE rbias RMSE R2

Generalized Linear Model 174.55 45,549.33 –1.12 220.37 0.44
Gaussian Process (linear) 164.03 48,150.58 –2.02 219.18 0.60

Gaussian Process (rbf) 169.16 48,717.19 –7.02 220.58 0.62
Random Forest 175.05 44,622.09 –4.94 211.16 0.65

Support Vector Regression 166.84 51,173.42 –6.15 226.00 0.57
XGBoost 236.67 84,701.11 –4.91 290.89 0.31

Table 9. The best- and worst-performing GLMs selected for the total stem biomass (TSB) estimations,
using the exhaustive screening variable selection (described in Section 3.3.1).

Model MAE MSE rbias RMSE R2

Havg + p70 + int_std_green 158.50 40,721.83 −0.05 201.79 0.57
p70 + b50 + int_std_green 178.80 46,749.84 −1.45 226.23 0.31

The TSB models showed a decrease in R2 and significantly higher RMSE and rbias
metrics in comparison with the BSB models. More specifically, the RF model resulted
in the highest R2 (0.65) among the other algorithms, but with low MAE (152.65 kg) and
RMSE (175.76 kg). The GP with the rbf kernel achieved marginally better R2 over the linear
kernel (0.62 and 0.6, respectively), although the latter resulted in lower rbias (−2.02%),
RMSE (164.03 kg) and MAE (219.18 kg). The SVR model provided an R2 of 0.57, with a
MAE of 166.84 kg and high rbias (−6.15%). The GLM with three predictors achieved low
performance in terms of RMSE and R2, although, it showed the lowest rbias (−1.12%). In
addition, the best-performing linear model employed high correlated variables (i.e., Havg
and p70), which is evidenced in Table 9. Finally, the XGBoost algorithm achieved the lowest
R2 (0.31) and the highest RMSE (290.89) compared to the rest of the employed algorithms.

The relative predictor importance of the GLM and ML models for TSB is presented in
Table 10 and Figure 10, respectively. In terms of the GLM, the int_std of the Green channel,
followed by the p70 and b50 were identified as the most consistent variables for the TSB
estimation (Table 10). In all cases, the Hstd was identified as the most important variable.
More specifically, in the GP (both examined kernels) and SVR models, the significance of
the Hstd was followed by the Hmax. In the RF model case, the Hstd, the p80, and int_ske
of both the Green and NIR channels are the four selected most important variables. In
the XGBoost model, the Hstd variable was followed by the p80, p30 and int_ske of the
NIR channel in terms of importance. It can be observed that, contrary to the BSB model
predictors’ importance, the LiDAR-derived intensity metrics from both channels are among
the most significant variables, especially in the GLM and the RF model.

Table 10. Demonstration of feature importance for the GLM for the total stem biomass (TSB) estima-
tion. In this table, the frequency represents the percentage of linear models containing each variable
after the testing procedure.

Variable Frequency (%)

int_std_green 34.48
p70 31.03
b50 27.58

Havg 3.44
p80 3.44
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Figure 10. Demonstration of the relative importance of the predictors employed for each examined algorithm (i.e., RF, SVR,
GP, and XGBoost) for the total stem biomass (TSB).

5. Discussion

The present study focuses on the potential of multispectral LiDAR-derived variables
alongside with linear and ML regression algorithms for single-tree stem biomass estimation
(i.e., TSB and BSB) in an uneven-aged structured forest. In the absence of species-specific
allometric equations for biomass estimation, destructive sampling was performed for the
construction of two allometric equations (i.e., for TSB and BSB estimation), so that the
reference dataset could be enriched without performing additional destructive sampling.
Thus, DBH was measured in the field and used as input data in the developed allometric
equations for the generation of additional reference TSB and BSB estimates. All reference
data were subsequently employed for the tree-level biomass estimation using five different
regression algorithms (i.e., GLM, RF, SVR, GP, XGBoost). Both intensity and height metrics
were extracted from the LiDAR point cloud and employed as potential independent
variables in the predictive models. According to [92], the intensity–height combined
AGB models provided higher R2 compared to the ones using only the height information,
especially in a study area like the Pertouli University Forest, which is characterized by
complex structure, high canopy cover and intense topography [106]. Overall, the results
demonstrate that BSB can be reliably estimated using the GLM and the ML algorithms
(i.e., RF, SVR, GP and XGBoost) in an uneven-aged structured coniferous forest, while TSB
estimations are more reliable using the RF, SVR and GP (with both kernels), with the RF
providing the best results in both cases (i.e., BSB and TSB).

In the case of the GLM application, a maximum number of three independent vari-
ables (i.e., LiDAR-derived height and intensity metrics) was incorporated in the predictive
models in order to avoid potential overfitting. In this study, an exhaustive screening
variable selection method and the Small-Sample Corrected Akaike Information Criterion
were employed for optimal linear model selection, taking into consideration the MAE,
MSE, and rbias statistics. The estimation accuracy of the developed GLM for BSB esti-
mation was similar to the ML models, resulting in the best prediction performance in
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terms of MAE, MSE, rbias, RMSE and R2 (i.e., MAE = 121.71 kg, MSE = 35585.08 kg,
rbias = 1.89%, RMSE = 167.09 kg, R2 = 0.72). However, the GLM severely underperformed
(MAE = 174.55 kg, MSE = 45549.33 kg and R2 = 0.44) in the case of the TSB estimation
compared to the rest of the examined algorithms (i.e., RF, GP and SVR). Even though the
Green channel presents lower sensitivity in canopy returns registration, due to its large
beam divergence [142], the int_std was the most frequently selected variable in both BSB
and TSB linear models (Tables 6 and 9). It is noteworthy that the int_std of the Green
channel is the variable selected in the best performing linear models, which indicates the
significance of the LiDAR intensity information for stem biomass estimation. In general,
height metrics were selected in every GLM but, contrary to the intensity metrics, the best
performing BSB model consisted of the least frequent height-related variables (i.e., p10 and
p70). These two variables are highly correlated, with a Pearson’s correlation coefficient
greater than 0.5. Moreover, in the TSB GLM, both the p70 and the b50 were rated as the
second and third most frequently selected variables in the best- and worst-performing
regression models, respectively (Table 10). A comparison of the BSB and the TSB GLM
accuracy reveals that the former performs significantly better. The low predictive perfor-
mance of the GLM in the TSB estimations can be attributed to the fact that bark volume
and biomass variation do not only depend on the tree species but also on the growth
rate, the environmental conditions and the genetic constitutions of trees [137]. In addition,
allometric equations can introduce uncertainty in the estimated biomass results mainly
due to measurement errors, transect size, the fraction of the AGB and the characteristics
of the study area [143]. As a result, although the linear models performed well in the BSB
predictions, they proved to be inadequate for TSB estimations (i.e., MAE = 173.92 kg, and
R2 = 0.32), and new bark biomass ones need to be developed with the use of a large sample
size (e.g., sample size >100).

On the contrary, ML algorithms can reliably predict tree attributes in complex struc-
tured forests, which is mostly credited to their better generalization ability compared
to the GLM [144]. They also provide additional valuable information for the variables,
such as the feature importance, which gives the possibility to exclude the insignificant
variables with minor contribution to the predictions. However, one of the main limitations
of ML algorithms is that they are considered as a black box to users, since it is not feasi-
ble to examine the internal iterations and perform detailed interpretations of all model
components [74,145].

In the present work, all the ML models had similar performances in the BSB esti-
mations, with the RF presenting the highest values of the statistical evaluation measures
(i.e., MAE, RMSE, and R2). As opposed to the GLM, all the ML models identified only
height-related LiDAR-derived metrics as the most important features for the prediction of
BSB, such as p99, p90, p95, and Hmax. With respect to TSB estimations, the RF algorithm
resulted in an R2 of 0.65 with among the lowest MAE and RMSE (i.e., MAE = 152.65 kg
and RMSE = 175.76 kg), and identified the Hstd, the p80 and int_ske of both the Green and
NIR channels as the most important variables of the regression model. On the contrary,
the XGBoost algorithm was found to be prone to overfitting due to the small sample size
(i.e., MAE = 236.67 kg, RMSE = 290.89 kg and R2 = 0.31) [146]. According to the literature,
the RF algorithm has a significant advantage over the other ML algorithms in terms of its
accuracy and its ability to perform with small sample sizes [131]. The RF and GLM-related
findings of this work are similar to other studies (e.g., [44,77,146]), although none of them
have been conducted in an uneven-aged structured forest.

Although individual tree approaches are becoming increasingly popular due to the
rapid development of LiDAR sensors providing high-density point clouds, there is a
restricted number of papers for individual tree stem biomass estimation. Consequently, we
compared our results with similar reports that exploit either approach, for stem biomass
or volume estimation. Despite the complex terrain, the multi-layered forest structure and
the denser LiDAR point cloud of [77], we achieved better results in terms of R2 in all of
the tested algorithms (i.e., RF, SVR, XGBoost and GLM). In 2020, [147] tested the RF, SVR,
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and GLM in plantations, resulting in a higher performance compared to ours in terms
of R2, but much higher rbias values as well. In addition, [60] used linear models with
logarithmic transformations for stem volume estimation in a boreal forest, using primarily
height metrics and reported superior results compared to the ones of the present study.
This variation in the results can be attributed to the significant difference between the study
sites, as the one in our work is a naturally regenerated uneven-aged forest with complex
topography, contrary to semi-natural regenerated and hilly forest in Finland.

As for the tree segmentation process, its accuracy was of utmost importance in this
study for the subsequent reliable stem biomass estimation since the LiDAR metrics (i.e., po-
tential independent variables for the regression models) are calculated for each individually
segmented tree. According to [148], tree segmentation and matching in multi-layered
forests is an arduous process resulting in the lowest matching accuracy among the different
forest types. More specifically, trees in the lower layers of the forest are difficult to identify
and the ability to segment those trees is contextual to the penetration capabilities and pulse
characteristics of the LiDAR sensor. Moreover, although multispectral LiDAR sensors
provide valuable information on the vertical distribution of physiological processes [81],
the higher the degree of canopy overlapping, the lower the capability of tree detection
algorithms to accurately identify them [149]. Consequently, only trees able to be detected
in the LiDAR point cloud (e.g., dominant, co-dominant) were sampled, aiming to achieve
the highest matching rate possible. The destructively sampled trees were all identified
in the point cloud, while only 63% of the non-destructively sampled ones were correctly
identified. Finally, tree segmentation errors caused by complex forest structure, intense
topography, and detection algorithm inaccuracies, could be eliminated by employing a
single-tree crown normalization process, based on the watershed segmentation algorithm,
and segmenting the point cloud into single trees without prior treetop detection. As a
result, the tree height was defined as the highest original point (in the height-unnormalized
point cloud), overcoming deformations in the tree crown due to the normalization [120].

Although this research reached its aim, there are some unavoidable limitations. First
of all, the sample size is considered small for such a complex structured forest, which has
potentially caused additional uncertainty in the predictions [106]. Furthermore, due to
legal restrictions, it was not possible to destructively sample a large number of small trees,
which could provide better estimates. In addition, this study primarily focused on the trees
that could be detected by the LiDAR sensor (e.g., dominant, co-dominant), excluding all
the understory trees, which have a significant role in the total forest biomass and dynamics.
As a result, the methodology and models can be transferred in similar biomes with the
assumption of estimating the stem biomass mainly of the dominant and co-dominant trees.
Nevertheless, the segmentation and identification of the understory trees in multi-layered
forests with complex terrain is a laborious task due to the overlapping projections of the
overstory and the understory tree, which should be studied further.

Overall, the results of our work demonstrated the ability of LiDAR data to estimate
individual-tree stem biomass in a multilayered forest, which is critical for forest inventory
management and could potentially replace the laborious field measurements required in
traditional stem biomass estimation methods. This study also highlights the importance
of the pulse intensity metrics in stem biomass estimation, apart from the standard height-
derived ones. Besides, this study is the first contribution in the context of LiDAR remote
sensing for biomass estimation in an uneven-aged structured Abies borissi-regis forest
with complex topography, and one of the few studies that use primarily LiDAR data and
destructive sampling for single-tree stem biomass estimation.

6. Conclusions

In this study, we investigated the retrieval of stem biomass estimates at the single-tree
level, using multispectral LiDAR data in a complex structured forest. In particular, the
BSB and TSB were predicted through linear regression and ML regression algorithms. The
results demonstrated the capability of the multispectral LiDAR data to provide reliable
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stem biomass estimates in a dense, uneven-aged structured forest with rough topography.
The main conclusions are listed below:

• BSB can be adequately estimated from all the tested algorithms, contrary to the TSB
where only a portion of the selected algorithms (i.e., RF, GP and SVR) provided
accurate estimations.

• All the algorithms provided more accurate BSB estimations compared to the TSB ones.
• The RF algorithm resulted in the most precise BSB and TSB estimates in terms of R2

MAE and RMSE, compared to the rest of the examined algorithms.
• The intensity metrics significantly contribute to accurate BSB and TSB estimation,

being among the most important variables in the best performing algorithms.
• The ML regression algorithms outperformed the GLM in the TSB estimation, which

can be credited to the better generalization capacity and ability of the former to model
complex relationships.

It is evident that LiDAR data can significantly contribute to the development and man-
agement of complex structured forest resources, providing valuable information about the
AGB to different spatial extents. This research aids in improving the stem biomass estimates
in uneven-aged structured forests with complex topography, where field measurements
can be extremely laborious and costly. The promising results of this study will encourage
further research on stem biomass estimation using primarily LiDAR data in complex forests
with endemic species, significant for effective forest biomass and carbon management.

Given the limitations of this study described in Section 5, it would be interesting to
examine the potential of LiDAR in stem biomass estimation with an increased number
of sample trees, in order to validate the results of the present study. In addition, the
integration of terrestrial and airborne LiDAR data for stem biomass estimations in complex
structured forests could also be investigated, providing additional information about the
DBH, tree height and the understory trees. Finally, further research could focus on the
contribution of Unmanned Areal Vehicle (UAV) LiDAR systems in tree detection and stem
biomass estimation over natural forests.
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