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Abstract: The registration of optical imagery and 3D Light Detection and Ranging (LiDAR) point
data continues to be a challenge for various applications in photogrammetry and remote sensing. In
this paper, the framework employs a new registration primitive called virtual point (VP) that can be
generated from the linear features within a LiDAR dataset including straight lines (SL) and curved
lines (CL). By using an auxiliary parameter (λ), it is easy to take advantage of the accurate and fast
calculation of the one-step registration transformation model. The transformation model parameters
and λs can be calculated simultaneously by applying the least square method recursively. In urban
areas, there are many buildings with different shapes. Therefore, the boundaries of buildings provide
a large number of SL and CL features and selecting properly linear features and transforming into
VPs can reduce the errors caused by the semi-discrete random characteristics of the LiDAR points.
According to the result shown in the paper, the registration precision can reach the 1~2 pixels level of
the optical images.

Keywords: LiDAR point data; optical imagery; registration; virtual point

1. Introduction

High spatial resolution optical images acquired by aerial or satellite remote sensing
sensors are one of the most commonly used data sources for geographic information
applications. They have been used for manmade object detection and extraction [1], urban
planning [2], environmental monitoring [3], rapid response to natural disasters [4], and
many other applications. Nevertheless, the lack of three-dimensional (3D) information in
optical images limits their utilities in terms of 3D applications. Airborne Light Detection
and Ranging (LiDAR), on the other hand, has the ability to directly acquire 3D geo-spatial
data of the landscape with respect to a given object coordinate system [5]. It is an active
sensor which means it can be operated under a wide range of weather conditions with the
acquired dataset free of shadow. Meanwhile, a laser pulse can penetrate through the gaps
of plant foliage and then hit the ground; hence, it not only provides an efficient way for high
accuracy Digital Elevation Model (DEM) acquisition in areas of vegetation, but also acts
as an indispensable means for forestry parameters retrieval [6]. Both spatial and spectral
information can be acquired if optical images and LiDAR point cloud are combined, which
effectively compensates for the deficiency caused by a single data source and has great
potential applications in natural hazard assessment [7], true orthophoto production [8],
change detection [9,10], ecology [11,12], forest [13], land cover [14], automatic manmade
objects extraction and modeling [15], etc.

Fusion of LiDAR data and optical images can be performed only if they are precisely
registered in order to eliminate the geometric inconsistency between the two datasets [16].
Although orthorectified aerial images and airborne LiDAR data should be precisely reg-
istered, misalignments still exist because of the systematic errors of the respective sensor
systems [17]. For example, errors may appear due to either insufficient accuracy of the
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Global Positioning System (GPS) and Inertial Measurement Unit (IMU) observations or
inappropriate system calibration [18]. Therefore, precise registration is necessary, even if
images have been rectified when they are fused with point cloud.

1.1. Related Work

The current registration methods of remote sensing image and LiDAR point cloud data
commonly ignore the characteristics of the data itself: (1) The three-dimensional point cloud
data of LiDAR space has the characteristics of discontinuity, irregularity, and uneven data
density [19], which leads to the difference between remote sensing image and LiDAR point
cloud data shown in Table 1. The registration has the problem of inconsistency between the
vertical and horizontal accuracy of the image and LiDAR data. The classic entity features,
such as point, line, and patch features, are used as the registration primitives. However,
they cannot overcome the inconsistent defects of the two kinds of the data features for
registration, which greatly limits improvement of the registration accuracy with LiDAR
point cloud data [20]. (2) In digital image processing, image registration refers to the process
of aligning two or more images, pixel by pixel, by using a transformation: one of them is
referred to as the master and any others that are registered to the master are termed slaves.
Registration is currently conducted with intensity-based methods, feature-based methods,
or a combination of the two [21]. Unlike the image-to-image registration scenario, the
registration between optical images and laser scanning data is characterized by registering
continuous 2D image pixels to irregularly spaced 3D point clouds, thereby making it
difficult to meet the requirements imposed by traditional methods mainly developed for
registering optical images [22]. Most of the registration methodologies usually adopt the
following two modes: converting the LiDAR data into a two-dimensional depth image or a
two-dimensional image generating a three-dimensional point by photogrammetry method.
The two types of data to register can then be transferred to the same dimension but the
registration process is cumbersome and the error accumulation is significant.

Table 1. The comparation between LiDAR point cloud data and optical image [23].

LiDAR Point Cloud Data Remote Sensing Image

Rich information on homogeneous surfaces There is almost no positional information on
homogeneous surfaces

Data can be obtained during the day and night Most of the data can only be obtained during
the day

Obtain accurate three-dimensional
coordinates directly

Obtaining three-dimensional coordinates by
matching process is complicated and

unreliable matching results often occur

The vertical accuracy is better than the
horizontal accuracy

The horizontal accuracy is better than the
vertical accuracy

Highly redundant information No inherent redundant information

Rich location information only, and it is
difficult to extract semantic information Rich semantic information

1.1.1. Registration Primitive

In recent years, domestic and foreign scholars have carried out a series of research
on the registration of remote sensing images and LiDAR point cloud data. Registration
primitives, registration transformation model, and registration similarity measures are
the basic problems of data registration [23], and the choice of registration primitives
determines the similarity measures and registration transformation models of registration.
Therefore, the high-precision registration of LiDAR point clouds firstly lies in the selection
of registration primitives. The traditional registration methods mainly use points [24],
lines [24–26], and patches [27,28] as registration primitives, but all of them have inherent
limitations for the registration of remote sensing images and LiDAR point cloud data.
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(1) Point features are used as registration primitives. Due to the semi-random discrete
characteristics of airborne LiDAR point cloud data, the horizontal accuracy of point
cloud features is usually lower than the resolution of remote sensing images. In other
words, it is impossible to select the registration primitive points on the LiDAR data
having an equivalent horizontal accuracy as the points selected on the images [29].

(2) Linear feature registration primitives have been widely used because of their variety
of mathematical expressions and easy extraction [30]. In LiDAR point cloud data,
high-precision line features can be obtained through the intersection of patches. This
method can eliminate the influence of semi-random discrete errors in point cloud
data [9]. At present, most of the registration methods based on line features are
based on straight line features and registration methods based on curve features are
relatively rare [18].

(3) The patch features as well as the registration primitive are generally a set of coplanar
points obtained based on spatial statistical methods [31], which can also eliminate
the accidental error of the semi-random discrete characteristic of point cloud data.
According to the perspective imaging principle of photogrammetry, the images of
target objects tend to be distorted, deformed, occluded, etc. The similarity of coin-
cidence measurement or the point-to-surface distance can only better constrain the
elevation error but ignores the influence of plane error [31,32]. Therefore, there is an
urgent need to find a new form of registration primitives that can both adapt to the
semi-random discrete characteristics of point cloud data and eliminate the influence
of uncertain errors.

1.1.2. Registration Transformation Model

The registration transformation model is the core methodology of the registration of
remote sensing images and airborne LiDAR point cloud data. This scientific and rigorous
mathematical model directly affects the registration accuracy [29]. Aiming at the 2D–3D
dimensional inconsistency mode of remote sensing image and LiDAR point cloud data,
existing research is mainly based on the following two ideas:

(1) In early research, LiDAR data are converted to two-dimensional images. Image-
based methods make full use of existing algorithms for image registration, which
makes the registration process easier. Mastin et al. [33] suggested taking advantage
of mutual information as a similarity measure when LiDAR point cloud and aerial
images were to be registered in the 2D–2D mode, which also includes using the
improved frequency based method (FBT) to register low resolution optical images
and LiDAR data, the scale-invariant feature transform (SIFT) algorithm [34,35] for the
registration of LiDAR data and photogrammetric images, or the salient image disks
(SIDs) to extract control points for the registration of LiDAR data and optical satellite
images. The experimental results have proven that the SIDs method is relatively
better than other techniques for natural scenes. However, the inevitable errors and
mismatching caused by conversion of irregularly spaced laser scanning points to
digital images (an interpolation process) means the registration accuracy may not
be satisfactory. Baizhu et al. [36] propose a novel registration method involving a
two-step registration process where the coarse registration is carried out to achieve
a rough global alignment of the aerial and LiDAR intensity image, while the fine
registration is then performed by constructing a discriminative descriptor. The whole
registration processing is relatively complex, with a 2-pixel accuracy and it need
amount of calculation.

(2) In other cases, the geometric properties of the two datasets are fully utilized. As far
as the registration procedure is concerned, most of the existing methodologies rely
on point primitives and some researchers apply the iterative closest point (ICP) or its
variants to establish a mathematical model for transformation [37,38]. Then, dense
photogrammetric points are first extracted by stereo-image matching and 3D to 3D
point cloud registration algorithms, such as ICP or structure from motion (SFM), are
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secondly applied to establish a mathematical model for transformation [39–42]. For
further research, the surface-to-surface registration has been achieved by interpolating
both datasets into a uniform grid. A comparison is used to estimate the necessary
shifts by analyzing the elevation at the corresponding grid posts [43,44]. Such an
approach can arise based on the above methods. First, minimizing the differences
along the z-direction where there are abundant flat building roofs over urban areas.
All of these methodologies are mostly implemented within a comprehensive auto-
matic registration procedure [45]. Secondly, such approaches based on processing the
photogrammetric data can produce breaklines or patches in the object space [46]. The
main drawback of this method is that the registration accuracy may be influenced
by the result of image matching. Moreover, methods in this category require stereo
images covering the same area as covered by point clouds, which increases the cost of
data acquisition. For the low cost unmanned aerial system, Yang Bisheng et al. [47]
propose a novel coarse-to-fine method based on correcting the trajectory and minimiz-
ing the depth discrepancy derived from SfM and the raw laser scans. This achieves
accurate non-rigid registration between the image sequence and raw laser scans
collected by a low-cost UAV system, resulting in an improved LiDAR point cloud.
The registration process described in this paper would allow for a simpler and more
robust solution of the matching problem within overlapping images [48].

1.2. Paper Objective

This paper proposes a novel method for registration of the two datasets acquired
in urban scenes by using a direct transformation function and point features as control
information. From the above discussion about the existing research methods, it is easy
to deduce that the registration accuracy is affected by two factors: one is the discrete
characteristic of the points and the other is the complexity of the registration transform
model. The pre-factor determines that it is impossible to select precise control points as
the registration primitive because of the distance between the points. The latter factor
determines that the direct registration method more precisely avoids errors caused by
complex calculation processes.

High-precision registration between two datasets requires high-precision registration
primitives. The virtual points (VPs), which are generated from SL and CL, can be used as
the registration primitive and satisfy the two conditions mentioned above. The VP can
simplify the linear features into point features by introducing auxiliary parameters (λs).
This makes it possible to resolve the parameter of the direct registration model and the
λs simultaneously. In other words, this paper’s methodology is changing the traditional
Point–Point or Line–Line mode registration to Point–Line mode registration, and the point
features are selected on the optical images, while the linear features are extracted from the
LiDAR point dataset. Moreover, all types of linear features can be transformed into the
VPs and that allows the methodology to cater to a variety of test sites. In summary, this
article will focus on the following issues:

(1) Definition and expression of virtual point features based on linear features

In the LiDAR point cloud data, the linear features can be summarized as straight-line
features and curve features. For different types of line features and their manifestations
in the point cloud data, by introducing auxiliary parameters, the paper will deduce the
definition and expression of virtual point features from the line feature constraints and
then establish the corresponding registration similarity measurement:

• Research on the extraction of straight lines and curves from the LiDAR point
cloud data;

• The definition and expression of virtual point registration primitives from dif-
ferent line features.

(2) The 2D–3D direct registration transformation model based on virtual point features
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• The robust direct registration model for the remote sensing images and LiDAR
point cloud data based on virtual point features means the registration results
do not rely on the initial values of model parameters;

• Establishment of a direct registration model between remote sensing image and
LiDAR point cloud data;

• A joint solution model of the registration transformation model parameters and
the auxiliary parameters when generating the virtual points.

1.3. Article Structures

The workflow of the proposed method is shown in Figure 1, and the rest of this paper
is organized as follows: After giving a short description for the notations used in this
paper, Section 2 describes the technique of how LiDAR data are firstly employed for linear
feature detection. As the VPs can be generated from two kinds of linear features and
the expression of the VPs from different types of the linear features, all the details will
be shown in Section 3. In Section 3, a direction registration transformation model is also
used to perform the registration processing and, during the processing, all the primitives
with large errors can be excluded automatically. A direct transformation function based
on collinearity equations is proposed and four test sites will be used to implement the
experiment and discussions in Section 4. Finally, the experimental conclusions will be
drawn out in Section 5.
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Figure 1. (a) The workflow of the proposed method. Linear and curve features detection, virtual
point generation, and registration transformation model. (b) The virtual points feature and point
feature in LiDAR point data and images, respectively, and the overlap result of the two data.

2. Detection and Selection of the Linear Registration Primitives

As mentioned in the introduction, registration based on primitives starts from the
extraction of salient features, which include point, linear, and planar features, as Figure 2
shows. LiDAR point cloud has semi-discrete random characteristics, so the three types of
registration primitives all have specific new features on the LiDAR point cloud, as shown
in Table 2. Point registration primitives have random characteristics in LiDAR point cloud
and there are error offsets along the three directions of the coordinate axis. The line and
patch features in the point cloud are usually generated or fitted by multiple points, so
the influence of the discrete error can be greatly reduced [49]. However, the three types
of registration primitive have different mathematical expression, and the mathematical
expression complexity in Table 2 indicates the difficulty of mathematical expression of each
feature. The simpler the expression of registration primitives, the simpler the registration
model and the smaller the registration process error.
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Table 2. The error characteristics of the point, line, and patch primitives in LiDAR data.

Primitive Type Error Description Mathematical Expression
Complexity

Point Has the property of
semi-random dispersion

Patch

Relatively accurate, it is generated from
the whole fitting of the same patch
point cloud which depends on the

patch segmentation accuracy

Line

Line features are obtained by
intersecting patches and the accuracy
depends on the extraction accuracy

of patches

Line features are obtained from the intersection of patches and the accuracy depends
on the extraction accuracy of patches. In LiDAR point cloud, there are random errors in
directly selected point features and the errors are often greater due to the occlusion of
ground objects, as shown in the R region in Figure 3. Therefore, this paper intends to select
line or curve features with higher accuracy to represent the point features and realize the
high-precision extraction of the registration point primitive. Therefore, the key attributes
of this section are the detection and selection of the line and curve features.
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2.1. Building Edges Extraction and Feature Selection

Building outlines have distinguishable features that include linear features and curve
features, and many methods can be used to extract building outlines from the LiDAR
data. To eliminate the semi-random discrete characteristics of point cloud data and obtain
high-precision linear registration primitives, the patch intersection can be seen as the most
reliable way [50]. In other words, the linear features with wall point cloud should be the
first choice for the registration primitives in the L side, as Figure 3 shows. However, the
general method of tracking the plane profile of buildings based on airborne LiDAR data is
to convert the point cloud into the depth image, then use an image segmentation algorithm
to segment the depth image, and finally, use the scanning line method and neighborhood
searching method to track the building boundary [51]. The problem of the abovementioned
process is that the edge tracked is the rough boundary of the discrete point set, which has
low accuracy. Some researchers have also studied the method of extracting the contour
directly from the discrete point set. For example, Sampath A et al. [52] proposed an edge
tracking algorithm based on plane discrete points. The algorithm takes the edge length
ratio as the constraint condition, reduces the influence of the point density, and improves
the adaptability for the edge extraction of the slender feature or uneven distribution, but
an unsuitable threshold setting can cause the edge excessive contraction. Alpha shapes
algorithm was first proposed by Edelsbruuner et al. [53]. Later, many researchers improved
upon it and have applied it to the field of airborne LiDAR data processing, because the
algorithm has perfect theory and high efficiency and can also deal with complex building
contour extraction conditions (e.g., curved building outlines). However, the alpha shapes
algorithm is not suitable for uneven data distribution and the selection of algorithm
parameters is also difficult. Therefore, to deal with the above problems, this paper proposes
a double threshold alpha shapes algorithm to extract the contour of the point set. Then,
the initial contour is simplified by using the least square simplification algorithm so that a
candidate linear registration primitive satisfying the requirements is generated. Finally,
the linear features with wall points can be selected as the registration primitive including
straight line features and curve features. Figure 4 illustrates the framework of the proposed
linear extraction method.
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2.2. Contour Extraction Based on Double Threshold Alpha Shapes Algorithm

Restoring the original shape of a discrete (2D or 3D) point set is a fundamental and
difficult problem. In order to effectively solve the problem, a series of excellent algorithms
have been proposed, and the alpha shapes algorithm [54] is one of the best. The alpha
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shapes algorithm is a deterministic algorithm with a strict mathematical definition. For any
finite point set S, the shape of the point set δS obtained by the alpha shapes algorithm is
definite. In addition, the user can also control the shape δS of set S by adjusting the unique
parameter α of the algorithm. In addition to formal definitions, the alpha shapes algorithm
can also use geometric figures for intuitive description. As shown in Figure 5a, the yellow
points constitute a point set S; a circle C with a radius of α rolls around the point set S
as closely as possible. During the rolling process, the circle C cannot completely contain
any point in the point set. Finally, the intersection of the circle C and the point set S is
connected in an orderly manner to obtain the point shape set, the shape of which is called
the α-shape of the point set S. For any point set S, there are two specific α-shapes: (1) When
α approaches infinity, the circle C degenerates into a straight line on the plane, and the point
set S is on the same side of the circle C at any given time. Therefore, α-shape is equivalent
to the convex hull of the point set S (as shown in Figure 5b); (2) When α approaches 0, since
the circle C can roll into the point set, each point in set S is an independent individual, so
the shape of the point set is the point itself (as shown in Figure 5c).
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Considering the excellent performance of the alpha shapes algorithm, many re-
searchers have proposed to use the alpha shapes algorithm to directly extract building
contours from airborne LiDAR data [54]. However, in practical applications, there are still
some problems that need to be solved: (1) Alpha shapes algorithm is mainly suitable for
point set data with relatively uniform density, which is determined by the nature of the
algorithm, because the fineness of the point set shape is completely determined by the
parameters α as shown in Figure 7a,b; the left half of the point set is denser, while the right
half is relatively sparse. Figure 7a shows that the alpha shapes algorithm uses a larger α
value. The shape shown in Figure 7b is artificially vectorized according to the distribution
of the point set and the result is quite different from the shape automatically extracted
by the alpha shapes algorithm. It can be seen that a single α value setting of the alpha
shapes algorithm cannot adapt to the point set data with varying point densities, and that
is exactly the characteristic of the LiDAR point clouds. (2) The alpha shapes algorithm is
not very effective when processing concave point sets. If the value of α is large, the concave
corners are easily dulled (Figure 7c); if the value of α is small, it is easy to obtain a broken
point set shape (Figure 7d). Lach S. R. et al. [55] pointed out that the value of α should be
set as one to two times that of the average point spacing and then the shape of the point set
obtained at this time is relatively complete and not too broken.

In response to the above problems, this paper proposes a dual threshold alpha shapes
algorithm. The main idea of the dual threshold alpha shapes algorithm is: (1) According
to the judgment criterion of alpha shapes, set two thresholds α1 and α2 (α1 = 2.5α2), and
obtain the qualified line segment (LS) sets ∂S1 and ∂S2 about the point set S; Select one
of the optional line segments l1pq from edge sets ∂S1, where point p and point q are the
two endpoints of l1pq. In an undirected graph G composed of the edges of the point set
S and ∂S2, differing from the condition of ∂S1, the points p and q are not always adjacent.
However, starting from point p and passing through several nodes, it can always reach
point q and generate a path—the path with the smallest length is recorded as lmin_pq. Then,
set up a path selection mechanism as follows. (2) Select lpq as the final path from lmin_pq
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and l1_pq. The same operation is performed to the edge ∂S2. All the edges in the iterative
processing are used to obtain the path set {l1, l2, l3, . . . , ln}. Finally, all the paths are
connected in turn to obtain the high-precision point set shape. The double threshold alpha
shapes algorithm is mainly composed of the following two steps, which are described in
detail as follows.

(1) Obtaining dual threshold α-shape

Let DT(S) be the Delaunay triangulation of the point set S, and ∂S1 and ∂S2 are the
α-shapes obtained by the alpha shapes algorithm when the parameters are set to α1 and α2,
respectively. Literature has proved that α-shapes under any threshold are all sub-shapes
of DT(S), which means ∂S1 ⊂ DT(S), ∂S2 ⊂ DT(S). Therefore, the process of obtaining
α-shape is as follows: firstly, use the point-by-point insertion algorithm to construct the
Delaunay triangulation DT(S) of the point set S (see [52] for the detailed steps of the
algorithm) and then perform an alpha shapes algorithm on each edge in DT(S) in turn,
as shown in Figure 6. A line pq (point p and q are adjacent boundary points) is an edge in
DT(S), circle C is a circle that passes through pq and has a radius of α (the coordinates of
the circle center are as shown in (1) and (2), if there is no other vertices in the circle C), then
the edge pq belongs to the α-shape.{

xc = 0.5
(
xp + xq

)
+ H

(
xp − xq

)
yc = 0.5

(
yp + yq

)
+ H

(
yp − yq

) (1)

H = ±
√

α2(
xp − xq

)2
+
(
yp − yq

)2 −
1
4

(2)

where: (
xp, yp

)
: Coordinate of point p;(

xq, yq
)
: Coordinate of point q;

(xc, yc) : Coordinate of point c; c is the center of circle C;
α : Radius of circle C.
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(2) Optimization of boundary path

In an undirected graph G composed of the edges of the point set S and ∂S2. Select any
line segment lpq, denoted as the line segment path l1, with the two endpoints of p and q.
Search all paths in the undirected graph G with p as the starting point and q as the end
point, calculate the length of each path, and record the path with the smallest length as the
boundary path l2 of point p and point q.
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To ensure that the boundary path from point p to point q is the real boundary of the
building. In this paper, three criteria are set to determine the path L from the l1 and l2. The
judgment criteria are as follows:

G As Figure 8a shows, if the length of l1 is more than 5 times that of l2, then discard l1
and keep l2;

G As Figure 8b shows, if the two adjacent edges of l2 are close to vertical (more than
60 degree), and all the distances from the endpoints of l1 to any adjacent edge of l2
are small, discard l2 and keep l1;

G As Figure 8c shows, if the two adjacent sides of l1 and l2 are close to parallel, and the
distance from the end point on l1 to l2 is less than a certain threshold (such as half the
average point spacing), then l1 is discarded and l2 is retained.
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Figure 8. Corresponding path filtering of different situation. (a) l1 ≥ 5l2. (b) the angle between l1
and l2 > 60 degrees. (c) l1 and l2 are near the same line l.

Repeat the above procedure until all the edges of the ∂S2 are complete, then the paths
obtained in step (2) are connected in turn to obtain the shape of the point set S.

2.3. Straight Linear Feature Simplification Based on Least Square Algorithm

The initial boundary edges of the building obtained by the dual threshold alpha shapes
algorithm are very rough and generally need to be simplified first. Douglas Peucker’s [56]
algorithm is a classic vector compression algorithm, which is used by many global in-
formation systems (GISs). The algorithm uses the vertical distance from the vertex to
the line as the simplification basis. If the vertical distance is less than the threshold, the
two ends of the line are directly used to replace the current simplification. Otherwise, use
the maximum offset point to divide the element into two new elements to be simplified,
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and then recursively repeat the above operation for the new elements to be simplified, as
Figure 9a shows.
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This paper proposes a simplification algorithm for linear features based on the least
square method, as Figure 9b shows. The algorithm requires two parameters, namely the
distance threshold dmax and the length threshold Len. The detailed steps of the algorithm
are as follows:

(1) Select three consecutive vertices, A, B, and C, of the polygon in order, use the least
square method to fit the straight line L, and calculate the distance from the vertices A,
B, C to the straight line L. If any of the distances are greater than dmax, then go to step
(4); otherwise, let U = {A, B, C}, and go to step (2);

(2) Let set U have two ends p and q, which extend to both directions from p and q,
respectively. A new vertex will be added and judged during the growth process. If
the distance between the new vertex and the line L is less than dmax, then add it to
the set U and use it as a new starting point to continue the growth—otherwise, it will
stop growing at the vertex and the direction—until both directions are finished;

(3) Determine the length of the set U. If the length of U is greater than the threshold Len,
keep the two ends of the set and discard the middle vertices;

(4) If there are three consecutive vertexes remaining to be judged, go to step (1); otherwise,
calculate the size of the length threshold Len. If Len is greater than 2~3 times the average
point spacing, reduce the length threshold to Len = 0.8 Len, and go to step (1).

In Figure 9, the black lines are building contours extracted based on double threshold
alpha shapes algorithm. Nodes A, B, C, . . . , I are the boundary key points of the building
and the blue line is the intermediate result of the optimization process. In Figure 9a, the
blue line is the final result after optimization. In Figure 9b, the red line is a fitting line based
on the least square method.
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2.4. Curve Feature Simplification Based on Least Square Algorithm

Most of the non-rectangular building boundaries are circular or arc-shaped building
outlines, and even an elliptical arc can be regarded as a segmented combination of multiple
radius arcs. Therefore, any building boundary curve segment can be regarded as a circular
arc segment, defined by rotating a certain radius R around an angle θ, which is shown in
Figure 10. In addition, for any arc segment, as long as the number of boundary point clouds
on the arc segment N0 > 3 is satisfied, the arc segment C at this time can be fitted by the least
square method to obtain the center o, the radius R and the arc segment angle θ (Figure 10).
For any arc, the height on the roof boundary is the same, and it can be directly obtained
and recorded as Z0 during feature extraction. At this time, any arc can be shown in (3):

Remote Sens. 2021, 13, 4836 13 of 32 
 

 

(X0, Y0, Z0): The center coordinate of the space circle where the arc is located; 
R: The radius of the circle where the arc is located; 

θ: The polar coordinate angle of the current point in the transformed coor-
dinate system. 

 
Figure 10. In the schematic diagram of coordinate transformation, any point on the arc can be pre-
sented by (X0, Y0, Z0), R and θ. 

2.5. The Selection of the Linear Registration Primitives 
In most cases, a laser beam hits a building at a scanning angle, except when the build-

ing is at the nadir of the scanner. This means that some wall facets can be reached by the 
laser beam, but others cannot, and there is usually a ditch between the wall and the roof 
edge, as shown in Figure 11. We term wall facets exposed to the laser beam as positives 
while the others are negatives. That means not all building outlines are accurate enough 
to meet the registration requirement. To solve the abovementioned problem, only the lin-
ear features formed by positive facets are selected as the candidates for registration prim-
itives. By determining that a facet is positive or negative, the following strategy is em-
ployed: fitting a given facet by a plane equation so that the normal vector to the plane is 
obtained, then moving the fitted plane along the normal vector outwardly by a small dis-
tance ds, which is determined according to the density of point cloud. A small cuboid is 
then formed (Figure 11). If the total number of points in the cuboid is larger than a given 
threshold N, then the line segment formed by projecting the facet onto the ground (xy-
plane) is selected as one of the registration primitives. 𝑐𝑜𝑢𝑛𝑡 ൫𝑉൯ (𝐿௦௧ × ℎ)൘ > 𝑁 (5)𝑉 = 𝐿௦௧ × ℎ × 𝑑௦௧௧ (6)

where:    𝑉:  The volume of ith cuboid;   𝐿௦௧ : The ith linear feature segment associated with the ith cuboid; 

Figure 10. In the schematic diagram of coordinate transformation, any point on the arc can be
presented by (X0, Y0, Z0), R and θ.

Though most commercial and residential buildings have rectangular outlines, arc-
shape outlines are not uncommon. In the paper, arc-shape outlines are viewed as arcs of
circles. For a given arc, the associated radius and central angle are denoted by R and θ,
respectively, as shown in Figure 10. Denote the coordinates of the circle center by (X0, Y0),
then any arc can be expressed as follows:{

(X− X0)
2 + (Y−Y0)

2 = R2

Z = Z0
X1< X < X2; Y1< Y < Y2 (3)

where:
X1, Y1 and X2, Y2: The coordinates of the two distinct end points of the arc;
Z0: The constant height value of the arc which can usually be obtained directly from

building edge point.
The three parameters X0, Y0, and Z0 can be calculated using the least square method.

At this time, any coordinate on the arc segment can be expressed via (4):
X = X0 + Rcosθ

Y = Y0 + Rsinθ

Z = Z0

arctan
Y1 −Y0

X1 − X0
< θ < arctan

Y2 −Y0

X2 − X0
(4)
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where:
(X0, Y0, Z0): The center coordinate of the space circle where the arc is located;

R: The radius of the circle where the arc is located;

θ:
The polar coordinate angle of the current point in the transformed
coordinate system.

2.5. The Selection of the Linear Registration Primitives

In most cases, a laser beam hits a building at a scanning angle, except when the
building is at the nadir of the scanner. This means that some wall facets can be reached by
the laser beam, but others cannot, and there is usually a ditch between the wall and the roof
edge, as shown in Figure 11. We term wall facets exposed to the laser beam as positives
while the others are negatives. That means not all building outlines are accurate enough to
meet the registration requirement. To solve the abovementioned problem, only the linear
features formed by positive facets are selected as the candidates for registration primitives.
By determining that a facet is positive or negative, the following strategy is employed:
fitting a given facet by a plane equation so that the normal vector to the plane is obtained,
then moving the fitted plane along the normal vector outwardly by a small distance ds,
which is determined according to the density of point cloud. A small cuboid is then formed
(Figure 11). If the total number of points in the cuboid is larger than a given threshold N,
then the line segment formed by projecting the facet onto the ground (xy-plane) is selected
as one of the registration primitives.

count(Vpro f ile)/(Li
segment × hi)

> N (5)

Vpro f ile = Li
segment × hi × dconstant (6)

where:
VPro f ile : The volume of ith cuboid;
Li

segment: The ith linear feature segment associated with the ith cuboid;
N : The threshold of the total number of points per unit area;
hi: The average height of the linear feature;

dconstant : The distance that the facet moves outwardly along the facet normal vector.
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The abovementioned idea can be shown more intuitively by Figure 11, which gives
an outline segment of a building: the vertical view of the building, where VL and VR are
the two outline segments formed by projection of the building onto the xy-plane, and its
horizontal view from a specific angle. VL is selected as a candidate registration primitive
in the paper.
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The linear registration primitives extracted by the above method are equivalent to the
intersection of the roof surface and the wall surface, so the extraction accuracy is high and
the influence of the semi-random attribute of the point cloud is greatly avoided.

3. Registration Primitive Expression and Transformation Model

In this paper, the linear features are selected as the registration primitive. How-
ever, compared with point features, linear features require more parameters and complex
mathematical models to express, resulting in more complex transformation models being
needed. This increases the difficulty of the registration process but decreases the regis-
tration accuracy [46]. As pointed out in Section 2, it is far more difficult to extract salient
points from LiDAR point cloud than from photogrammetric images. Therefore, we employ
point features in image space and linear features in point cloud space, respectively, as the
registration primitives (Figure 12).
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mathematical models to express, resulting in more complex transformation models being 
needed. This increases the difficulty of the registration process but decreases the registra-
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Figure 12. The point ‘a’ on the image corresponds to the point A as the tie point. A cannot manually
be selected on the laser point cloud. The point A is on the line L and L can be detected in the
LiDAR data.

3.1. The Generation of the VPs

The mathematical expression of line feature or patch feature registration primitives is
commonly complex, which often leads to complex registration processes, often introducing
processing errors. Therefore, how to reduce or eliminate the random errors caused by the
semi-random attribute of the point cloud is the focus task of this section.

It is obvious that all original registration methodology of the LiDAR 3D points data
and the imagery data are point–point, line–line, or point–patch mode, and only the point–
point mode can use the direct registration transformation model. However, for the discrete
characteristics of the LiDAR points, it is hard to precisely select tie points comparing to the
imagery data. As a result, this paper will use the linear features to express the tie point,
which can be seen very precisely as the “true value” by introducing an auxiliary parameter,
and the expressed “true value” by the linear features can be defined as the virtual point
(VP). In this way, precise linear registration primitive and the direct registration model can
be utilized simultaneously.

To cater to urban scenes, two kinds of the linear features are counted to generate the
respective VPs. Most of the regular primitive features, including the straight lines and
regular curves lines, are extracted from the outlines of the buildings in the urban area. In
the following sections, we will respectively introduce how to use the two types of linear
features to generate the VPs for the registration of image and LiDAR point cloud data.

3.1.1. The VPs from Straight Lines

For high resolution remote sensing images, the horizontal precision is far better than
that in LiDAR point cloud, so the VP that is on the straight line—but cannot be selected in
the LiDAR point—is used to displace point features to make up the weakness of horizontal
information in LiDAR point cloud, as Figure 13 shows. By introducing an auxiliary
parameter (λ), and defining the “real” location point, the linear features can be changed
into “point” features; this makes the one-step registration transformation model possible.
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Figure 13. The VP from the SL features.

Any two points express a straight line and any point VP on the line can be expressed
by introducing an auxiliary parameter λ. Assuming P is a corresponding point on a roof
edge segment LAB of LiDAR space to image point p, introducing a parameter λ, then the
coordinates of P in LiDAR space can be expressed by the known PA, PB coordinates and
parameter λ, as (7) shows: Xvp

Yvp
Zvp

 =

 XA
YA
ZA

+ λ

 XA − XB
YA −YB
ZA − ZB

 (7)

where:
(XA,YA, ZA): Coordinate of point A in LiDAR data;
(XB,YB, ZB): Coordinate of point B in LiDAR data;

(Xvp,Yvp, Zvp): Coordinate of point VP;
λ: The auxiliary parameter.

3.1.2. VPs from Curve Features

In addition to straight line features, regular curve features can also be used as registra-
tion primitives in LiDAR point cloud space. The boundaries of many buildings have partial
arcs or curves, especially in the factory areas, as shown in Figure 14. In the second chapter,
the dual threshold alpha shapes algorithm can not only extract straight line features, but
also accurately extract precise curve features. Therefore, the building boundary with a
certain arc, which is called a regular curve, can be chosen as the registration primitives.
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Some special and complex buildings, such as the Bird’s Nest of Beijing Olympic Stadium,
are not considered.
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Figure 14. Curved roofs.

The regular curve features are expressed in (3), and all the points on the curve features
have a constant Z value, which makes it easier to express the VPs as (4) shows. Com-
pared with the straight-line features, the angle θ in the curve feature is introduced as an
auxiliary parameter.

Xvp = X0 + Rcosθ

Yvp = Y0 + Rsinθ

Zvp = Z0

arctan Y1−Y0
X1−X0

< θ < arctan
Y2 −Y0

X2 − X0
(8)

where:
(X0, Y0, Z0): The center coordinate of the space circle where the arc is located;

R: The radius of the circle where the arc is located;

θ:
The polar coordinate angle of the current point in the transformed
coordinate system;

X1,Y1 and X2,Y2: The coordinates of the two distinct end points of the arc.

3.2. The One-Step Transformation Model of the Registration

By introducing an auxiliary parameter, the linear features, including straight line
features and curve features, can be seen as virtual points (VPs), and the line–point mode
registration can be changed into the point–point mode registration, the registration pro-
cessing can be converted into the point-to-point pattern. Then the LiDAR point data can be
seen as the point cluster of the objects and the registration transformation model is defined
in a 2D–3D mode as the formulae (9) and (10) show. fx = FX(M1, M2,...,Mt ,λVP)

FY(M1,M2,...,Mt ,λVP)

fy = FX(M1,M2,...,Mt ,λVP)
FY(M1,M2,...,Mt ,λVP)

(t ≥ 1, t ∈ N) (9)

 fx = FX(M1,M2,...,Mt ,θVP)
FY(M1,M2,...,Mt ,θVP)

fy = FX(M1,M2,...,Mt ,θVP)
FY(M1,M2,...,Mt ,θVP)

(t ≥ 1, t ∈ N) (10)

where:
M1, M2, . . . , Mt: The unknown parameters of the transformation model;

t: The number of the unknown parameters of the transformation model;

λVP:
The introduced auxiliary parameter with one pair point–straight line
registration primitive;

θVP:
The introduced auxiliary parameter with one pair point–curve
registration primitive.
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Equation (9) or (10) indicates that each point–line pair of registration primitives can
build two equations and introduces one unknown parameter. For the single image, if there
are t pair of primitives, the value of the unknown parameters can be resolved. Then for
the n-overlap (n ≥ 2, n ∈ N) images, one pair of registration primitives can establish 2n
equations while introducing only one unknown auxiliary parameter. It follows that all the
parameters can be worked out as long as there are enough registration primitives, no matter
what kind of transformation models are used. The commonly used geometric correction
model can be used as the registration transformation model. For the photogrammetry area,
the airborne images and LiDAR data can be integrated using the collinear equations, which
would be more reliable with position and orientation system (POS) data. Additionally, the
direct linear transformation (DLT) model can be used for both the airborne and ground
based datasets. Further, the rational function model (RFM) for the satellite image and
the LiDAR point data are also applicative. In this paper, the overall conclusion of the
discussion focuses on the airborne LiDAR data and images that have the initial exterior
orientation parameters (EOPs).

3.3. The Coefficient Matrix of the VPs

Supposing elements of interior orientation are known and there is no camera error,
then we can use first order Tailor expansion for (9) and establish error equation for the
straight-line features as (11) shows:{

vx = lx + A11∆m1 + A12∆m2 + · · ·+ A1i∆mi + · · ·+ A1t∆mt + B11∆λVP

vy = ly + A21∆m1 + A22∆m2 + · · ·+ A2i∆mi + · · ·+ A2t∆mt + B21∆λVP
(11)

where:
vx, vy: The residual variables;
lx, ly: The constant value of the linearization equation;

A11, . . . , A1t and A21, . . . , A2t :
The coefficients of the transformation model parameters in
the linearization equation;

B11, B21:
The coefficients of the auxiliary parameter λVP in the
linearization equation;

t:
The number of the unknown parameter of the
transformation model;

∆λVP: The change value of the auxiliary parameter λVP.

Making use of Tailor expansion for (11), one point–line registration primitive can build
two equations, and for n point–line registration primitives in one image, there will be 2n
linearization equations for which we can establish an error equation as shown in (12).



vx1
vy1
...

vxi
vyi
...

vxn
vyn


=



A11 A12 · · · A1j · · · A1t B11 · · ·
A21 A22 · · · A2j · · · A2t B21

...
...

... · · · · · ·
A2i−1,1 A2i−1,2 · · · A2i−1,j · · · A2i−1,t B2i−1,1
A2i,1 A2i,2 · · · A2i,j · · · A2i,t B2i,1

...
...

... · · · · · ·
A2n−1,1 A2n−1,2 · · · A2n−1,t · · · A2n−1,t B2n−1,1
A2n,1 A2n,2 · · · A2n,t · · · A2n,t · · · B2n,1





∆m1
∆m2

...
∆mj

...
∆mt
∇λVP1

...
∇λVPn


−



lx1
ly1
...

lxi
lyi
...

lxn
lyn


(12)
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where:
vxi, vyi: The residual variables for the ith image;

lxi, lyi:
The constant value of the linearization equation for the
ith image;

A2i−1,1, . . . , A2i−1,t and A2i,1, . . . , A2i,t :
The coefficients of the transformation model
parameters in the linearization equation for the
ith image;

B2i−1,1, B2i,1:
The coefficients of the auxiliary parameter λVP in the
linearization equation for the ith image;

t:
The number of the unknown parameter of the
transformation model;

∇λVP: The change value of the auxiliary parameter λVP;
i: The count number.

For one test site, there will be many images. Assuming the number of images is k,
there are k series of transformation parameters, and the whole matrix can be simplified as:

V =



A1
2n1×t B1

2ni×t

. . . . . .
Ai

2ni×t Bi
2ni×t

. . . . . .
Ai

2nk×t Bi
2nk×t





∆m1
t1×1
.
.
.

∆mk
tk×1

∆λVP
1
n1×1

.

.

.
∆λVP

k
nk×1


(13)

where:
t: The number of the unknown parameters of the transformation model;

ni: The primitive number on the ith image;
k: The number of images;
V: The matrix which consists of residual variables.

Ai
2ni×t:

The coefficients of the transformation model parameters in the
linearization equation of the ith image;

Bi
2ni×t:

The coefficients of the auxiliary parameter λVP in the linearization
equation of the ith image;

i: The count number.

For replacing linear feature with point feature in the registration between the remote
sensing image and LiDAR point cloud, one auxiliary parameter λVP is introduced for
every line in LiDAR space; supposing the overlap is n then we can establish 2n equations.
Making use of the principle of least square adjustment to solve the elements of exterior
orientation of every image and auxiliary parameter λVP, the space point expressed by the
line can gradually approach the true value.

For the curve features, the same assumption as with the straight linear features is
employed; supposing elements of interior orientation are known and there is no camera
error, then we can use first order Tailor expansion for Equation (10) and establish an error
equation for the straight-line features as shown by (14):{

vx = lx + A11∆m1 + A12∆m2 + · · ·+ A1i∆mi + · · ·+ A1t∆mt + C11∆θVP

vy = ly + A21∆m1 + A22∆m2 + · · ·+ A2i∆mi + · · ·+ A2t∆mt + C21∆θVP
(14)

where:
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C11, C12:
The coefficients of the auxiliary parameter θVP from
the linearization equation;

A11, . . . , A1t and A21, . . . , A2t:
The coefficients of the transformation model
parameters in the linearization equation;

t:
The number of the unknown parameters of the
transformation model;

∆θVP: The change value of the auxiliary parameter θVP.

Making use of Tailor expansion for (14), one point–curve line registration primitive
can build two equations, and for n point–curve line registration primitives in one image,
there will be 2n linearization equations from which we can establish an error equation
formula as seen in (15).



vx1
vy1
...

vxi
vyi
...

vxn
vyn


=



A11 A12 · · · A1j · · · A1t C11 · · · · · ·
A21 A22 · · · A2j · · · A2t C21 · · · · · ·

...
...

...
... · · · · · ·

...
A2i−1,1 A2i−1,2 · · · A2i−1,j · · · A2i−1,t C2i−1,1
A2i,1 A2i,2 · · · A2i,j · · · A2i,t C2i,1

...
...

...
... · · · · · ·

...
A2n−1,1 A2n−1,2 · · · A2n−1,t · · · A2n−1,t · · · · · · C2n−1,1
A2n,1 A2n,2 · · · A2n,t · · · A2n,t · · · · · · C2n,1





∆m1
∆m2

...
∆mj

...
∆mt
∇θVP1

...
∇θVPn


−



lx1
ly1
...

lxi
lyi
...

lxn
lyn


(15)

where:
vxi, vyi: The residual variables for the ith image;

lxi, lyi:
The constant value of the linearization
equation for the ith image;

A2i−1,1, . . . , A2i−1,t andA2i,1, . . . , A2i,t :
The coefficients of the transformation model
parameters in the linearization equation for the
ith image;

B2i−1,1, B2i,1:
The coefficients of the auxiliary parameter θVP
in the linearization equation for the ith image;

t:
The number of the unknown parameter of the
transformation model;

∇θVP:
The change value of the auxiliary
parameter θVP;

i: The count number.

Assuming there are k images, of course there will be k series of transformation param-
eters and the whole matrix can be simplified as:

V =



A1
2n1×t C1

2ni×t

. . . . . .
Ai

2ni×t Ci
2ni×t

. . . . . .
Ai

2ni×t Ci
2ni×t





∆m1
t1×1
.
.
.

∆mk
tk×1

∆θ1
n1×1
.
.
.

∆θk
nk×1


(16)

where:
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t: The number of the unknown parameters of the transformation model;
ni: The primitive number on the ith image;
k: The number of images;

V: The matrix which consists of residual variables;

Ai
2ni×t:

The coefficients of the transformation model parameters in the
linearization equation of the ith image;

Ci
2ni×t:

The coefficients of the auxiliary parameter θVP in the linearization equation
of the ith image.

As for the way to introduce auxiliary parameters in the conditions if straight and
curve features are different, the coefficient matrix of the λ and θ are different. Take the
collinear equation registration model as an example; the details can be seen in (17)–(19).

xvp = − f
a1(Xvp−Xs)+b1(Yvp−Ys)+c1(Zvp−Zs)
a3(Xvp−Xs)+b3(Yvp−Ys)+c3(Zvp−Zs)

yvp = − f
a2(Xvp−Xs)+b2(Yvp−Ys)+c2(Zvp−Zs)
a3(Xvp−Xs)+b3(Yvp−Ys)+c3(Zvp−Zs)

(17)


∂yvp
∂λ = − f [a1(XA−XB)+b1(YA−YB)+c1(ZA−ZB)]+x[a3(XA−XB)+b3(YA−YB)+c3(ZA−ZB)]

a3(Xvp−Xs)+b3(Yvp−Ys)+c3(Zvp−Zs)
∂yvp
∂λ = − f [a2(XA−XB)+b2(YA−YB)+c2(ZA−ZB)]+y[a3(XA−XB)+b3(YA−YB)+c3(ZA−ZB)]

a3(Xvp−Xs)+b3(Yvp−Ys)+c3(Zvp−Zs)

(18)


∂xvp
∂θ = −R f (b1cosθ−a1sinθ)+x(b3cosθ−a3sinθ)

a3(Xvp−Xs)+b3(Yvp−Ys)+c3(Zvp−Zs)
∂yvp
∂θ = −R f (b2cosθ−a2sinθ)+x(b3cosθ−a3sinθ)

a3(Xvp−Xs)+b3(Yvp−Ys)+c3(Zvp−Zs)

(19)

where:
f : Camera focal length;

(Xs, Ys, Zs): Image principal point coordinates of exterior orientation parameter;
ai, bi, ci; (i = 1, 2, 3): Rotation matrix coefficients based on the external angle elements;

(XA, YA, ZA): Coordinate of point A in LiDAR data;
(XB, YB, ZB): Coordinate of point B in LiDAR data;

(Xvp, Yvp, Zvp): Coordinate of point VP in LiDAR data;
λ orθ : The auxiliary parameter;

R: The radius of the circle where the curve feature is located;(
xvp, yvp

)
: Coordinate of point VP in image space.

3.4. The Iteration of the Registration Procedure

In this paper, we calculate the VP points by the λVP or θVP value and the expression
of the straight line and curve features, where the whole process is an iteration procedure
such that in each iteration the calculated VPs are approaching the “true” locations. After
each iteration, we project the calculated VPs to the images signed as xvps and the average
distance Ervp of the xvps to the corresponding tie points {x1, x2, x3, · · · , xm−1, xm} can be
used to evaluate the results of the registration, as Figure 15 shows. The number m means
one linear feature corresponds to m images containing the same feature AB; in other words,
the linear feature AB has m overlapping images.

To evaluate when the iteration stops, the Ervp is used to measure the transformed
VPs as being close enough to the selected control points in the image space as (20) shows.

Ervp =
∑m

i=1

√
(xvpi − xi)

2 + (yvpi − yi)
2

m
(20)

where:
Ervp : The average coordinate deviation error of the corresponding points in the

image overlap;
(xvpi, yvpi) : The calculated coordinate value of corresponding points in the image by

the auxiliary value;
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(xi, yi): The coordinate value of corresponding points in the image overlap;
m : The number of corresponding points in the image overlap.
The methods mentioned in this paper are suitable for both the single image and multi-

images mode registration with the LiDAR points data. From Section 3, one pair of point–
linear features can build two observation equations and introduce one auxiliary parameter;
if there are enough registration features, the unknown parameter of the transformation
model and auxiliary parameter can be resolved. For the multi-images, the m overlap image
can build 2m observation equations and introduce one auxiliary parameter, so there are
more chances of obtaining a redundant observation.
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⎩⎪⎨
⎪⎧𝜕𝑥𝑣𝑝𝜕𝜃 = −𝑅 𝑓(𝑏1𝑐𝑜𝑠𝜃 − 𝑎1𝑠𝑖𝑛𝜃) + 𝑥(𝑏3𝑐𝑜𝑠𝜃 − 𝑎3𝑠𝑖𝑛𝜃)𝑎3൫𝑋𝑣𝑝 − 𝑋𝑠൯ + 𝑏3൫𝑌𝑣𝑝 − 𝑌𝑠൯ + 𝑐3൫𝑍𝑣𝑝 − 𝑍𝑠൯𝜕𝑦𝑣𝑝𝜕𝜃 = −𝑅 𝑓(𝑏2𝑐𝑜𝑠𝜃 − 𝑎2𝑠𝑖𝑛𝜃) + 𝑥(𝑏3𝑐𝑜𝑠𝜃 − 𝑎3𝑠𝑖𝑛𝜃)𝑎3൫𝑋𝑣𝑝 − 𝑋𝑠൯ + 𝑏3൫𝑌𝑣𝑝 − 𝑌𝑠൯ + 𝑐3൫𝑍𝑣𝑝 − 𝑍𝑠൯  (19)

where:                                  𝑓: Camera focal length; 
(𝑋௦, 𝑌௦, 𝑍௦): Image principal point coordinates of exterior orientation parameter; 𝑎, 𝑏, 𝑐; (𝑖 = 1, 2, 3): Rotation matrix coefficients based on the external angle elements;                (𝑋, 𝑌𝐴, 𝑍𝐴): Coordinate of point A in LiDAR data;                 (𝑋, 𝑌, 𝑍): Coordinate of point B in LiDAR data; (𝑋𝑣𝑝, 𝑌𝑣𝑝, 𝑍𝑣𝑝): Coordinate of point VP in LiDAR data; 𝜆 𝑜𝑟𝜃 : The auxiliary parameter; 𝑅: The radius of the circle where the curve feature is located; ൫𝑥௩, 𝑦௩൯: Coordinate of point VP in image space. 

3.4. The Iteration of the Registration Procedure 
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Figure 15. The registration error when using VP as the registration primitive. Figure 15. The registration error when using VP as the registration primitive.

4. Experiments and Results
4.1. Test Data and Results

In this paper, LiDAR and airborne image data for three different sites are used to
verify the validity of the algorithm by using it for different regions, as Table 3 shows: an
urban region, a rural region, and a mixed region. For different test sites, we used the
linear feature and curve feature to test the registration method described in this paper and
compared the registration accuracy of the two features.

From Table 3, the four sites cover both urban and rural areas, with different types of
cameras and laser scanners, and the registration precision will follow in the next section.

4.2. Registration Accurancy Evaluation Method

To verify the accuracy of the method mentioned in the paper, three test sites are used
for the verification. The precise corner points of the buildings are selected as check points.
The registration model is used to convert the 3D point coordinates in the LiDAR point
cloud into two-dimensional image coordinates (xr, yr), which correspond to the tie point
(x, y) on the image, and the horizontal distance deviation between the two coordinates is
defined as the registration error. The details of the test sites are shown in Table 4. Among
them, the Nanning test site uses straight lines and curves to solve the registration model
parameters, and the check points use common check points to achieve registration using
straight and curved features, respectively.

It can be seen from Table 4 that the accuracy of Test Site 1 is 0.636 pixels in image
space and 0.0382 m in LiDAR point space. In Test Site 2, the registration accuracy based
on the mixed features is 1.339 pixels in image space and 0. 2 m in LiDAR point space.
In Test Site 3, using the linear and curved features, respectively, the average accuracy of
registration was 1.029 pixels and 1.383 pixels, respectively, in image space, and 0.103 m and
0.138 m, respectively, in LiDAR space. From Test Site 1, the deviation is also low, meaning
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the registration result is stable. From the above, it is obvious that the registration accuracy
is determined by the resolution and the registration primitives. The tests for the registration
method were performed on the data of the same test site with straight line feature and
curve feature, respectively, and the registration error was almost the same—both within
2 pixels—while the registration accuracy of the straight-line feature was slightly better than
that of the curve feature.

Table 3. The details of the test data.

Properties of the Data Henan
(Test Site 1)

Xuzhou
(Test Site 2)

Xianning I
(Test Site 3)

Xianning II
(Test Site 3)

LiDAR Point Data

Attitude of image (m) 600 1500 1000 1000

Points density (pts/m2) 4 2.5 4.0 4.0

Attitude of points (m) 800 600 1000 1000

LiDAR scanner type Leica ALS 70 A-Pilot Leica ALS50 II Leica ALS50 II

Acquisition time 2018. 11 2014.6 2009.03 2009.03

Image data

Camera type DMC SWDC-5 RCD105 RCD105

f (mm) 120 35 35 35

Overlap 60% 70% 70% 70%

CCD size (um) 12 6.0 6.8 6.8

Image resolution (m) 0.06 0.15 0.1 0.1

Acquisition time 2018. 11 2014.6 2009.03 2009.03

Original primitive type Straight Line Straight Line and Curve Straight Line Curve

Table 4. The information of the test sites (unit: pixel).

Test Site 1 Test Site 2 Test Site 3 Test Site 3

Primitive Type Straight Line Straight Line
and Curve Straight Line Curve

Image number 9 9 4 4

Check
points number 30 30 15 15

Average error (pixel) 0.636 1.339 1.029 1.383

Average error (m) 0.0382 0.2 0.103 0.138

Standard deviation 0.288 0.615 0.781 0.670

From Table 4 and Figure 16: In test site 1, the registration accuracy of the image
obtained by the measuring camera and the LiDAR point cloud data can reach the sub-pixel
level of registration accuracy. In test areas 2 and 3, the registration accuracy of the image
obtained by the non-measurement camera and the point cloud data is within 3 pixels
and the average error is within 2 pixels. As a result, there comes the conclusion that the
registration accuracy is also dependent on the camera type. As Figure 17 shows, comparing
the error distribution of the checkpoint on the image, the closer to the center of the image,
the higher the point registration accuracy will be.
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5. The Discussion

As it is well known, the accuracy of the registration depends on many factors such as
the choice of the registration primitives, the transformation model, the camera type, and so
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on. In this paper, all the test data have the original EOPs, then the collinearity equation is
used as the registration transformation model.

5.1. The Influence of the Semi-Random Discrete Characteristics

The main advantage of the VPs is to eliminate the effects of semi-random discrete
characteristics of the laser point data. The first experiments are designed using the Henan
data, in which the images were acquired by the Digital Mapping Camera (DMC), which
is minimally impacted by camera lens distortion. To verify the impact of the discrete
characteristics of the point cloud data on the registration accuracy, and for the comparison
of the registration precision of the point cloud with different point cloud densities, the
image is shown in Table 5.

Table 5. Comparison of registration accuracy of different density LiDAR data (unit: pixel).

4 pt/m2 2 pt/m2

1 0.894524 1.143759

2 0.971825 0.920501

3 0.429864 0.616121

4 0.107464 0.209425

5 0.300463 0.59597

6 0.207973 0.614754

7 0.768295 0.865744

8 0.097773 0.795144

9 0.749856 0.537697

10 0.897527 0.96451

11 0.897527 1.101736

12 0.300463 0. 474126

13 0.353553 0.354412

14 0.52452 0.546122

15 0.894524 0. 705083

average 0.5597 0.7128

From Table 5, both the average registration accuracy of different density point clouds
is less than 1 pixel, even though the point density of dataset 1 is twice that of dataset 2. This
shows that the point density has less influence on the registration accuracy. In other words,
the method mentioned in the paper greatly reduces the influence of the semi-random
discrete characteristics of the point cloud.

5.2. The Influence of the Camera Lens Distortion

In most cases, the camera equipped on the LiDAR system is not a professional mea-
suring camera and the camera lens distortion usually effects the registration results. In
experiment 2, the DMC, RCD105, and SWDC camera are used to test the lens distortion.
In order to ignore the effects of the registration primitive and the transformation model
in this test, the collinearity equation registration model was used, and the experimental
results of 30 check points are shown in Figure 17.

In order to obtain more details of the lens distortion affects, the check points are
selected along the center line of the images, and the results are shown in Figure 18.

From Figure 18: For the camera DMC, lens distortion affects along the center line
of the images show a fluctuating trend, and that indicates that the influence of the lens
distortion is negligible. For the cameras RCD105 and SWDC, the check point that is the
farthest away from the center maximizes the error. Assume d is the pixel distance from
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the image center and the curve of the error along the center line is the cubic function of
distance. Then, the registration model collinearity equation used in the experiment can be
changed by adding three times polynomial functions in the image space.
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 fx + Px(x, y) = FX(M1,M2,...,Mt ,λVP)
FY(M1,M2,...,Mt ,λVP)

fy + Py(x, y) = FX(M1,M2,...,Mt ,λVP)
FY(M1,M2,...,Mt ,λVP)

(t ≥ 1, t ∈ N) (21)

where:
Px(x, y) and Py(x, y) : Three times polynomial functions of the (x− x0) and (y− y0);
(x0, y0) : The center points coordinate of the image, but the new rigorous transforma-

tion model will add 16 unknown parameters, and as a result, more registration primitives
are needed.

5.3. The Effects of Registration Primitive Types

In this paper, the VPs are generated from the straight lines and curves to cater to
various conditions of the data that cover different types of terrain. To test the influence
of the feature types, the Xianning I and Xinning II test data, which share many common
properties but not the registration primitive features, are used. The experimental results
are shown in Table 6 and Figure 19.

From Table 6 and Figure 19, the registration error trends of the two features are
basically the same. The registration accuracy of the straight-line feature is slightly better
than that of the curve feature. The reason is that the virtual point coordinates obtained
after the registration based on the straight-line feature are generally the corner point of the
building. For curve features, after the iteration, the virtual point coordinates obtained after
the registration iteration are generally points on the feature rather than corner points of
the building. Therefore, the influence of the semi-random discrete characteristics will be
relatively large and that will affect the final configuration.
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Table 6. The check points results of different primitive feature types (unit: pixel).

Check Point Linear Features Curve Features

1 0.463344 1.324443

2 2.047939 1.922908

3 0.361981 0.186339

4 0.549812 2.204933

5 1.718475 2.224358

6 0.001718 1.792193

7 0.044382 0.454203

8 0.010391 0.177646

9 1.979701 2.279956

10 0.463344 1.324443

11 0.745356 0.891393

12 1.975545 1.502313

13 1.798919 1.589025

14 1.795055 1.449832

15 1.476673 1.419629

average 1.0288 1.3829
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5.4. The Results Comparation with Other Method

This paper proposes a novel method for registration of the two datasets acquired
in urban scenes by using a direct transformation function and VP registration primitives
that can be generated from the straight line or curve features as control information. The
whole registration processing can avoid the semi-random discrete error and process error.
This paper compares the results of similar papers in the previous five years (from year
2016 to year 2021), as Table 7 shows, in which the best results of each paper have been
listed. It is obvious that, whether the accuracy of image space or the accuracy of laser point
cloud space, the method in this paper has obvious advantages. The other two methods are
multi-step registration, and process errors will be introduced in the process of registration.
Furthermore, in Bai Zhu’s method, the intensity image sampling from the LiDAR point
cloud data is also one of the reasons for the decline of data accuracy, and the registration
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accuracy will be affected. In addition, in Bisheng Yang’s method, the image and LiDAR
point data are collected by the unmanned aerial vehicle, equipped with a poor POS system,
and that will lead to poor registration accuracy. The method of this paper is suitable
for both the single and multiple images situation to registration with the LiDAR points.
However, in Bisheng Yang’s method, it is only suitable for multiple image registration with
LIDAR point cloud because of the image sequence matching process. Similarly, because
the process of generating point clouds by image sequence dense matching is very time
consuming, Yang’s method is the most time-consuming. Followed by Bai Zhu’s method, it
is also time consuming to sample laser point clouds into intensity images with a certain
resolution. However, the method in this paper does not involve multi process operation
steps but direct registration, so the registration process takes the least time.

Table 7. The results of different registration methodology.

Chunjing Yao Bai Zhu [33] Bisheng Yang [26]

Image space
(unit: pixel) 0.636 1.798 1.876

LiDAR data space
(unit: m) 0.0382 0.3596 0.3752

Image resolution
(unit: m) 0.06 0.2 0.2

Point density
(pts/m2) 4 6.91 25

Image number Single and multiple Single and multiple Multiple

Computational time least medium most

6. Conclusions

In this article, we propose a new method of LiDAR point cloud and image registration
based on virtual points. This method first uses the extracted precise building outlines
to generate virtual points. Considering the edges of some buildings are not necessarily
regular rectangles, but also curve features, we propose a conversion model with only one
auxiliary parameter to achieve registration. This unique parameter makes the registration
model simpler and more accurate.

In Section 4, this paper uses four sets of experiments to test the registration of image
data and LiDAR point data based on virtual points, and finally verifies the following three
conclusions:

(1) Due to the introduction of auxiliary parameters in the line and curve features, the
registration method using the direct transformation model can greatly eliminate
processing errors and the influence of semi-random attributes of the point cloud
data. Without the influence of lens distortion, the registration accuracy can reach the
sub-pixel level with respect to the image.

(2) There is lens distortion in the images obtained by non-measuring cameras. The
farther away from the image center, the greater the influence of lens distortion. There-
fore, to obtain higher registration accuracy, the image with lens distortion must first
be eliminated.

(3) Different registration features have little effect on registration accuracy. Experiments
show that the registration accuracy of straight-line features is slightly better than
that of curve features, mainly because the accuracy of virtual points is affected by
semi-discrete properties.

From the above conclusions, to achieve high-precision image and point cloud registra-
tion accuracy, the first task is to eliminate the influence of point cloud semi-random discrete
characteristics. With the continuous upgrade of LiDAR equipment, the point density is
becoming denser, and high-registration accuracy is more possible. In future work, using
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the original transformation model parameter, we are committed to achieving automatic
matching of point clouds and images.

Author Contributions: C.Y. conceived and designed the experiments; C.Y. and H.M. (Hongchao Ma)
performed the experiments; C.Y. and H.M. (Haichi Ma) analyzed the data; C.Y. and W.L. wrote the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded and supported by National Key R&D Program of China (2018YFB0504500),
National Natural Science Foundation of China (No. 41101417), and National High Resolution Earth
Observations Foundation (11-H37B02-9001-19/22).

Conflicts of Interest: The authors declare there is no conflict of interest regarding the publication of
this paper. The founding sponsors had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Zhou, G.Q.; Zhou, X. Seamless Fusion of LiDAR and Aerial Imagery for Building Extraction. IEEE Trans. Geosci. Remote Sens.

2014, 52, 7393–7407. [CrossRef]
2. Armenakis, C.; Gao, Y.; Sohn, G. Co-registration of aerial photogrammetric and LiDAR point clouds in urban envi-ronments

using automatic plane correspondence. Appl. Geomat. 2013, 5, 155–166. [CrossRef]
3. Koetz, F.B.; Morsdorf, S.; van der Linden, T.; Curt, B. Allgöwer. Multi-source land cover classification for forest fire manage-ment

based on imaging spectrometry and LiDAR data. For. Ecol. Manag. 2008, 256, 263–271. [CrossRef]
4. Awrangjeb, M.; Zhang, C.; Fraser, C.S. Automatic extraction of building roofs using LIDAR data and multispec-tral imagery.

ISPRS J. Photogramm. Remote Sens. 2013, 83, 1–18. [CrossRef]
5. Yang, L.; Sheng, Y.; Wang, B. 3D reconstruction of building facade with fused data of terrestrial LiDAR data and optical image.

Optik 2016, 127, 2165–2168. [CrossRef]
6. Csatho, B.; Schenk, T.; Kyle, P.; Wilson, T.; Krabill, W.B. Airborne laser swath mapping of the summit of Ere-bus volcano,

Antarctica: Applications to geological mapping of a volcano. J. Volcanol. Geotherm. Res. 2008, 177, 531–548. [CrossRef]
7. Skaloud, J.; Lichti, D. Rigorous approach to bore-sight self-calibration in airborne laser scanning. ISPRS J. Photogramm. Remote

Sens. 2006, 61, 47–59. [CrossRef]
8. Palenichka, R.M.; Zaremba, M.B. Automatic Extraction of Control Points for the Registration of Optical Satellite and LiDAR

Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2864–2879. [CrossRef]
9. Xiong, B.; Elberink, S.O.; Vosselman, G. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from

point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 93, 227–242. [CrossRef]
10. Wu, Z.; Ni, M.; Hu, Z.; Wang, J.; Li, Q.; Wu, G. Mapping invasive plant with UAV-derived 3D mesh model in mountain area—A

case study in Shenzhen Coast, China. Int. J. Appl. Earth Obs. Geoinform. 2019, 77, 129–139. [CrossRef]
11. Lopatin, J.; Fassnacht, F.E.; Kattenborn, T.; Schmidtlein, S. Mapping plant species in mixed grassland communities using close

range imaging spectroscopy. Remote Sens. Environ. 2017, 201, 12–23. [CrossRef]
12. Lu, B.; He, Y. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a

heterogeneous grassland. ISPRS J. Photogramm. Remote Sens. 2017, 128, 73–85. [CrossRef]
13. Johnson, K.M.; Ouimet, W.B.; Dow, S.; Haverfield, C. Ouimet, Samantha Dow and Cheyenne Haverfield. Estimating Historically

Cleared and Forested Land in Massachusetts, USA, Using Airborne LiDAR and Archival Records. Remote Sens. 2021, 13, 4318.
[CrossRef]

14. Kwan, C.; Gribben, D.; Ayhan, B.; Bernabe, S.; Plaza, A.; Selva, M. Improving Land Cover Classification Using Extended
Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data. Remote Sens. 2020, 12, 1392. [CrossRef]

15. Bodensteiner, C.; Huebner, W.; Juengling, K.; Mueller, J.; Arens, M. Local multi-modal image matching based on self-similarity.
In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010;
pp. 937–940. [CrossRef]

16. Bodensteiner, C.; Hubner, W.; Jungling, K.; Solbrig, P.; Arens, M. Monocular camera trajectory optimization using Li-DAR data.
In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barlcelona, Spain,
6–13 November 2011; pp. 2018–2025.

17. Al-Manasir, K.; Fraser, C.S. Automatic registration of terrestrial laser scanner data via imagery. Photogramm. Rec. 2006, 21, 255–268.
[CrossRef]

18. Parmehr, E.G.; Fraser, C.S.; Zhang, C.; Leach, J. Automatic registration of optical imagery with 3D LiDAR data using statistical
similarity. ISPRS J. Photogramm. Remote Sens. 2014, 88, 28–40. [CrossRef]

19. Baltsavias, E.P. Airborne laser scanning: Existing systems and firms and other resources. ISPRS J. Photogramm. Remote Sens. 1999,
54, 164–198. [CrossRef]

20. Csanyi, N.; Toth, C.K. Improvement of Lidar Data Accuracy Using Lidar-Specific Ground Targets. Photogramm. Eng. Remote Sens.
2007, 73, 385–396. [CrossRef]

http://doi.org/10.1109/TGRS.2014.2311991
http://doi.org/10.1007/s12518-013-0105-9
http://doi.org/10.1016/j.foreco.2008.04.025
http://doi.org/10.1016/j.isprsjprs.2013.05.006
http://doi.org/10.1016/j.ijleo.2015.11.147
http://doi.org/10.1016/j.jvolgeores.2008.08.016
http://doi.org/10.1016/j.isprsjprs.2006.07.003
http://doi.org/10.1109/TGRS.2010.2043677
http://doi.org/10.1016/j.isprsjprs.2014.01.007
http://doi.org/10.1016/j.jag.2018.12.001
http://doi.org/10.1016/j.rse.2017.08.031
http://doi.org/10.1016/j.isprsjprs.2017.03.011
http://doi.org/10.3390/rs13214318
http://doi.org/10.3390/rs12091392
http://doi.org/10.1109/icip.2010.5651219
http://doi.org/10.1111/j.1477-9730.2006.00379.x
http://doi.org/10.1016/j.isprsjprs.2013.11.015
http://doi.org/10.1016/S0924-2716(99)00016-7
http://doi.org/10.14358/PERS.73.4.385


Remote Sens. 2021, 13, 4836 30 of 31

21. Jung, I.-K.; Lacroix, S. A robust interest points matching algorithm. In Proceedings of the Eighth IEEE International Conference
on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 538–543.

22. Schenk, T.; Csathó, B. Fusion of LIDAR Data and Aeria1 Imagery for a Complete Surface Description. Int. Arch. Photogramm.
Remote Sens. 2002, 34, 310–317.

23. Baltsavias, E.P. A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94.
[CrossRef]

24. Habib, A.F. Aerial triangulation using point and linear features. ISPRS J. Photogramm. Remote Sens. 1999, 32, 137–141.
25. Habib, A.; Lee, Y.; Morgan, M. Bundle Adjustment with Self-Calibration of Line Cameras Using Straight Lines. In Proceedings of

the Joint Workshop of ISPRS WG I/2, I/5 and IV/7, Hanover, Germany, 19–21 September 2001.
26. Habib, A.; Asmamaw, A. Linear Features in Photogrammetry; Departmental Report # 451; The Ohio State University:

Columbus, OH, USA, 1999.
27. Habib, A.F.; Ghanma, M.S.; Morgan, M.F.; Mitishita, E. Integration of laser and photogrammetric data for calibration purposes.

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 170.
28. Habib, A.; Ghanma, M.; Mitishita, E. Photogrammetric Georeferencing Using LIDAR Linear and Aeria1 Features. Korean J. Geom.

2005, 5, 7–19.
29. Yang, B.; Chen, C. Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS J. Photogramm. Remote Sens. 2015,

101, 262–274. [CrossRef]
30. Lv, F.; Ren, K. Automatic registration of airborne LiDAR point cloud data and optical imagery depth map based on line and

points features. Infrared. Phys. Technol. 2015, 71, 457–463. [CrossRef]
31. Abayowa, B.O.; Yilmaz, A.; Hardie, R.C. Automatic registration of optical aerial imagery to a LiDAR point cloud for generation

of city models. ISPRS J. Photogramm. Remote Sens. 2015, 106, 68–81. [CrossRef]
32. Habib, A.; Schenk, T. A new approach for matching surfaces from laser scanners and optical scanners. Int. Arch. Photogramm.

Remote Sens. 1999, 32, 55–61.
33. Mastin, A.; Kepner, J.; Fisher, J. Automatic Registration of LiDAR and optial images of urban scene. In Proceedings of the IEEE

Conference on Computer Vision and Patten Recognition, Miami, FL, USA, 20–25 June 2009; pp. 2639–2646.
34. Parmehr, E.G.; Fraser, C.S.; Zhang, C.; Leach, J. Automatic Registration of Aerial Images with 3D LiDAR Data Using a Hy-brid

Intensity-Based Method. In Proceedings of the International Conference on Digital Image Computing Techniques & Applications,
Fremantle, Australia, 3–5 December 2012.

35. Axelsson, P. Processing of laser scanner data—algorithms and applications. ISPRS J. Photogramm. Remote Sens. 1999, 54, 138–147.
[CrossRef]

36. Zhu, B.; Ye, Y.; Zhou, L.; Li, Z.; Yin, G. Robust registration of aerial images and LiDAR data using spatial constraints and Gabor
structural features. ISPRS J. Photogramm. Remote Sens. 2021, 181, 129–147. [CrossRef]

37. Liu, Y. Improving ICP with easy implementation for free-form surface matching. Pattern Recognit. 2004, 37, 211–226. [CrossRef]
38. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
39. Schutz, C.; Jost, T.; Hugli, H. Multi-feature matching algorithm for free-form 3D surface registration. In Proceedings of the

Fourteenth International Conference on Pattern Recognition, Brisbane, QLD, Australia, 20–20 August 1998; pp. 982–984.
40. Habib, A.; Lee, Y.; Morgan, M. LIDAR data for photogrammetric georeferencing. In Proceedings of the Joint Workshop of ISPRS

WG I/2, I/5 and IV/7, Hanover, Germany, 19–21 September 2001.
41. Wong, A.; Orchard, J. Efficient FFT-Accelerated Approach to Invariant Optical–LIDAR Registration. Geosci. Remote Sens. 2008, 46,

17–25. [CrossRef]
42. Harrison, J.W.; Iles, P.J.W.; Ferrie, F.P.; Hefford, S.; Kusevic, K.; Samson, C.; Mrstik, P. Tessellation of Ground-Based LIDAR

Data for ICP Registration. In Proceedings of the Canadian Conference on Computer and Robot Vision, Windsor, ON, Canada,
28–30 May 2008; pp. 345–351.

43. Teo, T.-A.; Huang, S.-H. Automatic Co-Registration of Optical Satellite Images and Airborne Lidar Data Using Relative and
Absolute Orientations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2229–2237. [CrossRef]

44. Liu, X. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr. 2008, 32, 31–49.
45. Habib, A.; Schenk, T. Utilization of ground control points for image orientation without point identification in image space. In

Proceedings of the SPRS Commission III Symposium: Spatial Information from Digital Photogrammetry and Computer Vision,
Munich, Germany, 5–9 September 1994; Volume 32, pp. 206–211. [CrossRef]

46. Schenk, T. Determining Transformation Parameters between Surfaces without Identical Points; Technical Report; Photogrammetry
No. 15; Department of Civil and Environmental Engineering and Geodetic Science, OSU: Columbus, OH, USA, 1999; p. 22.

47. Li, J.; Yang, B.; Chen, C.; Habib, A. NRLI-UAV: Non-rigid registration of sequential raw laser scans and images for low-cost UAV
LiDAR point cloud quality improvement. ISPRS J. Photogramm. Remote Sens. 2019, 158, 123–145. [CrossRef]

48. Kilian, J.; Haala, N.; Englich, M. Capture and evaluation of airborne laser scanner data. Int. Arch. Photogramm. Remote Sens. 1996,
31, 383–388.

49. Habib, A.; Ghanma, M.; Morgan, M.; Al-Ruzouq, R. Photogrammetric and Lidar Data Registration Using Linear Features.
Photogramm. Eng. Remote Sens. 2005, 71, 699–707. [CrossRef]

50. Lee, J.B.; Yu, K.Y. Coregistration of aerial photos, ALS data and digital maps using linear features. KOGSIS J. 2006, 14, 37–44.
51. Ma, R. DEM generation and building detection from lidar data. Photogramm. Eng. Remote Sens. 2005, 71, 847–854. [CrossRef]

http://doi.org/10.1016/S0924-2716(99)00014-3
http://doi.org/10.1016/j.isprsjprs.2014.12.025
http://doi.org/10.1016/j.infrared.2015.06.006
http://doi.org/10.1016/j.isprsjprs.2015.05.006
http://doi.org/10.1016/S0924-2716(99)00008-8
http://doi.org/10.1016/j.isprsjprs.2021.09.010
http://doi.org/10.1016/S0031-3203(03)00239-5
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1109/TGRS.2008.2001685
http://doi.org/10.1109/JSTARS.2012.2237543
http://doi.org/10.1117/12.182843
http://doi.org/10.1016/j.isprsjprs.2019.10.009
http://doi.org/10.14358/PERS.71.6.699
http://doi.org/10.14358/PERS.71.7.847


Remote Sens. 2021, 13, 4836 31 of 31

52. Sampath, A.; Shan, J. Building boundary tracing and regularization from airborne lidar point clouds. Photogramm. Eng. Remote
Sens. 2007, 73, 805–812. [CrossRef]

53. Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559.
[CrossRef]

54. De Berg, M.; Van Kreveld, M.; Overmars, M.; Schwarzkopf, O.C. Computational Geometry; Springer: Berlin/Heidelberg, Germany, 2000.
55. Lach, S.R.; Kerekes, J.P. Robust extraction of exterior building boundaries from topographic LiDAR data. In Proceedings of the

Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008.
56. Dorninger, P.; Pfeifer, N. A comprehensive automated 3D approach for building extraction, reconstruction, and regulariza-tion

from airborne laser scanning point clouds. Sensors 2008, 8, 7323–7343. [CrossRef] [PubMed]

http://doi.org/10.14358/PERS.73.7.805
http://doi.org/10.1109/TIT.1983.1056714
http://doi.org/10.3390/s8117323
http://www.ncbi.nlm.nih.gov/pubmed/27873931

	Introduction 
	Related Work 
	Registration Primitive 
	Registration Transformation Model 

	Paper Objective 
	Article Structures 

	Detection and Selection of the Linear Registration Primitives 
	Building Edges Extraction and Feature Selection 
	Contour Extraction Based on Double Threshold Alpha Shapes Algorithm 
	Straight Linear Feature Simplification Based on Least Square Algorithm 
	Curve Feature Simplification Based on Least Square Algorithm 
	The Selection of the Linear Registration Primitives 

	Registration Primitive Expression and Transformation Model 
	The Generation of the VPs 
	The VPs from Straight Lines 
	VPs from Curve Features 

	The One-Step Transformation Model of the Registration 
	The Coefficient Matrix of the VPs 
	The Iteration of the Registration Procedure 

	Experiments and Results 
	Test Data and Results 
	Registration Accurancy Evaluation Method 

	The Discussion 
	The Influence of the Semi-Random Discrete Characteristics 
	The Influence of the Camera Lens Distortion 
	The Effects of Registration Primitive Types 
	The Results Comparation with Other Method 

	Conclusions 
	References

