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Abstract: The automatic detection and analysis of ocean eddies has become a popular research topic
in physical oceanography during the last few decades. Compact polarimetric synthetic aperture radar
(CP SAR), an emerging polarimetric SAR system, can simultaneously acquire richer polarization
information of the target and achieve large bandwidth observations. It has inherent advantages in
ocean observation and is bound to become an ideal data source for ocean eddy observation and
research. In this study, we simulated the CP data with L-band ALOS PALSAR fully polarimetric data.
We assessed the detection and classification potential of ocean eddies from CP SAR by analyzing
50 CP features for 2 types of ocean eddies (“black”and “white”) based on the Euclidean distance and
further carried out eddy detection and eddy information extraction experiments. The results showed
that among the 50 CP features, the dihedral component power (Pd), shannon entropy (SEI), double
bounce (Dbl), Stokes parameters (g0 and g3), eigenvalue (l1), lambda, RVoG parameter (ms), shannon
entropy (SE), surface scattering component (Ps), and σHH all performed better for detecting “white”
eddies. Moreover, the H-A combination parameter (1mHA), entropy, shannon entropy (SEP, SEI, and
SE), probability (p2), polarization degree (m), anisotropy, probability (p1), double bounce (Dbl), H-A
combination parameter (H1mA), circular polarization ratio (CPR), and σVV were better CP features
for detecting “black” eddies.

Keywords: ocean eddy detection; compact polarimetric SAR; polarimetric features

1. Introduction

Ocean eddies represent an important ocean phenomenon, affecting both surface
currents and the transportation of chemical substances, which play a significant role in
theocean circulation structure and marine ecology. Moreover, ocean eddies also affect atmo-
spheric phenomena, such as wind, clouds, and rainfall through air–sea interactions [1,2].
Tracking and observing eddies has become one of the most critical advances in ocean
remote sensing in the 21st century. Broadly speaking, “ocean eddy” is the general term
for a rotating seawater motion with a scale smaller than a Rossby wave controlled by
the geostrophic potential eddy conservation equation, including the vortex, swirl, ring,
meander, filament, and wake [3,4].

Since ocean eddies were first discovered in the 1970s, the observation of mesoscale
eddies has primarily relied on dynamic sea surface height data obtained from satellite
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altimeters to retrieve and track eddies [5,6]. However, owing to the low spatial resolution
of traditional satellite altimeter data, it is difficult to detect sub-mesoscale eddies and
small-scale eddies ranging from 1 to 100 km, severely restricting eddies’ identification [7].
Because ocean eddies play a vital role in regulating changes in the sea surface temperature
(SST) and chlorophyll concentration, high-resolution optical sensors have been used to
detect sub-mesoscale and small-scale eddies by determining the SST [8,9] and ocean color
(chlorophyll concentration) [10] variations. However, the SST and ocean color are affected
by various oceanic phenomena in addition to eddies. Therefore, using the SST and water
color data sets to detect eddies is prone to false alarms. Furthermore, optical sensors have
proven to be vulnerable to illumination and cloud occlusion. In addition, considering
the different types of observation platforms, it has been found that tracking buoys [11],
airborne sensors [12], and other observation methods have high costs and are not suitable
for large-scale observations.As an alternative, synthetic aperture radar (SAR) collects data
throughout the day in all weather conditions and is not influenced by clouds, fog, or
light [13]. Moreover, SAR images acquired over the sea contain extensive information
on small-scale and mesoscale ocean phenomena, such as surface waves [14], internal
waves [15], and ocean fronts [16]. Therefore, SAR images have become an ideal data source
for monitoring ocean eddies [1,13,17–20].

Ocean eddies typically appear indirectly in SAR images, and there are two main mech-
anisms:

• When there are natural tracers present on the sea surface such as sea ice, plankton,
and oil spills, the resulting dampening of the capillary gravity waves and reduction of
sea surface fluctuations cause weakening of the SAR backscatter. Moreover, because
eddies are characterized by a significant transport capacity and material entrapment,
if the tracer’s area is coupled with an eddy, the tracer will show a specific spiral
distribution pattern under the influence of the eddy and appear in the SAR image.
As a result, the backscattering contrast difference can reach 5–10 dB, and thus the
eddy can be detected by identifying the tracer [21,22]. This effect typically results in a
black-colored appearance for the eddies, which are collectively referred to as “black”
eddies (B-E);

• As a contrasting mechanism, the interaction of surface waves with converging and
shearing surface currents results in a significant enhancement of the SAR backscatter,
leading to a series of bright bands on the image that outline the contours of the eddies.
These eddies are collectively referred to as “white” eddies (W-E) [23,24].

In recent decades, researchers have conducted numerous studies on the application
of SAR in ocean eddy observation. In terms of statistical research on eddies, Andrei and
Anna [2] used SAR satellite eddy data, including Almaz-1, the Earth Resources Satellite
(ERS-1/2), Japanese ERS (JERS-1), and RADARSAT, to analyze the classification of typical
ocean eddies statistically. They reported that SAR has significant potential for identifying
and dynamically monitoring ocean eddies In another study, Svetlana et al. [24] used
more than 500 ENVISAT ASAR images acquired in the Red Sea region from 2006 to
2011 to statistically analyze the temporal and spatial distribution characteristics of the
sub-mesoscale, mesoscale, and large-scale ocean eddies in that sea region. Similarly,
Xu et al. [20] used 426 scenes of ERS-2 and ENVISAT ASAR data from 2005 to 2011 to study
the characteristics of ocean eddies in the Luzon Strait and its adjacent waters. In terms
of eddy detection and feature parameter extraction, Was and Andharia [25] conducted
research on the inversion of an ocean eddy’s rotation speed and vortex intensity based on
SAR images, while Yang et al. [26] proposed an SAR image eddy information extraction
method based on logarithmic spiral edge fitting to extract eddy information such as the
center position, diameter, and edge size. Schuler et al. [27] used Cloude–Pottier polarization
decomposition to obtain the entropy/anisotropy/alpha feature parameters, combined with
the Wishart classifier, proposed a sea surfactant oil film detection algorithm, which was
then applied to eddy identification. In accordance with the rapid development and broad
application of artificial intelligence technology in recent years, Huang et al. [28] proposed



Remote Sens. 2021, 13, 4905 3 of 22

a deep learning network model based on principal component analysis (PCA) filtering
convolution. This deep learning model can learn the advanced and invariant features of
ocean eddies in SAR images and provide automatic and accurate eddy detection without
requiring expert interpretation knowledge. In addition to these studies, significant research
has been conducted on eddy detection [29–31], the formation mechanism of ocean eddies
based on SAR [32,33], and ocean eddy SAR image simulation methods [34]. In brief, current
research on SAR eddies has predominately focused on the traditional polarization mode
(single and dual polarimetric). Little research has been conducted on compact polarimetric
(CP) SAR.

Over time, SAR has transformed from a single polarimetric system to a multi-polarimetric
system with fully polarimetric (FP) observation capabilities after its 50 years of develop-
ment. Compared with single-polarimetric SAR, dual-polarimetric (DP) or FP SAR can
obtain more scattering characteristics of the observation target, significantly improving the
detection ability [35–38]. Although its improved target detection capabilities characterize
FP SAR, its image width is much smaller than that of the single polarized SAR (e.g., the
FP SAR image width of RADARSAT-2 is only 25/50 km, while the image width of the
single-polarimetric ScanSAR mode is 500 km). Moreover, the system structure is complex,
and the maintenance cost is extremely high, which significantly limits the application of FP
SAR. To overcome the shortcomings of single-polarimetric and FP SAR, CP SAR that uses a
special DP SAR structure was proposed in 2005 [39,40]. This can achieve both a wide range
of observations (up to 350 km) and obtain polarization scattering information close to that
which can be obtained by FP SAR. In light of the unique advantages of CP SAR, Canada’s
RADARSAT Constellation Missions (RCM) [41], India’s Risat-1 satellite [42], and Japan’s
Advanced Land Observing Satellite 2 (ALOS-2) have all supported the CP mode and are
being actively researched.

However, there is no relevant research on the use of CP SAR to observe ocean eddies.
To develop CP SAR eddy detection technology, it is necessary to fully understand the
response characteristics of CP SAR to ocean eddies. This study investigates the response
characteristics of CP SAR to ocean eddies by extracting 50 types of CP features from
2 scenes of ALOS Phased Array type L-band SAR (PALSAR) data (the image covers the
W-E and B-E) and then compares and analyzes the ocean eddy detection performance of
the 50 features. On this basis, eddy detection and eddy information extraction experiments
are conducted. This work contributes to developing subsequent work on CP SAR eddy
detection and eddy refinement structure studies. The chapter structure of this article is as
follows. Section 2 introduces the data and describes eddies. Section 3 introduces CP theory,
CP data acquisition, and the feature extraction process. Section 4 conducts a comprehensive
quantification and evaluation of CP features for eddy detection. Section 5 presents the eddy
detection and eddy information extraction experiments. Section 6 discusses the results,
and finally, the paper is concluded.

2. Data and Eddies

In this study, two PALSAR images were obtained (Figure 1). PALSAR is an L-band
FP SAR sensor carried by the Japanese ALOS-1 satellite. The product used was a Level
1.1 single-look complex data with an azimuthal resolution of approximately 24 m and a
distance resolution of approximately 10 m. Images #A and #B of the sea around Japan
(Figure 2a) were acquired on 11 November 2010 at 1:00 p.m. UTC and 2 April 2011 at
1:23 p.m. UTC, respectively.
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Figure 1. Two ALOS PALSAR VV-polarized backscattering coefficient images used in this study. 
(a) Data #A: white eddies (W-E) image containing three eddies: E-1, E-2, and E-3. (b) Data #B: black 
eddies (B-E) image. 

 

Figure 1. Two ALOS PALSAR VV-polarized backscattering coefficient images used in this study. (a) Data #A: white eddies
(W-E) image containing three eddies: E-1, E-2, and E-3. (b) Data #B: black eddies (B-E) image.

Figure 1a shows the #A VV-polarized backscatter coefficient image, which contains
three suspected W-E with diameters of 12 km (E-1), 13 km (E-2), and 15 km (E-3) from
bottom to top. These three regions are very similar to the W-E morphological structure that
has been described in the literature [26], with dark areas in the middle and bright areas
on both sides. Data #A are located on the northeast side of Sado Island, and studies have
shown that small eddies usually form near the coastline or between islands due to the
interaction between the coastline and surface currents [43,44]. In addition, we performed
a long time series analysis using OSCAR data, and the results indicate the presence of
ocean eddies in the study area throughout the year. A snapshot of the surface geostrophic
velocity field is given in Figure 2b, which shows the presence of a mesoscale eddy with a
diameter of about 200 km in the upper left corner and the presence of an eastward surface
current found on the southwest side of Sado Island. According to the study on eddy
formation mechanisms in the literature [2,43,45], we speculate that the eddies E-1, E-2, and
E-3 are formed by the interaction between ocean currents and the northeast and southeast
coasts of Sado Island (Figure 2c). In Figure 1a, eddies E-2 and E-3 are relatively faint,
and E-1 is more apparent, most probably due to the attenuation of the eddy as it moves
from the southwest side of Sado Island to the northeast side. It is worth noting that the
observed eddies consist of two parts: bright stripes along the edges and a dark central
area. The former is likely due to the interaction of the eddy-induced waves and currents
increasing the roughness of the sea surface, resulting in a significant enhancement of the
radar backscattering intensity. The latter may be caused by the eddy convergence effect
polymerizing the marine oil film, resulting in a weakening of the backscattering intensity.
In general, the W-E’s detection is focused on identifying the bright bands (i.e., bright edge
areas) resulting from wave–current interaction effects. Therefore, these two components
are discussed independently below.
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gridded at 1/3°, derived from OSCAR on 11 November 2010. (c) Inference for the formation mechanism of the “white” 
eddy in data #A. The black arrow is the direction of the current, and the red dashed arrow is where the eddy is formed. 
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Figure 2. Location of the image acquisition. (a) Data acquisition region. (b) Snapshot of the surface velocity field (vectors)
gridded at 1/3◦, derived from OSCAR on 11 November 2010. (c) Inference for the formation mechanism of the “white”
eddy in data #A. The black arrow is the direction of the current, and the red dashed arrow is where the eddy is formed.

Data #B are located in the Kuroshio region in the northwest Pacific Ocean, which has a
complex circulation structure. The westward flowing North Equatorial Current reaches the
Philippine coast and bifurcates under the influence of topography, forming the Mindanao
Current, which flows toward the equator, and the Kuroshio Current, which flows toward
the poles. The Kuroshio Current carries hot and salty equatorial water that gradually
intensifies as it flows along the Pacific’s western boundary, and this highly energetic
boundary current eventually forms the Kuroshio Extension Zone at 35◦ N off the coast of
Japan. Studies have shown that oceanic eddies are often generated along the Kuroshio tide
and its extension. Figure 1b shows the #B VV-polarized backscatter coefficient image. The
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presence of the oil film produced a significant suppressive effect on short and capillary
waves (known as the Marangoni effect) [46]. This weakened the radar echoes and produced
a darker appearance in most areas of the image. The oil film-covered region located in
the middle of the image contains a region with a distinct spiral morphology, which we
determined to be an oceanic eddy for the following reasons: (1) the area covered by the
data was the area where the occurrence of eddy currents was frequently observed, and
(2) the morphological combination of the region closely matched an eddy as defined in
the literature [24]. The eddy diameter is about 11 km. It is supposed that the film acts as
a tracer, giving the eddy a specific black spiral line pattern. Detailed data are presented
in Table 1.

Table 1. Image details.

Image
Number Image Name Area Date (UTC) Wind Speed Phenomenon

#A ALPSRP256070760 Japan Sea (38.329◦N
138.599◦E)

11 November 2010,
1:00 p.m. 8.1 m/s White eddies

(W-E)

#B ALPSRP276350580
Japan Sea (29.367◦N

130.652◦E)
2 April 2011, 1:23 p.m. 3.3 m/s

Black eddies (B-E)
film

3. Compact Polarimetric SAR Data Acquisition and Feature Extraction

Compact polarimetric SAR is essentially a DP system. Compared with FP SAR, the
system design and maintenance are less complex, and the imaging width is larger. At
present, three main modes of CP SAR have been proposed:

• The π/4 mode of transmitting 45◦ linearly polarized waves and receiving horizontal
(H) and vertical (V) linearly polarized waves [40];

• The dual circular polarization (DCP) mode that transmits left-hand or right-hand
circularly polarized waves and receives left-hand and right-hand circularly polarized
waves [47];

• The hybrid polarization (HP) mode, which transmits left-handed or right-handed
circularly polarized waves and receives H and V linearly polarized waves. This mode
is also known as the circular transmit and linear receive (CTLR) mode [48].

Compared with the traditional linear DP SAR, the CP SAR can store the phase of
the echo signal, and the signal combination method is more flexible. Thus, CP SAR can
obtain richer scattering information and achieve similar results to the FP SAR data in
numerous applications.

3.1. Compact Polarimetric Data Simulation

Owing to the lack of real CP data, most studies use FP SAR data to reconstruct CP
SAR data. Because the CTLR mode has rotational invariance compared with the π/4 mode,
the system structure is more straightforward, more stable, and less sensitive to noise than
the DCP mode [49]. Therefore, this study predominately focuses on the CTLR mode. The
CP scattering vector obtained from the polarized scattering matrix is as follows [50]:

k =

[
EHC
EVC

]
=

1√
2

[
SHH SVH
SHV SVV

][
1
±i

]
=

1√
2

[
SHH ± iSHV
SVH ± iSVV

]
(1)

where C indicates the circular polarization and +/− indicates that the system emits a left
or right circularly polarized wave (LHC or RHC). This study applied right-hand circular
polarization (i.e., CTLR) because circular transmission enabled better reconstruction of
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pseudo-FP information [49]. From Equation (1), the covariance matrix of the right circularly
polarized CP was expressed as

C2 = 〈
→
k
→
k ∗T〉 =

[
C11 C12
C21 C22

]
=

[
〈|ERH |2〉 〈ERHE∗RV〉
〈ERV E∗RH〉 〈|ERV |2〉

]
(2)

where R indicates the circular polarization, T is a matrix transpose operation, * denotes the
complex conjugate, and < > is the spatial average.

3.2. Feature Extraction from Compact Polarimetric SAR Data

Based on the theory of CP data simulations in Section 3.1, the ALOS PALSAR FP SAR
data were reconstructed to obtain the CP SAR data. PoLSARpro [51] was used to extract the
CP features. The process of extracting CP features in this study is shown in Figure 3. In total,
50 features were used for analysis in this study, and these were predominantly obtained
through a combination of polarization components and polarization decomposition. In
order to exclude noise from the image, a mean filter was used for image pre-processing
prior to performance analysis. These features are summarized in Table 2, which includes 50
CP features and σ images of 4 different polarization channels. Among these features, f1–f4
represent σ images of the copolarization and cross-polarization, and c1–c4 correspond to
the covariance matrix elements of CP SAR. Other features were derived from polarization
decomposition methods, with the main ones described below.
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Table 2. Polarimetric features used in this paper.

No. Feature Ref. Description

f1–f4 σHH , σHV , σVH , σVV Backscatter coefficient
c1–c4 C11, C12_imag, C12_real, C22 [52] Covariance matrix components
c5–c8 g0, g1, g2, g3 [53] Stokes components

c9–c12
Circular polarization ratio (CPR), degree of circular polarization
(DoCP), degree of linear polarization (DoLP), linear polarization

ratio (LPR) [53] Stokes decomposition
c13–c15 Contrast (con), orientation Angle (phi), ellipticity Angle, (tau)
c16–c17 Stokes_xp, yp
c18–c20 m, chi (χ), delta (δ)

[53] m-χ decomposition
c21–c23 Dbl (VG), Odd (VR), Rnd (VB)
c24–c27 Eigenvalues (l1, l2), probabilities (p1, p2) [48]

H/α decomposition

c28–c29 Entropy (H), anisotropy (A) [52,54]
c30–c32 Alpha, alpha1, alpha2

[55]c33 Lambda
c34–c36 Delta, delta1, delta2
c37–c39 Shannon entropy (SE), SEI, SEP [56]
c40–c43 Combination (H, A): 1mH1mA, 1mHA, H1mA, HA [57]

c44–c46 Dihedral component power (Pd), the surface scattering
component (Ps), volume power (Pv) [52] Three-component compact

decomposition

c47–c50 Alpha_s, ms, mv, phi [52] Compact RVoG (random volume
over ground) decomposition

3.2.1. Polarimetric Decomposition Based on Stokes Parameters

Aside from the scattering vector and covariance matrix, the Stokes vector (introduced
by Raney in 2007 [48]) can also be used to represent the CP. The Stokes vector expressions
are as follows:

→
g =


g0
g1
g2
g3

 =


〈|ERH |2 + |ERV |2〉
〈|ERH |2 − |ERV |2〉

2Re〈ERHE∗RV〉
−2Im〈ERHE∗RV〉

 (3)

where c5(g0) represents the total power of an electromagnetic wave, c6(g1) represents the
horizontal or vertical linear polarization component power, c7(g2) represents the value of
the linear polarization component power at 45◦ or 135◦, and c8(g3) is the circularly polarized
component power. Re and Im denote the real and imaginary parts, respectively. The Stokes
vector can be used to obtain the circular polarization ratio c9(CPR), degree of circular
polarization c10(DoCP), degree of linear polarization c11(DoLP), linear polarization ratio
c12(LPR), contrast c13(con), orientation angle c14(phi), ellipticity angle c15(tau), and Poincare
planisphere parameters (c16–c17: xp, yp). In addition, the polarization degree c18(m),
circularity c19(χ), and relative phase c20(δ) can also be obtained using the Stokes vector:

m =

√
g2

1 + g2
2 + g2

3

g0
(4)

sin2χ = − g3

mg0
χ ∈ [−45◦, 45◦] (5)

δ = −arctan
(

g3

g2

)
δ ∈ [−180◦, 180◦] (6)

3.2.2. m-χ Decomposition

According to the polarization wave dichotomous theory, the covariance matrix of
the CP SAR can be divided into depolarized and FP components using the polarization
degree (m). Raney et al. [53] concluded that any change in the orientation of the dihedral
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angle structure may cause a change in the sign of the relative phase (δ) when the emitted
electromagnetic wave has a strong line polarization component. Meanwhile, the circularity
(χ) is more stable. Thus, a method based on m-χ decomposition was proposed, and its
corresponding decomposition is shown in the following equation:

 VR
VG
VB

 =


√

g0m 1+sin2χ
2√

g0(1−m)√
g0m 1−sin2χ

2

 (7)

where c21(VR), c22(VG), and c23(VB) are the single-bounce (and Bragg) backscattering,
double bounce, and randomly polarized constituent, respectively.

3.2.3. H/α Decomposition

Similar to the theory of FP H/α decomposition, Clonde et al. [52] proposed a CP H/α
decomposition based on the covariance matrix:

C2 =
1

λ1 + λ2
[U2]

[
p1 0
0 p2

]
[U2]

−1 (8)

This decomposition equation can be used to obtain the eigenvalues λi(i=1, 2) (c24–c25)
and probabilities pi(i=1, 2) (c26–c27) of the polarization covariance matrix, where λ1 ≥ λ2.
Using the CP eigenvalues, a series of polarization features based on the eigenvalues can be
obtained, such as the CP entropy c28(H), anisotropy c29(A), alpha (c30–c32), lambda (c33),
delta (c34–c36), and shannon entropy (c37–c39):

SE = SEI + SEP (9)

SEI = 2log
(

πeTr[C2]
2

)
(10)

SEP = log

(
4

det[C2]

Tr[C2]2

)
(11)

In addition, four polarization features can be obtained by combining H and A, which
are c40(1mH1mA), c41(1mHA), c42(H1mA), and c43(HA).

Finally, six features were obtained using the three-component compact decomposition
and compact RVoG (random volume over ground) decomposition [52], which were the
dihedral component power c44(Pd), surface scattering component c45(Ps), volume power
c46(Pv), c47(Alpha_s), c48(ms), c49(mv), and c49(phi).

4. Comprehensive Quantification and Evaluation of CP Features for Eddy Detection
4.1. Method and Sample Selection

The Euclidean distance metric was used to measure the contrasts between marine
targets, such as ocean eddies, surface slicks, and ocean backgrounds. This metric was also
used to compare the contrasts among the 50 selected polarimetric features from CP SAR
to quantitatively determine their eddy detection capabilities. The Euclidean distance was
defined as follows:

D =
|m1 −m2|√

σ2
1 + σ2

2

(12)

where m and σ2 denote the sample mean and variance, respectively, |·| is the absolute value,
and D > 0. A larger Euclidean distance indicatef greater differentiability between the two
samples, and vice versa. The above formula indicates that when the mean difference is
larger and the variance is smaller, the Euclidean distance is larger between regions, and the
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separability is larger. Euclidean distance is widely used in many applications, such as sea
ice classification, ship target identification [58], and marine oil spill detection [59].

The colored boxes in Figure 4 indicate the selected regions used in the analysis, and
regions 50× 50 pixels in size were used. To ensure sample accuracy and avoid misjudgment,
this study selected the most apparent characteristic pixel of the eddy as the input (red boxes
in Figure 4, with the white edge line selected for W-E and skeleton line selected for B-E)
and the clear and uniform seawater pixel as the ocean background sample (blue boxes in
Figure 4). To avoid the influence of local sea state differences and radar signal attenuation,
the nearest neighboring clean sea pixels were selected to represent ocean background
samples for contrasting with eddies. The subsequent Euclidean distance calculation was
conducted based on this principle. Based on the selection of samples from the two regions
(eddies and sea surface), the mean and variance of the samples from each region in each
polarimetric feature image were counted, and the Euclidean distance between the eddies
and each region was calculated according to Equation (12), which was also used to measure
the detection performance of the CP feature parameters for the ocean eddies and the
differentiation ability of different regions.
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4.2. Evaluation of Different Features by Euclidean Distance
4.2.1. White Eddy

Figure 5 shows the Euclidean distances (D) between the eddy edge (Ee), center (Ec),
and ocean background (S) for the 3 eddies in the 50 CP feature images extracted using
data #A. The colored solid lines are DEe-S (Euclidean distance between Ee and S), and the
colored dashed lines represent DEc-S (Euclidean distance between Ec and S). It can be seen
that the trends of DEe-S and DEc-S were relatively consistent across the features, and DE1e-S
(Euclidean distance of the E-1 edge) was the largest overall, which was both easily visible
and distinguishable. In general, the detection of W-E focused on the identification of bright
bands resulting from wave–current interaction effects. Among the four radar backscatter
coefficients (f 1(σHH), f 2(σHV), f 3(σVH), and f 4(σVV)), the DE-S (Euclidean distance between
Ee, Ec, and the marine background) value in the f1(σHH) image was the largest, and the



Remote Sens. 2021, 13, 4905 11 of 22

CP features c44(Pd), c38(SEI), c21(Dbl), c5(g0), c8(g3), c24(l1), c33(lambda), c48(ms), c37(SE),
and c45(Ps) had better eddy detection performance and were improved over the original
radar image f 1(σHH). Figure 6 presents all CP feature images with better W-E detection
performance. It can be seen that E-1 is clearly visible in all the feature images both at Ee
and Ec. Conversely, E-2 and E-3 are relatively blurred, and the Ee values are submerged in
the ocean background, most likely because of the relatively weak vortex intensity from E-2
and E-3.
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The Euclidean distance between the eddy and ocean background under each CP
feature was comprehensively analyzed. The 50 CP features were divided into 3 levels
according to their W-E detection performance. Moreover, the visualization performance of
the 50 CP features was evaluated for eddies E-1, E-2, and E-3. The results are presented
in Table 3. In Level 1, DE-S > 1, and the eddy characteristics in the image were apparent.
Thus, the eddy could be effectively distinguished from the ocean background and directly
applied for future ocean eddy detection and recognition studies. In Level 2, the DE-S value
ranged from 1 to 0.9, and the eddy feature was relatively weak but could be distinguished
by the naked eye. In Level 3, the DE-S value was between 0.9 and 0.8. All eddies were
relatively fuzzy, and only E-1, with a larger vortex intensity, could be distinguished from
the ocean background. Meanwhile, E-2 and E-3, with weaker vortex intensities, were
submerged within the ocean background. The remaining features are not included in the
table because of the low contrast between the eddies and the ocean background in the
images, hindering the effective differentiation of the eddies.

Table 3. Visualization of “white” eddies with CP features.

Level Features E-1 E-2 E-3

I Pd, SEI, Dbl, g0, g3, l1, lambda, ms, SE, Ps  
⊙ ⊙

II C11, C12_imag, DoCP, CPR
⊙ ⊙

#

III
C22, SEP, HA, 1mH1mA, 1mHA, H, p2, A,

p1, m, tau, chi, alpha_s, alpha1, alpha2,
H1mA, DoLP, LPR, Alpha, contrast

#
⊗ ⊗

The symbol  indicates the effective recognition and strong recognition ability;
⊙

indicates recognition and
moderate recognition ability; # indicates recognition but weak recognition ability; and

⊗
indicates no effec-

tive recognition.
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4.2.2. Black Eddy

Figure 7 shows the Euclidean distances between the eddy helix (Eb), the coupling
region (EW) of the seawater and Eb, the oil film (O), and seawater (S) for the CP feature
for data #B. The figure shows that DEb-S (Euclidean distance between Eb and S) and DO-S
(Euclidean distance between O and S) followed the same trend in most of the feature
images, with DEb-S being slightly larger but less different. The DEb-S value of f 4(σVV) was
the largest among the four polarization channels, which was different from f 1(σHH) for the
W-E, indicating that the backscatter coefficient images of the different polarization channels
differed in their ability to characterize B-E and W-E. The HH polarimetric proved to be
the most effective for characterizing B-E, and the VV polarimetric was most effective for
characterizing the W-E. In addition, the CP features of the c41(1mHA), c28(H), c39(SEP),
c38(SEI), c37(SE), c27(p2), c18(m), c29(A), c26(p1), c21(Dbl), c42(H1mA), and c9(CPR) images
had larger DEb-S values (i.e., better detection performances) and outperformed the original
radar backscatter coefficient image f 4(σVV). Overall, DEw-S (Euclidean distance between
EW and S) was small, with a mean distance of 0.355. The cross-sectional distribution of
the eddy region in the f 4(σVV) image (Figure 8) shows that the eddy helix was similar in
intensity than the oil film scattering, and the area around Eb was slightly smaller than that
of S scattering; however, this difference was small.
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Figure 7. Euclidean distances between the eddies, oil film, and seawater under the CP feature of data #B. The y-axis is
the Euclidean distance, and the x-axis indicates the features (f 1–f 4 are σHH , σHV , σVH , and σVV , respectively, and c1–c50
corresponding features are shown in Table 2). Eb-S is the Euclidean distance between the black spiral of the eddy and the
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oil film and the clean seawater. The red dashed line indicates the Euclidean distance between the eddies and the ocean
background in the σVV image, which is different from that of the B-E.
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The above phenomenon can be explained by the B-E SAR imaging mechanism, where
the formation is caused by the suppression of surface waves by surfactant materials
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accumulated in regions of current shear and convergence, and the area around the black
spiral line is actually a clean sea. Thus, DEb-S and DO-S were approximately equal, while
the DEw-S value was smaller. The above better-performing CP feature images and f 4(σVV)
images are shown in Figure 9, where the eddy contours can be clearly distinguished.
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Figure 9. The CP feature images with improved performances for W-E detection under data #A: (a) 1mHA, (b) H, (c) SEP,
(d) SEI, (e) SE, (f) p2, (g) m, (h) A, and (i) σVV .

Similarly, the Euclidean distance between B-E and the ocean background was analyzed
for each CP feature. The 50 CP features were divided into three levels according to their
ability to detect eddies. Moreover, the visualization of Eb and O was assessed for each level.
The results are shown in Table 4, with DE-S > 6 for Level 1, DE-S values between 4 and 5
for Level 2, and DE-S values between 1 and 4 for Level 3. Features with D < 1 were not
included in the table.

Table 4. Visualization of “black” eddies with CP features.

Level Features Eb O

I 1mHA, H, SEP, SEI   
II SE, p2, m, A, p1, Dbl, H1mA

⊙ ⊙
III

alpha, CPR, σVV , DoCP, Ps, g0, g1, l1, ms, g3,
Lambda, C22, Pd, C12_imag, σHH , C11, Rnd, l2,
Pv, mv, delta, contrast, LPR, yp, tau, alpha_s, chi,

alpha, σHV , delta2, delta1, delta, DoLP, σVH

# #

The symbol indicates effective recognition and strong recognition ability,
⊙

indicates recognition and moderate
recognition ability, and # indicates recognition but weak recognition ability.

5. Detection Results

In the previous section, 10 (13) CP polarization features with better W-E (B-E) iden-
tification performance were identified using the Euclidean distance. In this section, the
results of the eddy extraction experiments are presented, which were conducted using
these features to verify the superiority of these features in eddy detection.

5.1. White Eddy

As shown in Section 4.2.1, the 10 polarization features (c44(Pd), c38(SEI), c21(Dbl),
c5(g0), c8(g3), c24(l1), c33(lambda), c48(ms), c37(SE), and c45(Ps)) had better W-E characteri-
zation ability. In this section, the above features are used for W-E extraction, and it should
be noted that since the detection of W-E is mainly to identify bright bands generated by
wave–current interaction, only the edges of W-E are discussed in this section. The eddy
detection results are shown with polarization feature c42(Pd) as an example. Figure 10
gives the comparison of the detection results for all three eddies (E-1, E-2, and E-3) in
the CP feature c42(Pd) image. Figure 10a–c shows the eddy slices in the feature images,
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and it can be seen that the eddy visibility decreased sequentially. Figure 10d–f shows the
eddy detection results based on the k-means classification algorithm (k = 2) [60], with the
ocean background in white and the extracted W-E edges in black. The detection results
show that the edges were more seriously confused with the seawater. Among them, the
detection result of E-1 was relatively good, and most of the eddy edges could be separated
from the ocean background. This may have been caused by the eddy intensity as well as
the local sea state. Figure 10g–i shows the three-dimensional image of the eddy region
in the feature image, and it is noteworthy that the eddy centers had an obvious height
difference from the eddy edges. The intensity of E-1 was relatively large, and the roughness
of the sea surface caused by wave–current interaction was greater, which resulted in a
larger difference in the backscattering between the eddy edge and the ocean background,
therefore having a relatively good detection result. In addition, in order to describe the
eddy detection accuracy quantitatively, we used the subjective identification of eddies by
trained experts as the expert interpretation results and compared the detection results of
the eddies in the above 10 features with the expert interpretation results to obtain the eddy
detection accuracy (Table 5). It can be seen that the average detection accuracies of the 10
features were 69.83% (E-1), 34.72% (E-2), and 32.71% (E-3), all of which were better than
the traditional σHH (66.67%, 27.01%, and 26.12%, respectively).
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Figure 10. Comparison of “white” eddy (E-1, E-2, and E-3) detection results in the CP feature c42(Pd) image. (a–c) Slices of
the eddies (E-1, E-2, and E-3) in the feature image. (d–f) Eddy detection results based on the k-means clustering algorithm.
(g–i) Three-dimensional structure maps of the eddies (E-1, E-2, and E-3, respectively) in the feature images.

Table 5. “White” eddies detection accuracy.

Features Pd SEI Dbl g0 g3 l1 lambda ms SE Ps σHH

E-1 70.80% 69.71% 70.97% 70.05% 69.92% 69.81% 69.70% 69.72% 69.48% 68.18% 66.67%
E-2 35.59% 27.21% 31.42% 36.70% 36.74% 36.84% 36.99% 37.00% 29.97% 38.71% 27.01%
E-3 33.13% 25.12% 29.18% 34.54% 34.12% 34.51% 34.41% 34.34% 31.34% 36.44% 26.12%
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5.2. Black Eddy

Similarly, this section presents the results of 13 CP features with better B-E characteri-
zation ability, such as c41(1mHA), c28(H), c39(SEP), c38(SEI), c37(SE), c27(p2), c18(m), c29(A),
c26(p1), c21(Dbl), c42(H1mA), and c9(CPR), that were used for B-E extraction. The eddy
detection results are shown with the optimal CP feature c41(1mHA). The eddy detection
result in the CP feature c41(1mHA) image is given in Figure 11, where Figure 11a is the
eddy region slice in the feature image, and it can be seen that the eddy had a distinct spiral
structure. Figure 11b shows the eddy detection results based on the k-means classification
algorithm (k = 2), where white is the ocean background and black is the eddy extraction
results, and the results show that the eddies could be effectively separated from the ocean
background. In order to quantitatively describe the eddy detection performance, we ana-
lyzed the detection results of the eddies in the above 13 CP features by expert decoding to
obtain the eddy detection accuracy (Table 6). It can be seen that the detection accuracy in all
13 CP features was better than that of the traditional σVV (78.47%) and that the improved
accuracy reached up to 95.64% (1mHA).
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Table 6. “Black” eddy detection accuracy.

Features 1mHA H SEP SEI SE p2 m A p1 Dbl H1mA CPR σVV

B-E 95.64% 93.50% 96.91% 94.95% 92.17% 85.71% 85.47% 85.47% 85.47% 90.16% 81.71% 78.64% 78.47%

In addition, to explore the potential of SAR in detecting the eddy refinement structure,
we conducted a study on eddy spiral structure fitting and eddy center location extraction.
Yang et al. [26] showed that the morphology of the eddies was closer to the logarithmic
helix, so the logarithmic helix was selected to fit the B-E in this study. The polar equation
of the logarithmic helix is as follows:

r = aeθcotα = aebθ ; b = cotα (13)

where r is the polar diameter, θ is the polar angle, a is the value of r when θ = 0o, α is
the angle between the polar diameter and the tangent line, and b affects the degree of
bending of the helix. In this study, the optimal logarithmic helix parameters a and b were
obtained by fitting manually selected eddy profile feature points to determine the eddy
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center location. The results are shown in Figure 11c, where the blue helix is the optimal
logarithmic helix obtained by fitting and the red dot is the obtained eddy center location.

6. Discussion

The data used in this article were the two FP ALOS PALSAR images (#A and #B)
collected from the sea around Japan. These two scenes are covered with suspected W-E and
B-E, respectively. In terms of eddy existence authenticity verification, Section 2 discussed
the flow field characteristics of the study area, the frequency of ocean eddy occurrence, the
eddy formation mechanism, and the resultant eddy shape and then compared the findings
with the eddy research data from the other literature [24]. The results show that the eddy
defined in this paper was reliable.

In Section 4.2, the Euclidean distance was used to analyze the eddy detection perfor-
mance of 50 CP features. By comparing Figures 5 and 7 of that section, we found that the
best Euclidean distance between W-E and the ocean background was only 1.35, which was
much smaller than the Euclidean distance between B-E and the ocean background (average
value: 2.84). This was possibly the result of the different imaging mechanisms of the two
eddies in SAR as follows. The B-E is caused by the tracing of film [61], and the natural film
generally appears in the SAR image at low to moderate wind speeds (3–5 m/s) [62]. At
higher wind speeds, the surfactant film starts to disrupt, and as a result, the dark spiral
lines representing B-E disappear. Thus, the eddies appear in the SAR image only as a result
of the wave–current interaction along the current shear lines, which manifests as a bright
area [24]. However, it should also be considered that high sea conditions will reduce the
contrast between W-E and the ocean background, thus manifesting itself as a low Euclidean
distance. It is worth mentioning that due to the harsh imaging mechanism of W-E, the
amount of W-E SAR data that could be found was very small. Therefore, most research on
eddy detection by SAR application is focused on B-E. In addition, a similar finding resulted
from the eddy detection results presented in Section 5, namely the detection accuracy
of W-E being lower than that of B-E. The phenomenon was that the detection accuracy
of W-E was lower than that of B-E. Therefore, this difference in Euclidean distance and
detection accuracy was consistent with the actual situation of the two eddies with different
imaging mechanisms.

When comparing the Euclidean distance calculation results and the eddy detection
accuracy, we found that they were consistent. Figure 12 gives the variation of the CP
feature Euclidean distance and eddy detection accuracy, where the colored dashed lines
in the figure are the results of the third-order polynomial fit. The figure shows that for
E-1 and B-E, the eddy detection accuracy decreased with the decrease in the Euclidean
distance, which proves the reliability of using the Euclidean distance to analyze the eddy
detection performance of the CP features. However, E-2 and E-3 were severely confused
with the ocean background, and their accuracy was low and contingent. This means that
the detection accuracy did not produce the same trend as the Euclidean distance; however,
this does not affect the above conclusions.

In Section 5.2, the location of the eddy center was determined in the B-E detection
result (Figure 11c) using the method based on logarithmic spiral edge fitting for eddy
information extraction in the SAR image. The eddy shape described by this method agreed
with the actual one, and furthermore, the results of the eddy center’s position agreed with
the reference information provided manually. This demonstrates the great application
potential of CP SAR in eddy information extraction and eddy refinement structure research.

Compared with satellite altimeters for mesoscale eddy detection, SAR images are more
often used to observe sub-mesoscale and small mesoscale eddies (diameter < 10 km). Such
ocean eddies are smaller in scale, shorter in duration, and faster in variability, while their
edges are more filamentary and irregular, and their formation mechanisms are different
from those of mesoscale eddies [4]. Considering this, compared with satellite altimeters
and optical sensors, SAR is not affected by light and has a higher resolution, which makes
SAR more relevant for such ocean eddy detection. In future research, we will carry out
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work on the inversion of the eddy parameters (e.g., eddy center position, diameter, and
edge size) using a variety models. Meanwhile, considering the current challenges, such as
the surge of SAR data volume, we will combine cutting-edge technologies such as deep
learning to develop better SAR eddy detection algorithms.
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Figure 12. Euclidean distance and eddy detection accuracy of CP features with better eddy detection performance. (a) W-E,
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7. Conclusions

As an emerging direction of polarimetric SAR, the CP SAR adopts a unique DP SAR
system, which enables large-amplitude broad observations of up to 350 km and fully
preserves the polarization scattering information, giving it significant potential application
in the large-scale detection of ocean phenomena and targets. However, relatively few
studies have been conducted on eddy detection using CP SAR data. Before this study,
the response of CP SAR to ocean eddies was unknown, which severely restricted the
application of CP SAR for ocean eddy monitoring. Therefore, in this study, ALOS PALSAR
FP SAR data containing W-E and B-E were used to simulate the CP SAR data to evaluate
the application potential of CP SAR for ocean eddy identification and dynamic monitoring.
Based on this, the performance of the CP features in detecting ocean eddies was further
discussed. The results showed that among the 50 CP features, Pd, SEI, Dbl, g0, g3, l1, lambda,
ms, SE, and Ps had better detection performance for W-E. Moreover, it was found that m, A,
p1, Dbl, H1mA, and CPR could more accurately determine B-E.
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