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Abstract: Using a multiple-input-multiple-output (MIMO) radar for environment sensing is gaining
more attention in unmanned ground vehicles (UGV). During the movement of the UGV, the position
of MIMO array compared to the ideal imaging position will inevitably change. Although compressed
sensing (CS) imaging can provide high resolution imaging results and reduce the complexity of the
system, the inaccurate MIMO array elements position will lead to defocusing of imaging. In this
paper, a method is proposed to realize MIMO array motion error compensation and sparse imaging
simultaneously. It utilizes a block coordinate descent (BCD) method, which iteratively estimates the
motion errors of the transmitting and receiving elements, as well as synchronously achieving the
autofocus imaging. The method accurately estimates and compensates for the motion errors of the
transmitters and receivers, rather than approximating them as phase errors in the data. The validity of
the proposed method is verified by simulation and measured experiments in a smoky environment.

Keywords: environment sensing; unmanned ground vehicles (UGV); compressed sensing (CS);
autofocus; motion errors

1. Introduction

The application of unmanned ground vehicles allows the performance of operations in
areas inaccessible to humans due to chemical, biological, thermal, and other environmental
hazards [1]. The MIMO radar becomes an alternative to the full array when only a small
number of array elements is used to meet the demands for high azimuth and elevation
resolution [2]. For an antenna of a predetermined size, MIMO array is often applied
to accomplish rapid imaging and cut down the number of array elements in order to
economize on the hardware cost [3–7]. Therefore, advanced UGVs are equipped with
various types of MIMO radar [8].

In [9], through increasing the variety of radiation, a method called radar coincidence
imaging is studied. Time-reversal imaging is applied to MIMO radar imaging prob-
lems [10–12]. In [13], an imaging method combining the range migration and the back
projection (BP) is proposed for arbitrary scanning paths. However, the azimuth resolution
is restricted to the length of the received array. In [14,15], different spectral estimation
algorithms are used to enhance azimuth resolution and to compress sidelobes. The theory
of compressed sensing (CS) [16] provides the possibility of solving the underdetermined
problem. In [17], a segmented random sparse method based on CS is presented to ensure
the accuracy of 3-D reconstruction. CS has been introduced to the radar-related applica-
tions, such as ground-penetrating radar [18], through-the-wall imaging [19], and inverse
SAR (ISAR) [20].

A basic difficulty in MIMO radar imaging is imperfect knowledge of the real position
of the array. Providing real-time and accurate vehicle posture information is one of the key
technologies to achieve conditional and even highly autonomous driving [21]. During the
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movement of UGV, unknown road information, such as the road inclination angle, tire-
road friction coefficient, and road slope angle [22], will lead to motion errors of the MIMO
array. In the real environment, the inertial measurement units (INS) or Global Positioning
System (GPS) circuits, generally provide reasonably accurate but inaccurate locations. The
unsolved uncertainty can be solved by data-driven autofocus algorithms [23–25].

Extensive literature settles the radar autofocus problem by estimating a substituted
collection of phase errors in the measured signal, instead of the position errors [26–30].
In [31], an autofocus method is proposed for compressively sampled SAR. In [32,33],
autofocusing technology is proposed to correct the phase errors. In [34], a CS imaging
with compensation of the observation position error method is proposed to reconstruct
the image and correct the errors in the SAR structure. A joint sparsity-based imaging
and motion error estimation algorithm is utilized to obtain focused images [35]. A blind
deconvolution method is proposed to acquire autofocus images from observations that
undergo a position error [36]. However, it can only solve the problem when antennas are
influenced by the identical position error. Table 1 shows the categories of methods used to
solve autofocus problems.

Table 1. Categories of methods to solve autofocus problems.

Methods Details References

Phase errors Estimating a substituted collection of phase errors in
the measured signal [24–31]

Motion errors

Estimating the motion errors in SAR structure [32]

Estimating the motion errors in bistatic-SAR [33]

Supposing the transmitter and receiver are affected
by the same motion error [34]

Estimating the motion errors the transmitters and
receivers of MIMO array Our method

We propose a method to compensate for the motion errors of the MIMO radar array in
CS imaging. It is modeled as an optimization problem in which the cost function includes
the motion errors of transmitters and receivers and the reflectivity coefficients of targets.
The main contributions are as follows:

(1) We analyzed the essential relationship between the motion errors of array and CS
imaging. The proposed method takes effect on estimating the MIMO array motion
errors as well as reconstructing images, which is without any approximations.

(2) The optimization problem is solved by a BCD method, which cycles through steps of
target reconstruction and MIMO array motion errors estimation and compensation.
The motion errors of transmitters and receivers can be estimated by gradient-based
optimization algorithms.

(3) Based on the accurate estimation of the motion errors, we can achieve super-resolution
imaging. Compared with optical sensors, in special circumstances, such as smoke
scenes, it has a better environmental perception ability.

This paper consists of 5 parts. In Section 2, the method proposed in this paper is
introduced, i.e., the geometry model and signal model for MIMO radar imaging are de-
scribed in Section 2.1 and CS imaging with motion errors compensation and computational
complexity are depicted in Section 2.2. In Section 3, simulation and experiment results are
presented. Section 4 provides the discussion. Section 5 will summarize this paper.

Throughout the text, lower case bold face letters y denote vectors and upper case bold
face letters A denote matrices. Superscripts T and ∗ refer to the transpose of matrices and
the Hermitian of matrices. The `1 norm of a vector d is defined as the sum of its absolute
values, i.e., ‖d‖1 = ∑i|d(i)|. The `2 norm of a vector d is defined as the square root of the

sum of its squares, i.e., ‖d‖2 =
√

∑i|d(i)|
2.
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2. Materials and Methods
2.1. MIMO Radar Imaging Model
2.1.1. Geometry Model

Consider a MIMO array that has M transmitters and N receivers. Figure 1 illustrates
the MIMO array mounted on UGV, x is azimuth direction and where y is the forward di-

rection. Supposing the position vector of mth transmitting element is
∧
ptm = [xtm, ytm, ztm]

T

and the position vector of nth receiving element is
∧
prn = [xrn, yrn, zrn]T , where xtm, ytm,

ztm, xrn, yrn, zrn are coordinates in the Cartesian coordinate system. The real time position
vectors of mth transmitting element and nth receiving element are denoted as ptm and prn,
respectively, {

ptm =
∧
ptm + etm

prn =
∧
prn + ern

(1)

where etm = [∆xtm, ∆ytm, ∆ztm]
T and ern = [∆xrn, ∆yrn, ∆zrn]

T depict the real motion error
vector of the mth transmitting element and nth receiving element, respectively. We set
the position vectors of the kth target to be pk = [xk, yk, zk]

T , the instantaneous two-way
range of target pk of the mth transmitting element and the nth receiving element can be
expressed as

Rtr(m, n, k) = Rt(m, k) + Rr(n, k) (2)

where Rt(m, k) and Rr(n, k) denote the instantaneous real range from the mth transmitting
element to target pk and target pk to the nth receiving element, respectively,

Rt(m, k) = ‖ptm − pk‖2 (3)

Rr(n, k) = ‖prn − pk‖2 (4)
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Figure 1. Imaging geometry of MIMO Radar.

The hypothetical two-way range for target pk without any motion errors are ex-
pressed as

∧
Rtr(m, n, k) =

∧
Rt(m, k) +

∧
Rr(n, k) (5)

where
∧
Rt(m, k) and

∧
Rr(n, k) denote the ideal range from the mth transmitting element to

target pk and target pk to the nth receiving element, respectively,

∧
Rt(m, k) = Rt(m, k)

∣∣∣etm=[0,0,0]T (6)

∧
Rr(m, k) = Rr(n, k)

∣∣∣ern=[0,0,0]T (7)
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2.1.2. Signal Model

Assume that the stepped frequency is transmitted by the MIMO radar and the data of
the nth receiving element from the mth transmitting element can be expressed as

y(m, n, l) =
y

G

d(x, y, z) · exp[−j2π fl Rtr(m, n, x, y, z)/c]dxdydz (8)

where x, y and z are the coordinates of the target and d(x, y, z) is the reflectivity coefficient
of the target at (x, y, z); Rtr(m, n, x, y, z) is the two-way range of the target at (x, y, z) of the
mth transmitter and the nth receiver; fl is the value of lth frequency; c depicts the speed of
light; G is the area illuminated by the beam.

Based on (8), the discrete expression of the echo of the nth receiving element from the
mth transmitting element is

y(m, n, l) =
K

∑
k=1

d(k) · exp[−j2π fl Rtr(m, n, k)/c] (9)

where the K is the total number of grid points after the discretization of the scene, d(k)
is the reflectivity coefficient of the kth point, and Rtr(m, n, k) is the two-way range of kth
point of the mth transmitter and the nth receiver. The equation for Rtr(m, n, k) is shown
in (2).

Equation (9) can be expressed in matrix form as

y = Ad (10)

where y is a MNL× 1 signal vector, A is a MNL× K measurement matrix, and d is a K× 1
target vector. L is the total number of frequencies, N is the total number of receivers, M
is the total number of transmitters. The vector/matrix terms in (10) are depicted by the
following equations, where

y = [y(1, 1, 1), · · · , y(M, 1, 1), y(M, 2, 1), · · · ,
y(M, N, 1), y(M, N, 2), · · · , y(M, N, L)]

(11)

A =



A[Rtr(1, 1, 1), f1],
...

A[Rtr(M, 1, 1), f1],
A[Rtr(M, 2, 1), f1],

...
A[Rtr(M, N, 1), f1],
A[Rtr(M, N, 2), f1],

...
A[Rtr(M, N, K), f1]

A[Rtr(1, 1, 1), f2],
...

A[Rtr(M, 1, 1), f2],
A[Rtr(M, 2, 1), f2],

...
A[Rtr(M, N, 1), f2],
A[Rtr(M, N, 2), f2],

...
A[Rtr(M, N, K), f2]

. . . ,
...

. . . ,

. . . ,
...

. . . ,

. . . ,
...

. . . ,

A[Rtr(1, 1, 1), fL]
...

A[Rtr(M, 1, 1), fL]
A[Rtr(M, 2, 1), fL]

...
A[Rtr(M, N, 1), fL]
A[Rtr(M, N, 2), fL]

...
A[Rtr(M, N, K), fL]


(12)

A[Rtr(m, n, k), fl ] = exp[−j2π fl Rtr(m, n, k)/c] (13)

d = [d(1), d(2), · · · , d(K)]T (14)

2.2. CS Imaging with Motion Errors Compensation

In this section, CS Imaging is achieved by estimating the radar cross section (RCS)
information and motion errors. As depicted in (10), y is the received signal. A is the
measurement matrix. Owing to the MIMO array, the position cannot be acquired precisely,
A often involves errors, which have an impact on the reconstruction of targets d.
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As a consequence, knowing the inaccuracy position of the MIMO array and denoting
the A as a function in connection with errors, i.e., A = A(et, er), where et and er denote
the transmitters motion errors and the receivers motion errors, respectively,

et = [∆xt1, ∆yt1, ∆zt1, · · ·∆xtM, ∆ytM, ∆ztM]T (15)

er = [∆xr1, ∆yr1, ∆zr1, · · · , ∆xrN , ∆yrN , ∆zrN ]
T (16)

The model in (10) can be modified to

y = A(et,er)d (17)

Considering the array motion errors, except for the imaging, we should achieve the
estimation of the array motion errors. We express the process of imaging and estimating
the array motion errors as the minimization of the cost function below

J(d,et,er) =
{
‖y−A(et,er)d‖2

2 + λ‖d‖1

}
(18)

where λ is the regularization parameter, which balances the imaging fidelity and the
sparsity of the solution.

Because of the difference in propagation path, the method proposed in [30] for SAR
cannot give an accurate estimation of array motion errors in MIMO situation. A BCD
method is exploited to figure out (18), which cycles through steps of target reconstruction
and array motion errors estimation and compensation. The algorithm flow is depicted as
below. Figure 2 shows the flow chart of Algorithm 1.

Algorithm 1 Compressed Sensing Imaging with Compensation of Motion Errors for MIMO Radar

Initialize: i = 0, (et)
0 = 0, (er)

0 = 0
Step 1 : (d)i+1 = argmin

d

{
J
[
d,(et)

i, (er)
i
]}

Step 2 : (et)
i+1 = argmin

et

{
J
[
di+1,et, (er)

i
]}

Step 3 : (er)
i+1 = argmin

er

{
J
[
di+1,(et)

i+1, er

]}
Step 4 : Let i = i + 1, and return to step 1.
Terminate when e = ‖ di+1−di

di ‖
2

is smaller than the presupposed threshold.

2.2.1. Target Reconstruction

In step 1, the targets are reconstructed with the given MIMO array motion errors. It
can be depicted as

di+1 = argmin
d

J
[
d,(et)

i,(er)
i
]

= argmin
d

{
‖y−A

[
(et)

i,(er)
i
]
d‖

2

2
+ λ‖d‖1

} (19)

This type of problem can be figured out by sparse approaches, such as orthogonal
matching pursuit (OMP) [37] or matching pursuit. We utilize OMP to get the reconstruction,
considering that it can be utilized without knowing the data error magnitude in advance.
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2.2.2. MIMO Array Motion Errors Estimation

In step 2, given the estimated receivers motion errors (er)
i and the reflectivity coeffi-

cients vector di+1 in the ith iteration, the optimization problem is

(et)
i+1 = argmin

et
J
[
di+1,et,(er)

i
]

= argmin
et

{
‖y−A(et,(er)

i)di+1‖
2
2 + λ‖di+1‖1

} (20)

On account of λ‖di+1‖1 is a constant, (20) can be revised as

(et)
i+1 = argmin

et

{
‖y−A(et,(er)

i)di+1‖
2
2

}
(21)

We depict the cost function by Hi+1(et), and

Hi+1(et) = ‖y−A(et,(er)
i)di+1‖

2
2

=
M
∑

m=1

N
∑

n=1

L
∑

l=1

∣∣∣∣y(m, n, fl)−
K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

∣∣∣∣2 (22)

where di+1
k is the kth element in di+1.

In (22), there are MN subprocesses in Hi+1(et). In the mnth subprocess, the cost func-
tion is only associated with the motion errors of mth transmitter etm = [∆xtm, ∆ytm, ∆ztm]

T ,
considering the estimated motion errors of receivers (er)

i are provided here. Therefore,
letting Hi+1

mn (etm) depict the mnth subprocess as

Hi+1
mn (etm) =

L

∑
l=1

∣∣∣∣∣y(m, n, fl)−
K

∑
k=1

A[Rtr(m, n, k), fl ]di+1
k

∣∣∣∣∣
2

(23)
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To figure out (23), we use the gradient descent method. The gradient method is based
on the assumption that the gradient can be calculated explicitly. We derive the gradient of
Hi+1

mn (etm) according to etm. The gradient is as follows

∂Hi+1
mn (etm)

∂etm
=

[
∂Hi+1

mn (etm)

∂∆xtm
,

∂Hi+1
mn (etm)

∂∆ytm
,

∂Hi+1
mn (etm)

∂∆ztm

]T

(24)

The gradients are depicted as follows, utilizing the differential criterion of the com-
posite function.

∂Hi+1
mn (etm)

∂∆xtm
=

L

∑
l=1

∂Hi+1
mn (etm)

∂Rtr(m, n, k)
∂Rtr(m, n, k)

∂∆xtm
(25)

∂Hi+1
mn (etm)

∂∆ytm
=

L

∑
l=1

∂Hi+1
mn (etm)

∂Rtr(m, n, k)
∂Rtr(m, n, k)

∂∆ytm
(26)

∂Hi+1
mn (etm)

∂∆ztm
=

L

∑
l=1

∂Hi+1
mn (etm)

∂Rtr(m, n, k)
∂Rtr(m, n, k)

∂∆ztm
(27)

Using (2) and (3), we get

∂Rtr(m, n, k)
∂∆xtm

= (xtm + ∆xtm − xk)/Rt(m, k) (28)

∂Rtr(m, n, k)
∂∆ytm

= (ytm + ∆ytm − yk)/Rt(m, k) (29)

∂Rtr(m, n, k)
∂∆ztm

= (ztm + ∆ztm − zk)/Rt(m, k) (30)

In (25)–(27), the calculation of ∂Hi+1
mn (etm)/∂Rtr(m, n, k) is deduced in the Appendix A.

Combining the equations from (25)–(30) and (A1), the explicit expression of the gradient
can be accurately given. We can achieve the gradient of Hi+1

mn (etm). A nesterov-accelerated
adaptive moment (Nadam) [38] method is utilized to figure out (23). When (23) is solved,
the global solution of (21) is given by taking the mean value, and step 2 in Algorithm 1
is realized.

Similarly, step 3 in Algorithm 1 is realized by the same means.
When the termination condition is fulfilled, the MIMO array transmits motion errors et

and receivers motion errors er and the reflectivity coefficients d can be estimated precisely.

2.2.3. Computational Complexity

We will analyze the computation complexity of each step respectively in this section.
OMP is utilized in step 1 to reconstruct images, whose complexity is order O(qMNLK),
where q depicts the number of targets. In step 2, the Nadam method is utilized to achieve
the estimation of the MIMO array motion errors. Here, gradient computation dominates
the computation complexity. The complexity of the gradient computation is order O(LK)
in each subprocess. Supposing there are p sub iterations in step 2, the computation
complexity of step 2 is O(pMNLK). The computation complexity of step 3 is the same
as step 2. Thereby, the computation complexity is O[(q + 2p)MNLK] in each iteration of
Algorithm 1. Table 2 shows the complexity terms.
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Table 2. Complexity terms.

Terms Value

Number of targets q
Complexity of OMP O(MNLK)
Complexity in step1 O(qMNLK)
Iterations in step 2 p

Complexity of Nadam O(MNLK)
Complexity in step 2 O(pMNLK)
Complexity in step 3 O(pMNLK)

Computation complexity O[(q + 2p)MNLK]

3. Results
3.1. Simulation

Table 3 shows the simulation parameters.

Table 3. Simulation parameters.

Parameters Value

Center Frequency 3 GHz
Bandwidth 2.048 GHz

Frequency Interval 4 MHz
Number of Frequencies 512
Number of Transmitters 8

Number of Receivers 8
Selected Frequencies 64

Scene Azimuth Points 40
Scene Range Points 40

Firstly, we place seven targets in the scene. Secondly, the MIMO array motion errors are
simulated as uniformly distributed random errors, whose extent is 1/8 of the wavelength.
The fully sampled data are generated for BP imaging. To take advantage of the MIMO
array information and make each subprocess have the same amount of data to achieve the
estimation of the MIMO array motion errors, we used the following sparse strategy: use
full of the transmitters and receivers; then randomly select the frequencies, whose indices
are the same for each subprocess.

Figure 3 shows the contrast of imaging results without compensation of errors and
the proposed method. Figure 3a shows the results without compensation of motion errors,
which are defocusing on account of the array motion errors. In Figure 3b, the targets are
reconstructed accurately by the proposed method.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

strategy: use full of the transmitters and receivers; then randomly select the frequencies, 
whose indices are the same for each subprocess. 

Table 3. Simulation parameters. 

Parameters Value 
Center Frequency 3 GHz 

Bandwidth 2.048 GHz  
Frequency Interval 4 MHz 

Number of Frequencies 512 
Number of Transmitters 8 

Number of Receivers 8 
Selected Frequencies 64 

Scene Azimuth Points 40 
Scene Range Points 40 

Figure 3 shows the contrast of imaging results without compensation of errors and 
the proposed method. Figure 3a shows the results without compensation of motion errors, 
which are defocusing on account of the array motion errors. In Figure3b, the targets are 
reconstructed accurately by the proposed method. 

  
(a) (b) 

Figure 3. Imaging Results Contrast. (a) Results without compensation of errors; (b) Results of the proposed method. 

The estimation precision of the proposed method for MIMO array motion error is 
evaluated, and the superiority of this method is further emphasized. Figure 4 shows the 
true errors and estimated errors. Figure 4a shows the comparison between the error esti-
mation results and the true error values of the x  dimension of the 8 transmitting array 
elements, where the horizontal coordinate represents the serial number of the 
transm−itting array. Figure 4d also shows the comparison between the error estimation 
result and the true error value of the x  dimension of the 8 receiving array elements, 
where the horizontal coordinate represents the serial number of the receiving array. Com-
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The estimation precision of the proposed method for MIMO array motion error is
evaluated, and the superiority of this method is further emphasized. Figure 4 shows the true
errors and estimated errors. Figure 4a shows the comparison between the error estimation
results and the true error values of the x dimension of the 8 transmitting array elements,
where the horizontal coordinate represents the serial number of the transm−itting array.
Figure 4d also shows the comparison between the error estimation result and the true error
value of the x dimension of the 8 receiving array elements, where the horizontal coordinate
represents the serial number of the receiving array. Combined with Figure 4a,d the error
estimation accuracy of the x dimension of the transmitting and receiving array is given.
The remaining two columns depict the estimation precision in the y and z dimension,
respectively. The results show that the estimation of errors of this method is in good
agreement with the real errors.
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We define the data error as ‖y−A
[
(et)

i,(er)
i
]
di‖

2

2
, where (et)

i and (er)
i are the

MIMO array motion errors of transmitters and the receivers estimated at iteration i, di

depicts the estimate of d in the ith iteration. We define the target reconstruction error, i.e.,
‖di − d0‖1, where d0 depicts the actual value of d. We define the root mean square error
(RMSE) of the estimated errors as

RMSE =

√
1
T
‖ei − e0‖2

2
(31)

where ei depicts the estimation of et or er in the ith iteration and e0 depicts the true value
of ei, T denotes the number of transmitters or receivers.

In order to evaluate the convergence of the proposed method, the reduction of data
error, reconstruction error, and RMSE of et and er in different iterations are illustrated in
Figure 5. Since the change rate of the d is less than the presupposed threshold, the method
terminates at the 41th iteration. The change of the target reconstruction error relative to
different iterations is illustrated in Figure 5a. As the number of iterations increases to larger
than 5, the target reconstruction error tends to zero. The change of the data error relative to
different iterations is illustrated in Figure 5b. When the number of iterations is 5 or larger,
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the data error decreases and tends to zero. The quick reduction of RMSE of et and er are
illustrated in Figure 5c,d respectively.
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In addition, the robustness and accuracy to noise of the method are evaluated. Gaus-
sian white noise with different SNRs is added to the original data, and 15 repetitions of
the simulation were performed. The RMSE of all of the average estimated motion errors
are less than 0.035 m under all simulated SNR conditions is illustrated in Figure 6a. In
Figure 6b,c, if SNR is bigger than 6 dB, the target reconstruction error is smaller than 1 and
the data error is smaller than 800. The simulations show that the method is robust to noise
and has good reconstruction precision and estimation even under low SNR conditions.
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3.2. Experiment

An MIMO radar with a stepped frequency waveform is installed on UGV for data
collection in this experiment. The radar has 10 transmitters and 10 receivers. Figure 7a
shows the details of the MIMO radar and the camera mounted above the radar. Figure 7b
shows the radar and camera in an indoor artificial smoke scene. Figure 7c shows the
diagram of corner reflector distribution. Figure 7d shows the optical image from the
camera, in which the targets are invisible. The distribution of the three corner reflectors
is illustrated with an additional optical image in the upper right corner of Figure 7d. The
data from the reflectors is larger than the other areas, so the scenario can be seen as a sparse
scenario. During the experiment, the UGV keeps moving. When the UGV passes by the
designated position, the geometric center of target 1 is (0, 2.5m) and the other two targets
have geometric centers in (0, 4m) and (−0.3m, 4m). The theoretical azimuth resolution is
0.36 m at a distance of 4 m. We first acquire the full data for BP imaging and utilizing part
of the data for CS imaging. The experimental parameters are shown in Table 4.
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Table 4. Experimental parameters for MIMO radar.

Parameters Value

Center Frequency 2.3 GHz
Bandwidth 1.024 GHz

Frequency Interval 4 MHz
Number of Frequencies 256
Number of Transmitters 10

Number of Receivers 10
Selected Frequencies 64

Scene Azimuth Points 40
Scene Range Points 40

A comparison of imaging results of different methods is illustrated in Figure 8. The
BP imaging result is illustrated in Figure 8a. The result of conventional CS reconstruction
without compensation of MIMO radar array motion errors is illustrated in Figure 8b. The
result of the proposed method is illustrated in Figure 8c. Comparing with the optical image
in Figure 7d, all the radar imaging results in Figure 8 show that the ability to perceive the
environment has been significantly improved in a smoky scene. In Figure 8a, targets 2 and
3 are aliased together because the distance of the targets is small than azimuth resolution.
In Figure 8b, targets one and two are defocused, which is owing to the effects of the radar
array motion errors. In Figure 8c, the imaging quality is enhanced by compensating the
motion errors so that targets 2 and 3 can be easily distinguished. It can demonstrate that
the proposed method can achieve autofocus and super-resolution imaging.
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4. Discussion

While the UGV-installed MIMO radar is moving, array motion errors are inevitable.
In [29], a method is proposed to deal with the observation error under the SAR structure.
A blind deconvolution method is proposed to acquire autofocus images [31], which can
only solve the problem when antennas are influenced by the identical position error. Our
proposed method can accurately estimate and compensate for the motion errors of the
transmitters and receivers, as well as synchronously achieve autofocus imaging.

Figure 4 shows the estimation of motion errors is in good agreement with the true
errors. Figure 8 shows that compared with traditional imaging method, the proposed
algorithm can give super-resolution imaging in the presence of motion errors. In the
smoky environment, the distribution of the targets can be accurately given by autofocus
imaging, which has greatly improved the environmental perception ability compared with
the optical sensor.

Future efforts will verify the validity of the method in complex environments such
as the wild environment. Autofocus imaging of moving targets is a promising research
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direction in the future, which will increase the scope of the application of the algorithm.
Incorporating low-rank and sparse for autofocus imaging may improve the noise suppres-
sion effect. Another research direction is considering the rigid constraints of the array
during the estimating of array motion errors, which may be used to improve the speed
and accuracy.

5. Conclusions

We have presented a method to compensate for the motion errors of the MIMO radar
array in CS imaging. This method can realize the estimation of errors of the transmitters
and receivers of the MIMO array and the reconstruction of the target image simultaneously.
The proposed method analyses the essential relationship between the motion errors of array
and the model. It uses a BCD iterative method, which iterates through target reconstruction,
estimation, and compensation of the motion errors of the array. A gradient optimization
method is utilized to get the estimation of the motion errors. The proposed method
enhances the environment perception ability since it can accurately estimate the motion
errors of the MIMO array and significantly improve the reconstruction results. The validity
of the method is verified by simulation and measurement.
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Appendix A

In this appendix, we will deduce the calculation of ∂Hi+1
mn (etm)/∂Rtr(m, n, k). Us-

ing (23), we have

∂Hi+1
mn (etm)

∂Rtr(m, n, k)
=

L

∑
l=1

∂

∣∣∣∣y(m, n, fl)−
K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

∣∣∣∣2
∂Rtr(m, n, k)

(A1)

Expand the absolute term in (A1) as∣∣∣∣y(m, n, fl)−
K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

∣∣∣∣2
=

[
y(m, n, fl)−

K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

]
·
[

y(m, n, fl)−
K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

]∗
= y(m, n, fl)y∗(m, n, fl)

−y(m, n, fl)
K
∑

k=1
A∗[Rtr(m, n, k), fl ]di+1

k

∗

−y∗(m, n, fl)
K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

+
K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

K
∑

k=1
A∗[Rtr(m, n, k), fl ]di+1

k

∗

(A2)

Then, we have

∂

∣∣∣∣y(m,n, fl)−
K
∑

k=1
A[Rtr(m,n,k), fl ]d

i+1
k

∣∣∣∣2
∂R(m,n,k)

= −y(m, n, fl)di+1
k
∗ ∂A∗ [Rtr(m,n,k), fl ]

∂Rtr(m,n,k)

−y∗(m, n, fl)di+1
k

∂A[Rtr(m,n,k), fl ]
∂Rtr(m,n,k)

+di+1
k
∗ ∂A∗ [Rtr(m,n,k), fl ]

∂Rtr(m,n,k)

K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

+di+1
k

∂A[Rtr(m,n,k), fl ]
∂Rtr(m,n,k)

K
∑

k=1
A∗[Rtr(m, n, k), fl ]di+1

k
∗

= 2Re
{
−y(m, n, fl)di+1

k
∗ ∂A∗ [Rtr(m,n,k), fl ]

∂Rtr(m,n,k)

+di+1
k
∗ ∂A∗ [Rtr(m,n,k), fl ]

∂Rtr(m,n,k)

K
∑

k=1
A[Rtr(m, n, k), fl ]di+1

k

}
= 2Re

{
−s(m, n, fl)di+1

k
∗ ∂A∗ [Rtr(m,n,k), fl ]

∂Rtr(m,n,k)

}

(A3)

where

s(m, n, fl) = y(m, n, fl)−
K

∑
k=1

A[Rtr(m, n, k), fl ]di+1
k (A4)

Using the expression of A[Rtr(m, n, k), fl ] in (13), we have

A∗[Rtr(m, n, k), fl ] = exp[j2π fl Rtr(m, n, k)/c] (A5)

∂A∗[Rtr(m, n, k), fl ]

∂Rtr(m, n, k)
= [j2π fl/c] · exp[j2π fl Rtr(m, n, k)/c] (A6)
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