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Abstract: The MOSIR (Mars Orbiter Subsurface Investigation Radar) is one of the scientific payloads
carried by the Tianwen-1 orbiter. MOSIR conducted a ground experiment in the desert near Dengkou
County, northern China, before the launch of the Tianwen-1 satellite. The MOSIR prototype was
suspended from a hot air balloon and flew over a flat region at an altitude of 2500–3300 m. This
experiment aimed to verify the system performance and data processing. The data collected in
subsurface sounding mode is performed range compression, and the altitude measurement data
removes invalid data. After processing, the altitude measurement results of two operating modes are
analyzed and compared with that of the Global Position System (GPS), which verifies the accuracy of
the altitude measurement.
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1. Introduction

The Ground Penetrating Radar (GPR) is an important method used widely in planetary
exploration. It plays a crucial role in searching for water ice and studying the geologic
evolution process in terrestrial planets. The first orbiter-based GPR in planetary exploration
is ALSE onboard Apollo 17 [1], and the GPR deployed on the Mars orbiters highlighted its
advantages, which leads the research group to attach more importance to the effect of GPR
in the following missions.

On 23 July 2020, the Tianwen-1 Mars probe was successfully launched by the Long
March-5 carrier rocket in the Wenchang Space Launch Center [2] and reached the orbit
of Mars on 10 February 2021. Tianwen-1, China’s first Mars exploration mission, consists
of three components: an orbiter, a lander, and a rover. The orbiter operates in a highly
elliptical polar orbit with a perimartian altitude of 260 km and an eccentricity of 0.589,
and its inclination angle is 78.2 deg. It carried seven scientific payloads, including MOSIR
(Mars Orbiter Subsurface Investigation Radar) [3,4]. The scientific objectives of MOSIR are:

1. To make the passive low-frequency observation in the transfer of the spacecraft into
the Mars orbit;

2. To obtain the subsurface stratigraphy of Mars, especially the distribution of water
and water ice;

3. To probe the Martian large-scale altimetry;
4. To measure the total electron content of the ionosphere.

MOSIR transmits electromagnetic waves to the Martian sub-satellite point and receives
echoes from the Martian surface and subsurface at an altitude of 265–800 km [5]. The
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electromagnetic wave can penetrate medium (such as Martian soil, ice, rock, and other
geological materials) and be reflected and scattered by the interface between different
media [6]. This feature allows MOSIR to investigate the subsurface layered structure. We
can obtain scientific information such as time delay, echo strength, polarization from the
echoes. The medium’s dielectric constant, attenuation characteristic, and polarization
characteristic can be deduced from this information. Therefore, MOSIR can study the
Martian subsurface structure and obtain the physical properties of the subsurface materials.

MOSIR operates in dual-frequency channels—low frequency (10 MHz–15 MHz or
15 MHz–20 MHz) and high frequency (30 MHz–50 MHz)—and transmits linear frequency
modulation signal (LFM), widely used in synthetic aperture radar. LFM signal has many
advantages: it can transmit more energy without increasing the transmitter power. In terms
of the frequency channels, MOSIR has designed four operating modes: Low-Frequency
Radio Receiving mode (LFRR), High-Frequency Subsurface Sounding mode (HFSS), Low-
Frequency Subsurface Sounding and Active Ionosphere Sounding mode (LFSS+AIS), and
Altitude Detection Mode (ADM) [5]. In HFSS mode, the range resolution is ~7.5 m, and
in LFSS mode, the range resolution is ~30 m in free space. Due to high operating orbits
(between 265 km and 800 km), the along-track and cross-track resolutions are rough without
processing. The synthetic aperture process can improve horizontal resolution, designed
to operate on the ground [7]. MOSIR will significantly improve the resolution after the
ground processing, achieving a horizontal footprint of a hundred-meter level along-track
and a thousand-meter level cross-track. The expected penetration depth of MOSIR is ~1 km
in the material of water ice and deeper than 100 m in Martian soil.

Before Tianwen-1 launched, two orbiter subsurface penetrating radars, known as
MARSIS (European Space Agency, Europe; operating frequency: 1.3 MHz–5.5 MHz) and
SHARAD (National Aeronautics and Space Administration, America; operating frequency:
15 MHz–25 MHz), are still operative nowadays [8–13] and found water ice and even
liquid water buried beneath the subsurface [14–18]. Compared to MARSIS and SHARAD,
MOSIR has dual frequency channels with a maximum central frequency difference of
27.5 MHz. The frequency band of MOSIR LFSS mode is between MARSIS and SHARAD;
the bandwidth (5 MHz) of MOSIR is wider than 1 MHz of MARSIS and less than 10 MHz
of SHARAD. As a result, MOSIR can provide moderate penetration depth and range
resolution [19]. In particular, MOSIR possesses dual-polarization detection ability, which
can receive cross-polarization echoes (HH and HV). The orbiter-based Martian surface
penetrating Radar (MOSIR) will provide new insights to discover water ice distribution on
Mars with dual-polarization observations [5].

In the summer of 2019, the MOSIR ground experiment proceeded in the Inner Mongo-
lia Autonomous Region. MARSIS and SHARAD did not conduct the ground experiment
in a Mars analogue environment before operation. The large antenna size, the minimum
detection range, and other factors must be considered in experimental design with few
similar experiment scenarios to reference [20]. A hot air balloon was finally chosen as the
carrier to suspend the MOSIR prototype and flew over the experimental area. The radar
investigation focused on altitude measurement with different operating modes, which
allowed for evaluating subsurface sounding capabilities and the validness of the data
processing method developed for the MOSIR data, mainly range compression for the HFSS
data. We assessed the accuracy of the altitude measurement results through deviation from
the reference values provided by GPS.

2. The Condition of the Flight Experiment
2.1. Experimental Condition

Dengkou County is located in China’s Inner Mongolia Autonomous Region. The
experimental area is southeast of Dengkou County, at the edge of the Ulanbuh desert,
with a central location of 106.93◦E, 40.25◦N (Figure 1a). Deserts are suitable for MOSIR
ground experiments because electromagnetic waves can easily penetrate dry sand with low
attenuation, just as dry, low-density deposits and ice-rich materials on Mars exhibit low
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dielectric loss properties [21,22]. The flat terrain of the whole experimental area facilitates
the operation of hot air balloons and the recovery of the hanging platform. The performance
of LFSS was not verified in ground experiments due to the influence of low-frequency
interference as the testing area is near the county.
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Figure 1. (a) The location of the MOSIR ground experiment area (the red cross). The experimental area is in Dengkou
County of the Inner Mongolia Autonomous Region, China. (b) Satellite image of the experimental area and the flight track
of MOSIR in the ground experiment (the red line). The yellow line represents the coverage of ADM data, and the blue one
represents the coverage of HFSS data, in which ADM mode is also on.

MOSIR will operate at an altitude of 265 km–800 km in Mars orbit, which is difficult
to simulate on Earth fully. The MOSIR team selected the AX-11 balloon as the MOSIR
radar platform after considering the practical factors such as maximum wind speed, flight
altitude, payload, and the influence of aircraft.

Four primary antennas (X ANT1, X ANT2, Y ANT1, Y ANT2, shown in Figure 2a)
are mounted on the satellite side, and the +Z axis will always face Mars or the ground.
The length of each Y antenna is 5 m, and each X antenna is 4.5 m [5]. MOSIR antennas are
mounted on the Tianwen-1 orbiter model to maintain the relative location and angle in the
ground experiment. The orbiter model has a wooden bracket for the convenience of taking
off and landing (Figure 2b).
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40.4 m. The wooden bracket is convenient for taking off and landing.
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The ground experiment of MOSIR began on 22 August 2019, after a series of prepara-
tory work. During flight tests, necessary instruments, including gas cylinders and the
GPS mobile stations, are carried in the balloon basket. To avoid the influence of the hot
air balloon platform on radar performance, the MOSIR prototype was kept at a vertical
distance of ~40 m away from the balloon basket and suspended by the ropes (Figure 2b).
The balloon flew about ~22 km at an altitude of ~3 km. Its flight path is affected by wind
speed, wind direction, and residual fuel, as shown in Figure 1b. During the flight, GPS
mobile stations (Leica GS16) continuously recorded latitude, longitude, and altitude in
real-time. MOSIR worked alternately in ADM and HFSS mode, collecting two ADM data
blocks and one HFSS data block.

2.2. Radar Settings

MOSIR is an orbiting subsurface radar sounder using synthetic aperture technol-
ogy. High operating orbit and the ionosphere cause strong attenuation of the signal as it
passes through the Martian atmosphere, so the pulse length and the transmitted power
are designed to increase the power of the transmitted signal (pulse length > 40 µs and
power = 100 w) [5]. However, the conditions for the ground experiments are very different.
The balloon can only reach an altitude of ~3 km, and some radar parameters should be
modified to suit the experimental conditions, as shown in Table 1.

Table 1. Main MOSIR parameters in the ground experiment.

Parameter Value

Central frequency 40 MHz
Frequency bandwidth 20 MHz

Transmitted power 3 W
Pulse length 10 µs

data time window 95 µs (HFSS), 170 µs (ADM)
Operational altitude 2500 m–3300 m

Total mass 26 kg

MOSIR operating modes are also adjusted based on the experimental conditions.
In contrast with the actual performance condition [5], we shortened the pulse length to
10 µs and chose the longest PRI (Pulse Repetition Interval) in the settings. In ADM mode,
we canceled the onboard accumulation. Then, all the ADM data was downlinked after
processing. Time schemes of ADM and HFSS modes in the ground experiment are shown
in Figure 3.
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3. Data Processing of the MOSIR Ground Experiment

First of all, we choose the height provided by the GPS mobile station as the reference
value of the data. It is necessary to correct terrain and time error for the height provided by
GPS. Terrain correction includes terrain interpolation and flight altitude correction. The
ground elevation interpolation provides the estimated elevation of the sub-satellite point,
which is used to minus the corresponding point’s altitude and obtain accurate flight height
to accomplish terrain correction. Moreover, the time error results from a lack of automatic
timing and causes time deviation of the altitude curve. We align the highest point of GPS
and ADM data in time (Radar possesses an automatic timing function) due to the highest
point’s uniqueness. After the correction, the height provided by the GPS can represent the
distance between the GPS and the sub-satellite surface well, then we subtract the length of
ropes between the radar and the basket (40.4 m) to obtain the final reference value.

LFM signal transmitted by MOSIR has a long pulse length, making the echoes hard to
identify without data processing. Range compression is the key to solving this problem.
HFSS data processing of the MOSIR ground experiment mainly focuses on range com-
pression. The effective sounding track length of several hundred meters is insufficient for
azimuth compression.

The principle of range compression is as follows:

• The receiving echo:

x(t) = A · ej(πk(t− 2rc
c )

2
),

2rc

c
− τ

2
< t <

2rc

c
+

τ

2
(1)

• The matched filter:

h(t) = e−jπkt2
, (2)

H( f ) = ejπ f 2
k , −B

2
< f <

B
2

(3)

• The output of the matched filter:

Y( f ) = X( f )H( f ), (4)

• Time-domain output:

y(t) = B · sinc
(

πB
(

t − 2rc

c

))
, (5)

A is a constant that represents echo amplitude, B is frequency bandwidth, τ represents
pulse length of echo, rc is the distance between the radar and the reflector, c represents light
speed and k is the frequency modulation rate equal to B divided by τ. Range compression
can also be realized through the convolution of the receiving echo and the matched filter in
the time domain.

Range compression can compress a longer LFM signal into a shorter Sinc function,
concentrating the echo’s energy on the main lobe. After range compression, the bandwidth
of the time-domain output is narrow by τB times. However, the window function, iono-
sphere distortion, phase error, and other factors can also affect this narrowing rate and
expand the main lobe’s width [23,24].

The side lobes from strong surface echoes will be suppressed to detect weak subsurface
echoes, and the peak sidelobe ratio (PSLR) limit is above 50 dB. Using an ideal LFM signal
as a reference function cannot satisfy this requirement because waveform distortion will
occur after the signal passes through the transmitting channel, antennas, and receiving
channel [25]. The correction coefficient for the reference function can be inverted from the
following measurement results:
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1. Ground calibration that obtains characteristics of transmitting and receiving antennas;
2. Internal loop calibration that obtains characteristics of the Tx/Rx channels;
3. The far-field test that measures the whole system response.

The corrected reference function is the dot product between the transmitting signal
and the correction coefficient.

Figure 4 shows the range-compressed results of HFSS data in the ground experiment.
The correction coefficient had been applied in the data processing, considering the an-
tennas and Tx/Rx channels amplitude and phase compensation (Figure 4b). After range
compression, the echo from the ground surface can be identified at the ~330th sampling
point (Figure 4c).
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The distance from the radar to the ground surface can convert from time delay by the
following equation:

R(x) = 2500 + (x − 240)× 6.25, (6)

where R(x) represents the distance between the radar and the sampling point, and the unit
is meter; in the ground experiment, MOSIR begins to receive echoes 16.67 µs (2500 m in free
space/atmosphere) after the pulse is transmitted, which should be taken into consideration.
x represents the location of the sampling point we want to calculate. The transmitting
signal’s length is 240 sampling points, corresponding to 10 µs sampling at 24 MHz. The
subtracted term (240) comes from the principle of convolution, and the first 240 sampling
points are of no practical significance. The distance between adjacent sampling points is
6.25 m, which two-way time interval is 1/(24 MHz) = 0.04167 µs.

Comparing the distance calculated from HFSS data with the reference height provided
by GPS, error and standard deviation of the range-compressed result can be obtained by
the following equation:

mk =
1
Sk

∑
Ik

Eq, (7)

σk =

√
1

Sk − 1 ∑Ik

(
Eq − mk

)2, (8)

where mk (m) represents the average error of the kth segment. σk is the standard deviation
of the kth segment, which represents the dispersion of the error. Sk is the length of the
kth segment of data and Eq (m) represents the error of each point between the altitude
calculated from the mth data in the kth segment and the reference height. Ik represents the
kth segment of data, segmented based on the distance. The error and standard deviation
are used to evaluate the validity and accuracy of the range compression procedure.
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In ADM mode, range compression has been accomplished onboard, and downlink
data are the radar’s altitude. However, some null and wrong values (altitude values that
deviate obviously from the correct value curve) occur. In order to obtain valid altitude
measured values, we need to eliminate these invalid values. The accuracy of ADM mode is
evaluated by comparing the ADM data with the reference height in the ground experiment.

4. Results

MOSIR collected one HFSS data block (including 142 data packages) and two valid
ADM data blocks in the ground experiment. Each HFSS data package includes 32 columns
of data. The total amount of the dataset is 4544 columns, which covers 26.613 s. With
4544 columns of HFSS data, the radar altitude curve measured in HFSS mode is calculated
using Expression (6), as shown in Figure 5. With Expressions (7) and (8), the error and the
standard deviation of HFSS data are obtained.
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blue triangle), and the reference height provided by GPS (the red dot) at the same period.

The calculation shows that the error between the altitude from HFSS data and the
reference height is 9 m, and the standard deviation is 2.1 m. The error and standard
deviation indicate that the result of range compression is accurate enough to verify the
correctness of range compression flow.

Valid ADM data include two segments, which cover periods of 4693 s–4983 s (setting
as period 1; Figure 6a) and 7362 s–7768 s (setting as period 2; Figure 6b), respectively. In
period 1, the number of time sampling points is 5657, including 1652 points of null value
(account for 29.2% of total) and 7 points of wrong value (account for 0.124% of total). In
period 2, the number of time sampling points is 7836, including 2520 points of null value
(account for 32.5% of total) and 28 points of wrong value (account for 0.357% of total).
After removing these null and wrong values, we compare the ADM altitude curve with the
reference altitude and calculate the error and the standard deviation.

In period 1, the average error of ADM altitude is 4.4 m, ranging from −7.7 m to 42.2 m,
and the standard deviation is 6.5 m. In period 2, the average error of ADM altitude is 1.8 m,
ranging from −6.9 m to 22.6 m, and the standard deviation is 3.9 m.

The ADM operating period contains the HFSS operating period (shown as Figure 1b),
allowing for a comparison (Figure 5). The HFSS data covering period is 4934.9 s–4961.5 s.
Calculating the error and standard deviation of ADM data collected simultaneously, ADM
data’s average error is 9.6 m with the standard deviation of 4.7 m.
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5. Discussion

The ground experiment has verified the performance of MOSIR for China’s first Mars
exploration mission, Tianwen-1, in HFSS and ADM operating modes, the validity, and the
accuracy of the data processing flow.

MOSIR collected dual-polarization echoes from the sub-satellite point in HFSS mode
during the flight. Strong surface echo can be identified after range compression, and the
peak strength of the surface echoes is usually ~40 dB higher than the background noise (as
shown in Figure 4). After calculating the distance from time delay, the error and standard
deviation of the range-compressed result exhibit high accuracy of the main lobe position,
reaching the theoretical value of range resolution (7.5 m in free space) and confirming the
validity of the range compression flow. Due to the flight restrictions and electromagnetic in-
terference, we can only identify the strong surface echo, and azimuth processing (focusing)
flow could not be verified with the several-hundred-meter flight distance.

In ADM mode, MOSIR processes received data on board and downlink altitude.
During the flight, MOSIR obtained two altitude data blocks. The performance requirement
of ADM altitude measurement accuracy is better than 10 m. The two periods’ error
and standard deviation analysis meet the expected requirements. However, the ground
elevation is generated by interpolation because of the terrain factor. The error still exists
after terrain correction. The standard deviation of ground elevation is 0.6 m in period 1
and 1.3 m in period 2, indicating that the ground elevation interpolation error affects the
accuracy of altitude measurement. The actual performance results should be better. After
analysis, null and wrong values are possibly related to the complicated surface landform.
The experimental area is close to the county, and interference caused by the broadcasting
and other interference sources is intense and unpredictable. Interference intensity may be
close to the surface echo so that the signal-to-noise ratio (SNR) cannot reach the criterion
(>11 dB), and the peak detection program misidentifies or fails to identify. However, the
ADM mode’s performance will dramatically improve with high operating orbits and a
relatively clean electromagnetic environment in actual performance conditions.

We compare altitude measured by ADM mode to that of HFSS range-compressed re-
sults collected simultaneously. The comparison results show that the altitude measurement
performance of HFSS and ADM modes is close.

Despite the experimental environment and conditions being different from Mars,
the ground experimental results confirm that partial MOSIR operating mode and data
processing flow satisfies the first Chinese Mars exploration mission, Tianwen-1. With
the wide bandwidth of HFSS mode, MOSIR can map more fine-scale subsurface layering
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structures. The dual-polarization detection ability may play an important role in searching
for ice/liquid water based on the terrestrial polarization radar sounding studies.
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