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Abstract: The Qilian Mountains (QLM) are an important ecological barrier in western China. High-
precision land cover data products are the basic data for accurately detecting and evaluating the
ecological service functions of the QLM. In order to study the land cover in the QLM and performance
of different remote sensing classification algorithms for land cover mapping based on the Google
Earth Engine (GEE) cloud platform, the higher spatial resolution remote sensing images of Sentinel-1
and Sentinel-2; digital elevation data; and three remote sensing classification algorithms, including
the support vector machine (SVM), the classification regression tree (CART), and the random forest
(RF) algorithms, were used to perform supervised classification of Sentinel-2 images of the QLM.
Furthermore, the results obtained from the classification process were compared and analyzed by
using different remote sensing classification algorithms and feature-variable combinations. The
results indicated that: (1) the accuracy of the classification results acquired by using different
remote sensing classification algorithms were different, and the RF had the highest classification
accuracy, followed by the CART and the SVM; (2) the different feature variable combinations had
different effects on the overall accuracy (OA) of the classification results and the performance of the
identification and classification of the different land cover types; and (3) compared with the existing
land cover products for the QLM, the land cover maps obtained in this study had a higher spatial
resolution and overall accuracy.

Keywords: land cover; Qilian Mountains; Sentinel-2; GEE cloud platform; machine learning

1. Introduction

Due to a combined influence of natural processes and human activities, the global
land cover is changing rapidly [1]. With the advancement in multisource remote sensing
data, land cover and its changes have been closely studied in recent years [2]. Accurate
and reliable land cover data is indispensable, as it provides basic information related
to scientific research in areas such as agricultural, environmental protection, and global
change [3–6]. However, accurate land cover mapping and its changes are still facing
many challenges due to land surface heterogeneity and spectral confusion, especially in
higher-resolution mapping.

Since the late 1990s, many land cover data products with different resolutions have
been developed, including the University of Maryland (UMD) classification [7], the In-
ternational Global Biosphere Programme (IGBP) DISCover [8], Global Land Cover 2000
(GLC2000) [9], MCD12Q1 [10], GlobCover [11], and the Climate Change Initiative-Land
Cover (CCI-LC) [12]; however, the resolution of these land cover products are low, ranging
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from 300 m to 1 km. Copernicus Global Land Service-Land Cover 100 (CGLS-LC100)
delivers a global land cover map at 100 m spatial resolution. Since 2015, three collections of
CGLS-LC100 have been released [13]. CORINE Land Cover (CLC) is a standard dataset for
land cover in Europe. There are now five versions, including CLC-1990, CLC-2000, CLC-
2006, CLC-2012, and CLC-2018. The quality and accuracy of datasets have been greatly
improved [14]. The Google Earth Engine (GEE) is a global geospatial analysis platform that
was developed based on cloud technology [15]. Due to its powerful computing functions
and the advantages of online data calculations and visual analysis, it has a wide range
of applications in land cover mapping research. Based on the high spatial and temporal
resolution of the remote sensing data provided by the GEE, different high-resolution land
cover data products have been developed. The representative land cover products on a
global scale include the following. Chen et al. used a Landsat time series and HJ-1 satellite
remote sensing images to produce a global land cover product (GlobeLand30) with a spatial
resolution of 30 m [16]. Gong et al. used Landsat TM/ETM+ data and Sentinel-2 data,
respectively, for the fine resolution (30 m) observation and monitoring of the global land
cover (FROM-GLC30) [17] and the fine resolution (10 m) observation and monitoring of the
global land cover (FROM-GLC10) [18] based on the GEE platform. Zhang et al. produced
two global land cover products with high spatial resolutions; i.e., the Global Land Cover
with Fine Classification System in 2015 (GLC_FCS30-2015) and the Global Land Cover
with Fine Classification System in 2020 (GLC_FCS30-2020) [19,20]. Gao et al. used the
open validation dataset (LUCAS) to evaluate the performance of the GLC_FCS30-2015 and
compared it with the GlobeLand30-2010 and FROM_GLC-2015 [21]. Among the land cover
products listed above, MCD12Q1, GlobCover, CGLC-LC100 collection 3, and CORINE
Land Cover are available in GEE.

Although there are a variety of widely used land cover products, such as those
mentioned above, due to the differences in the data sources, classification schemes, and
classification methods of the different data products, their adaptability and accuracy in
some specific areas tend to be uncertain. Therefore, it is vital to produce more precise
and accurate land cover products for a certain area. For example, Zhang et al. used the
Sentinel-2 time series based on the tile model and the RF algorithm based on the GEE
platform to automatically generate a high-resolution land cover map of Madagascar, with
a high overall accuracy (OA) of 89.2% [22]. Zeng et al. used Landsat 8 image data and
the RF algorithm based on the GEE platform to analyze watershed land cover mapping
in Nzhele and Levhuvu, with an OA of 76.43% [23]. Midekisa et al. used the Landsat 7
ETM+ surface reflectance data in 2000 and 2015 and the RF algorithm based on the GEE
platform to automatically generate the 30 m resolution cover map of the African continent
and analyzed its change characteristics [24]. Based on Landsat 8 images, RF algorithm,
and GEE platform, Tassi et al. produced the land cover map of Maiella National Park
in Italy [25]. Despite all this research, the available studies still lack a comparison of the
classification performances and effects of the different classifiers in the same research area.

The Qilian Mountains (QLM) are an important ecological security barrier in western
China, and have strategic significance for the whole country. A high-resolution and
accurate land cover map is a key dataset for ecosystem function monitoring, ecological
protection, and restoration in this region. The current high-spatial-resolution global land
cover products such as GlobeLand30 [16], FROM-GLC30 [17], and FROM-GLC10 [18]
all include land cover maps of the QLM. In addition, China’s high-spatial-resolution
land cover products, such as China’s Multiperiod Land Use Land Cover Remote Sensing
Monitoring Dataset (CNLUCC) [26] and SPECLib-Based Land Cover [27], also include
land cover maps of this region. On the regional scale, Yang et al. developed the Land
Cover Dataset for the QLM Area from 1985 to 2019 (V2.0) based on the GEE platform using
Landsat 8 data, with an OA of 92.19% [28]. Wang et al. used MODIS data, based on the
GEE and combined with topographic features, to conduct land cover classification research
on the QLM [29]. However, the existing land cover products have inconsistencies and
uncertainties in the classification results of the QLM, lacking a performance comparison of
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the different remote sensing classification algorithms in the QLM. Therefore, it is necessary
to use different remote sensing classification algorithms to study the QLM, produce more
accurate high-resolution land cover products, and assess the performances of the different
classification algorithms.

According to the research background presented above, and based on the GEE cloud
platform, Sentinel-2 remote sensing images were used to produce the land cover classifi-
cation products for the QLM, with a spatial resolution of 10 m. Specifically, the research
content of this study is as follows: (1) to evaluate the performance of the GEE cloud plat-
form in land cover research in the QLM; (2) to assess the performances and accuracies of
the different remote sensing classification algorithms in the land cover classification of the
QLM; (3) to analyze the impacts of different characteristic variable combinations on the
classification results while participating in classification; and (4) to compare and analyze
the classification results obtained in this study using existing land cover products.

2. Materials and Methods
2.1. Study Area

The Qilian Mountains (35◦48′–40◦05′N, 93◦18′–103◦54′E) are located in northwestern
China, to the northeast of the Qinghai-Tibetan Plateau (QTP), in Gansu and Qinghai
Provinces (Figure 1). The total area is 1.84× 105 km2, with an elevation of 1623–5766 m [30].
The QLM is an important ecological security barrier in western China. Many inland rivers
that originate from the QLM are important freshwater sources for the Hexi Corridor,
maintaining the freshwater balance and oasis stability in the area. The QLM are composed
of a number of NW-trending high mountains and valleys. The overall terrain characteristic
is that the west is higher than the east, with high altitudes and complex and special
geomorphological features. The QLM have a typical continental plateau climate, which
is dry and cold, and it gradually becomes colder and drier from east to west. The annual
average temperature is low, about 0.6 ◦C; and the ranges of annual and daily temperature
are relatively large. The annual precipitation is about 400–700 mm, and it decreases from
east to west and increases with elevation. The region has a high solar radiation intensity,
with most areas receiving more than 2800 h of sunshine. The land cover types in the QLM
are diverse, mainly including croplands, forests, grasslands, shrublands, wetlands, water
bodies, construction lands, and bare lands, among which the grasslands and meadows
account for a large percentage of the total area. The main crops are wheat, oilseed rape,
highland barley, oats, maize, broad beans, and potatoes.
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2.2. Data Preparation
2.2.1. Sentinel-2 Image Data

The MultiSpectral Instrument (MSI) equipped on the Sentinel-2 satellite is a high-
resolution multispectral imaging sensor. The Sentinel-2 mission comprises a constellation
of two polar-orbiting satellites (2A and 2B). Sentinel-2 has an inter-resolution of 5d after the
two satellites are networked, and carries a multispectral imager. The spatial resolution of
the visible light bands and near-infrared band is 10 m [31]. The remote sensing data used
in this study were the Sentinel-2 Level-2A products for the 2020 and 2021 plant growth
season (from the beginning of June to the end of August). A total of 899 Sentinel-2 images
were selected in QLM, and each image included 12 spectral bands and 3 quality assessment
(QA) bands. The data acquisition and preprocessing were conducted through online code
writing on the GEE cloud platform. The QA60 band of the images was used and set as a
cloud mask to remove the clouds from the images in order to obtain a cloud-free image.

2.2.2. Sentinel-1 Image Data

The Sentinel-1 data are C-band synthetic aperture radar (SAR) data [32]. Sentinel-1
images provided by the GEE cloud platform have undergone preprocessing procedures
such as thermal noise removal, radiation calibration, and terrain correction. A total of
398 Sentinel-1 images that were synchronized with Sentinel-2 data were used in this study,
and the data acquisition and processing were conducted using the GEE platform.

2.2.3. SRTM Data

The Shuttle Radar Topography Mission (SRTM) data were jointly measured by the
National Aeronautics and Space Administration (NASA) and the National Imagery and
Mapping Agency (NIMA) [33]. The product name of the digital elevation data provided in
the GEE cloud platform was SRTMGL1_003, and the data acquisition and processing were
conducted using the GEE platform.

2.2.4. Land Cover Datasets

The GlobeLand30 is a global land cover product produced by the National Geomatics
Center of China [16]. The FROM-GLC30 is the first global 30 m spatial resolution land
cover product, produced by Tsinghua University in 2013 based on Landsat images [17]. The
FROM-GLC10 data were the latest results for the 2017 land cover produced by Tsinghua
University, which used Sentinel-2 images and previous training samples based on Landsat
data [18]. The Qilian Mountains 30 m land cover classification product data set (1985–2019)
V2.0 (LCD-QLM (V2.0)) was also used in this study as auxiliary reference data [28]. The
data were downloaded from the National Qinghai-Tibetan Plateau Science Data Center (
http://data.tpdc.ac.cn, accessed on 24 September 2021). The basic information about the
land cover products is presented in Table 1.

Table 1. Basic information of existing land cover products.

Products Data Source Time Spatial Resolution Classification
Algorithms

FROM-GLC30 Landsat TM/ETM+ 2010, 2015, 2017 30 m SVM, supervised
classification

GlobeLand30 Landsat TM/ETM+,
HJ-1 2000, 2010 30 m

Pixel-object-
knowledge-based

(POK-based) method

FROM-GLC10 Sentinel-2 2017 10 m RF, supervised
classification

Land Cover Dataset at
Qilian Mountain Area

from 1985 to 2019 (V2.0)

Landsat 8
TM/ETM+/OLI

1985, 1990, 1995, 2000,
2005, 2010, 2015, 2016,

2017, 2018, 2019
30 m Supervised

classification

http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
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2.3. Methods

Based on the GEE cloud platform and the remote sensing classification algorithms
and remote sensing data it provided, this research aimed to classify the land cover in the
Qilian Mountains. The research methods included the collection and optimization of the
sample data, the construction of the feature space, and the machine learning classification
algorithms and evaluation of classification results. The data processing and analysis flow
diagram of this research is shown in Figure 2.
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2.3.1. Sampling Strategies

The collection of accurate training and validation samples is a necessary condition
for accurate land cover classification [34]. Unrepresentative and/or inadequate samples
will result in significant uncertainty of the land cover classification results [35]. Taking
into account the actual situation in the QLM and referring to the existing land cover
classification system and products, the classification system of this study is shown in
Table 2. The classification system used in this study was the land cover classification system
based on ecosystem types, and was divided into 9 categories: croplands (CO), forests (FO),
grasslands (GL), shrublands (SL), wetlands (WL), water bodies (WB), construction land
(CL), bare land (BL), and permanent snow and ice (PSI). The high-resolution satellite
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imagery of the Google Earth Engine was used as a base map; the sample points were
selected from the areas where land cover changes have not occurred for many years, and
the areas that were relatively uniform and had little interference from human activities
to ensure the accuracy and authenticity of the sample data. Furthermore, the collected
sample data were compared and verified with the 10 m ecosystem-type data of the Qilian
Mountain Nature Reserve (part of the Qilian Mountains), which was obtained by artificial
interpretation and field verification. The unit of each sample point was a pixel.

Table 2. Land cover classification system.

Code Class Abbreviation Description

1 Cropland CO

A land cover type that is greatly affected by intensive
human activities. It varies greatly from bare field to seeding
to crop growing to harvesting in the course of a year. It
includes paddy fields, greenhouse farming, and other arable
and tillage land.

2 Forest FO
Areas in which the tree cover percentage is >15% and the
tree height is >3 m, including natural forests, plantations,
and fruit trees.

3 Grassland GL Areas in which the herbaceous cover percentage is >15%,
including natural grassland and pastures.

4 Shrublands SL Area in which the shrublands’ height range is 0.3–5 m, and
cover percentage is >15%, have unique texture.

5 Wetlands WL
Usually has obvious high reflectivity in the NIR band;
marshland covered with aquatic herbaceous plants;
mudflats are also included.

6 Water bodies WB All inland waterbodies; dominated by natural waterbodies
and artificial waterbodies.

7 Construction land CL Includes urban areas, rural areas, and industrial and mining
land greatly affected by human activities.

8 Bare land BL Areas without vegetation cover, including wasteland,
deserts, and the Gobi Desert.

9 Permanent snow and ice PSI Perennial snow and ice distributed in the high mountains.

The quality and quantity control of sample point data was realized by the method of
area estimation adjustment error [36–39]. In this way, the deviation caused by stratified
sampling could be adjusted. Using sample data, the confusion matrix nij of the classification
result could be calculated. A more informative presentation of the error matrix is the
unbiased estimation pij of the area ratio in the unit i and j of the error matrix:

pij = Wi
nij

ni
(1a)

where Wi is the area ratio of land cover types to the total area of the study area in the
classification results, and the proportion of the area classified as type i is:

Wi =
Ai

Atot
(1b)

where Atot is the total area of the map, and Ai is the mapped area of land cover type i.
An unbiased estimator of the total area of type j is then:

Aj = Atot × pj (2a)
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where pj can be calculated using the following formula:

pj = ∑
i

Wi
nij

ni
(2b)

The estimated standard error of the estimated area proportion is:

S
(

pj
)
=

√√√√√ q

∑
i=1

W2
i

nij
ni

(
1− nij

ni

)
ni − 1

(3)

The standard error of the error-adjusted estimated area is:

S
(

Aj
)
= Atot × S

(
pj
)

(4)

An approximate 95% confidence interval for Aj is:

Aj ± 2× S
(

Aj
)

(5)

where the range of error is defined as the z-score multiplied by the standard error, and
the value of the z-score is related to the confidence level (for 95% confidence, z = 1.96).
When the area of each land cover types in the classification results was within the esti-
mated area ranges, it could be considered that the sample data on which the classification
results were based were reasonable. The method accurately quantified the classification
error caused by inaccurate sampling, and the final number of sample points is shown in
Table A1 (Appendix A). Using the ‘randomColumn’ function in the GEE cloud platform,
70% of the sample data could be randomly selected for the classifiers training and image
classification, and 30% of the sample data were used for the verification and evaluation of
classification results.

2.3.2. Feature Construct

• Spectral indices

Existing studies have shown that the application of remote sensing spectral indices can
effectively improve the accuracy of the identification of different land cover types. In this
study, the normalized difference vegetation index (NDVI) [40], the enhanced vegetation
index (EVI) [41], the land surface water index (LSWI) [42], the normalized difference water
index (NDWI) [43], the soil adjusted vegetation index (SAVI) [44], and the bare soil index
(BSI) [45] were calculated using the GEE cloud platform based on the formulas for each
spectral index, and each index was added to the original remote sensing image in turn (as
shown in Figure 2). The calculation formulas for each index are as follows:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(6)

EVI = 2.5× ρNIR − ρRED
ρNIR+6× ρRED − 7.5× ρBLUE+1

(7)

LSWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(8)

NDWI =
ρGREEN − ρNIR
ρGREEN + ρNIR

(9)

SAVI =
(ρNIR − ρRED)(1 + L)
(ρNIR + ρRED + L)

(10)



Remote Sens. 2021, 13, 5064 8 of 25

BSI =
(ρRED+ρSWIR)− (ρNIR+ρBLUE)

(ρRED+ρSWIR) + (ρNIR+ρBLUE)
(11)

where ρSWIR, ρNIR, ρRED, ρGREEN, and ρBLUE are the surface reflectance values of the
shortwave infrared, near-infrared, red, green, and blue bands, respectively. L is the soil
regulation factor, which ranges from 0 to 1 and is usually assigned a value of 0.5 to better
reduce the background difference of the soil and eliminate the noise impact of the soil [44].

• Texture features

The texture features are an important attribute of remote sensing images, and different
land cover types have different texture features. Based on the texture features, the accuracy
of the recognition and classification can be improved [46]. The Gray-Level Co-occurrence
Matrix (GLCM) is a classic method to extract the texture features [47]. It extracts textures
through the conditional probability density between gray levels of remote sensing images,
and is diffusely used in land cover classification research. The calculation of the GLCM can
be obtained through the “glcmTexture” function in the GEE cloud platform. In this study,
several commonly used texture features were selected for use in the classification, including
the feature parameters of angular second moment (asm), contrast (con), correlation (corr),
variance (var), inverse different moment (idm), sum average (savg), and entropy (ent)
based on NDVI. The calculation of each feature variable was based on GLCM, they were
dimensionless, and their range of values was not completely uniform.

• Radar features

Studies have shown that SAR data are sensitive to land cover types such as water
bodies, construction lands, and croplands [23]. The radar variables involved in the con-
struction of the feature variables in this study included the backscatter coefficients of the
Sentinel-1 data in VV polarization and VH polarization modes.

• Terrain features

In the recognition and classification of remote sensing images, the participation of
terrain features can improve the accuracy of the classification. Therefore, based on the
SRTMGL1_003 digital elevation data product, the “ee.Terrain.products” function provided
by GEE was used to calculate the aspect, hill shade, slope, and elevation, and they were
added to the remote sensing images as independent features.

According to the feature variables described above, the classifications of image were
conducted in five feature variable combinations. In the first input feature variable combi-
nation, only spectral bands of Sentinel-2 participated in the classification of the image, and
then the feature variable combinations of spectral indices, terrain features, radar features,
and texture features were added in turn.

2.3.3. Classification Algorithms

At present, remote sensing classification methods such as the support vector machine
(SVM), the classification regression trees (CART), and the random forest (RF) algorithms
have been widely used in land cover mapping and crop type identification [4]. In order to
analyze the differences in the accuracies of the extraction and classification of the different
land cover types when using different classification algorithms, and when using the same
feature variable combination and the differences in the accuracies of the extraction and
classification of different land cover types when using the same classification algorithm
but different combinations of feature variables, three classification algorithms were used in
this study. These three classification algorithms are introduced below.

• Support Vector Machine

The support vector machine (SVM) was proposed by Vapnik in 1995 [48]. The SVM
has significant advantages in terms of nonlinear problems, small samples, and a high
dimensionality. It is widely used due to its small training samples and support for high-
dimensional feature spaces. The parameters that need to be adjusted when using the SVM
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to classify remote sensing images are the kernel function type, the gamma value of the
kernel function, and the cost parameter.

• Classification and Regression Tree

The classification and regression tree (CART) was proposed by Breiman et al. in
1984 [48]. It is widely used in land cover extraction and remote sensing image classification
research due to its simple structure, fast calculation speed, and the advantage of being easy
to understand. The parameters that need to be optimized when using CART to classify
remote sensing images are the maximum and minimum numbers of leaf nodes in each tree.

• Random Forest

The random forest (RF) algorithm was proposed by Leo Beriman in 2001 [49]. Studies
have shown that the RF has the advantages of stability, rapidity, and high precision in
processing remote sensing data; and therefore, it has become the most widely used classifier
among current remote sensing classification algorithms. It has important applications in
crop extraction, image classification, and agricultural regression models [50,51]. The two
main parameters that need to be adjusted and optimized for the RF when classifying
remote sensing images are the number of decision trees that need to be created and
the minimum number of leaf nodes. Studies have indicated that the values of the RF
parameters have little effect on the accuracy [51], so the number of decision trees was set
as 300. Additionally, when using RF for classification in GEE, the importance score of the
parameters participating in the classifier can be calculated by using the “explain” function.
The value of the importance score is not absolute, and there is no uniform and fixed value
range, but changes with the number of sampling data and feature parameters participating
in the classification [52,53]. The importance and contribution of the feature parameters
participating in the classification can be determined by the relative value of the importance
score in a specific situation.

2.3.4. Accuracy Assessment

The confusion matrix is a method that is commonly used to assess the accuracy of im-
age classifications [54]. In this study, the calculation of the confusion matrix was conducted
through online programming of the GEE cloud platform, and then the overall accuracy
(OA), Kappa coefficient, producer accuracy (PA), and user accuracy (UA) were calculated.
Among them, the OA and the Kappa coefficient could fully reflect the comprehensive accu-
racy of the results, and the PA and UA could be used to assess the classification accuracy of
a specific land cover type. The calculation formulas were as follows:

OA =
∑n

i=1 Xii

N
× 100% (12)

PA =
Xii

X+i
× 100% (13)

UA =
Xii

Xi+
× 100% (14)

where N is the total number of samples used for the accuracy assessment; n is the total
number of columns in the confusion matrix; Xii is the number of samples in the i-th row
and i-th column in the confusion matrix; and Xi+ and X+i are the total number of samples
in the i-th row and i-th column, respectively. The uncertainty analysis of the accuracy
of classification results is realized by calculating the error range, which is defined as the
z-score multiplied by the standard error [36].

In this study, all of the data processing and calculations, including data acquisition,
data processing, composition of images, construction of feature space, calculation of pa-
rameters, implementation of classifiers, and calculations of confusion matrices, were all
implemented by the GEE JavaScript API.
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3. Results
3.1. Classification Results and Accuracy of Classification Results

Remote sensing classification algorithms, including SVM, CART, and RF, were used
to classify the Sentinel-2 composite images in the QLM and to analyze the ability of the
different classifiers to identify land cover types in high spatial resolution images. The land
cover results based on the three classification algorithms are shown in Figure 3.
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Figure 3. Land cover maps of the Qilian Mountains obtained using three remote sensing classification
algorithms. Land cover maps obtained using: (a) the random forest (RF) classification algorithm;
(b) the classification regression tree (CART) classification algorithm; (c) the support vector machine
(SVM) classification algorithm.

The results showed that the classification results obtained using the different remote
sensing classification algorithms had high consistency in terms of the proportions and the
distribution characteristics of the land cover types. Among them, bare land and grassland
accounted for the largest proportion of the study area, accounting for more than 90%.
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The grassland was mainly distributed in the eastern and central regions of the QLM,
and the relatively warm and humid valleys in the west were also distributed within a
small area. The bare land was widely distributed in the western part of the QLM, where
the temperature is low and the precipitation is scarce. In addition, the cropland was
concentrated in the eastern basin, the middle reaches of the Datong River, and the plains on
the northern slope of the northeastern part of the mountains, where the land is flatter, with
abundant water resources and suitable temperatures. The forests were distributed in the
valleys in the middle and eastern parts of the study area and on the northern slopes of the
QLM in the northeast. The permanent snow and ice were distributed in the mountainous
areas with higher elevations (4891 m on average) in the western and central parts of the
study area.

The confusion matrix of the classification results obtained using the different remote
sensing classification algorithms is shown in Table 3. In general, in multiple experiments,
the OAs of the three classifiers reached 95%, which indicated that the three classification
algorithms were suitable for high-spatial resolution image classification in the study area.
Among them, the average value of OAs of the RF was 96.51% and the Kappa coefficient
was 0.95, and the OAs of the SVM and CART were 94.67% and 94.50% and the Kappa
coefficients were 0.92 and 0.91, respectively. This indicated that the OA of the classification
results generated by the RF was higher than those of the classification results of the CART
and SVM, which showed that the RF classifiers could more accurately identify and classify
the land cover types in the remote sensing images. Specifically, all three classification
algorithms had high classification accuracies for grassland, water bodies, bare land, and
permanent snow and ice, but their classification accuracies for cropland, forests, and
construction land were significantly different. The PA and OA of the RF for cropland and
construction land were higher than those of the other two classifiers. Compared with the
CART and RF, the SVM had a lower recognition and classification accuracy for forests.

Table 3. Confusion matrix of the classification results of the three remote sensing classification algorithms.

Methods Land Cover
Types CR FO GL SL WL WB CL BL PSI PA

SVM

CR 67 5 43 0 1 0 0 2 0 0.57 ± 0.09
FO 2 319 45 0 0 0 0 0 0 0.87 ± 0.03
GL 19 15 2669 0 0 0 0 19 0 0.98 ± 0.01
SL 2 18 10 5 0 0 0 0 0 0.14 + 0.12
WL 1 0 38 0 12 1 0 11 0 0.19 ± 0.10
WB 1 0 0 0 1 214 2 11 0 0.93 ± 0.03
CL 1 0 1 0 0 0 60 6 0 0.88 ± 0.08
BL 0 1 18 0 0 0 5 2590 0 0.99 ± 0.01
PSI 0 0 1 0 0 0 0 2 126 0.97 ± 0.03
UA 0.72 ± 0.09 0.89 ± 0.03 0.94 ± 0.01 1.00 ± 0 0.86 ± 0.14 0.99 ± 0.01 0.90 ± 0.07 0.98 ± 0.01 1.00 ± 0
OA 0.96 ± 0.01

Kappa 0.93

CART

CR 66 0 35 0 4 1 0 1 0 0.62 ± 0.09
FO 0 327 28 12 0 0 0 0 0 0.89 ± 0.03
GL 43 29 2617 14 12 0 1 38 0 0.95 ± 0.01
SL 0 10 5 21 0 0 0 0 0 0.58 ± 0.16
WL 5 0 15 2 23 2 1 7 0 0.42 ± 0.13
WB 0 0 0 0 1 190 1 3 0 0.97 ± 0.02
CL 0 0 1 0 1 0 60 8 0 0.86 ± 0.08
BL 2 0 30 0 7 6 8 2585 0 0.98 ± 0.01
PSI 0 0 1 0 0 0 0 0 145 0.99 ± 0.01
UA 0.57 ± 0.09 0.89 ± 0.03 0.96 ± 0.01 0.43 ± 0.14 0.48 ± 0.14 0.95 ± 0.03 0.85 ± 0.08 0.98 ± 0.01 1.00 ± 0
OA 0.95 ± 0.02

Kappa 0.93

RF

CR 78 0 24 0 8 1 0 2 0 0.69 ± 0.09
FO 0 329 24 0 0 0 0 0 0 0.93 ± 0.03
GL 13 7 2717 0 1 1 0 13 0 0.99 ± 0.01
SL 0 7 5 17 0 0 0 0 0 0.59 ± 0.18
WL 0 0 19 0 28 2 0 4 0 0.53 ± 0.13
WB 0 0 0 0 1 190 1 1 3 0.97 ± 0.03
CL 1 0 1 0 0 1 63 9 0 0.84 ± 0.08
BL 0 0 10 0 0 0 0 2567 0 0.99 ± 0.01
PSI 0 0 0 0 0 0 0 1 144 0.99 ± 0.01
UA 0.85 ± 0.07 0.96 ± 0.02 0.97 ± 0.01 1.00 ± 0 0.74 ± 0.14 0.97 ± 0.02 0.98 ± 0.02 0.99 ± 0.01 0.98 ± 0.02
OA 0.97 ± 0.01

Kappa 0.96

CR = cropland; FO = forests; GL = grassland; SL = shrublands; WL = wetlands; WB = water bodies; CL = construction land; BL = bare land;
PS = permanent snow and ice; PA = producer accuracy; UA = user accuracy; OA = overall accuracy; Kappa = Kappa coefficient.
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3.2. Influence of the Feature Variables on the Classification Accuracy
3.2.1. Importance Scores of the Variables Used in the RF Classification Algorithm

Using the “explain” function provided by the GEE cloud platform, the importance of
each of the feature variables of the random forest (RF) classifier when participating in the
classification was determined. The contribution of the variables to the classification results
was greater if they had a higher importance score [55]. Figure 4 shows the importance score
distribution of the 31 input feature variables involved in the classification. As can be seen
from the figure, terrain features and radar features had higher importance scores, while
the lower importance scores were for spectral bands, spectral indices, and texture features.
Specifically, among the terrain features, the importance of the elevation feature was the
highest (801.24), followed by slope feature (789.51), and the importance of the aspect and
hill shade were relatively low. Radar features including VV and VH had high importance
scores, with average values of 769.23 and 681.5, respectively. Spectral bands B1, B11, B5,
B12, B3, and B2 of the Sentinel-2 images had generally higher importance scores during the
classification, and their average values were all >560. Among the six spectral indices, the
LSWI had the highest importance scores, with an average value of 603.5, which indicated
that they were very important for water recognition. The importance scores of the texture
features were generally low, among which the NDVI_idm, NDVI_corr, NDVI_asm, and
the NDVI_ent were the lowest, with their values all <560.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 25 
 

 

UA 0.57 ± 0.09 0.89 ± 0.03 0.96 ± 0.01 0.43 ± 0.14 0.48 ± 0.14 0.95 ± 0.03 0.85 ± 0.08 0.98 ± 0.01 1.00 ± 0  

OA 0.95 ± 0.02          

Kappa 0.93          

RF 

CR 78 0 24 0 8 1 0 2 0 0.69 ± 0.09 

FO 0 329 24 0 0 0 0 0 0 0.93 ± 0.03 

GL 13 7 2717 0 1 1 0 13 0 0.99 ± 0.01 

SL 0 7 5 17 0 0 0 0 0 0.59 ± 0.18 

WL 0 0 19 0 28 2 0 4 0 0.53 ± 0.13 

WB 0 0 0 0 1 190 1 1 3 0.97 ± 0.03 

CL 1 0 1 0 0 1 63 9 0 0.84 ± 0.08 

BL 0 0 10 0 0 0 0 2567 0 0.99 ± 0.01 

PSI 0 0 0 0 0 0 0 1 144 0.99 ± 0.01 

UA 0.85 ± 0.07 0.96 ± 0.02 0.97 ± 0.01 1.00 ± 0 0.74 ± 0.14 0.97 ± 0.02 0.98 ± 0.02 0.99 ± 0.01 0.98 ± 0.02  

OA 0.97 ± 0.01          

Kappa 0.96          

CR = cropland; FO = forests; GL = grassland; SL = shrublands; WL = wetlands; WB = water bodies; CL = construction land; 

BL = bare land; PS = permanent snow and ice; PA = producer accuracy; UA = user accuracy; OA = overall accuracy; Kappa 

= Kappa coefficient. 

3.2. Influence of the Feature Variables on the Classification Accuracy 

3.2.1. Importance Scores of the Variables Used in the RF Classification Algorithm 

Using the “explain” function provided by the GEE cloud platform, the importance of 

each of the feature variables of the random forest (RF) classifier when participating in the 

classification was determined. The contribution of the variables to the classification results 

was greater if they had a higher importance score [55]. Figure 4 shows the importance 

score distribution of the 31 input feature variables involved in the classification. As can be 

seen from the figure, terrain features and radar features had higher importance scores, 

while the lower importance scores were for spectral bands, spectral indices, and texture 

features. Specifically, among the terrain features, the importance of the elevation feature 

was the highest (801.24), followed by slope feature (789.51), and the importance of the 

aspect and hill shade were relatively low. Radar features including VV and VH had high 

importance scores, with average values of 769.23 and 681.5, respectively. Spectral bands 

B1, B11, B5, B12, B3, and B2 of the Sentinel-2 images had generally higher importance 

scores during the classification, and their average values were all >560. Among the six 

spectral indices, the LSWI had the highest importance scores, with an average value of 

603.5, which indicated that they were very important for water recognition. The im-

portance scores of the texture features were generally low, among which the NDVI_idm, 

NDVI_corr, NDVI_asm, and the NDVI_ent were the lowest, with their values all <560. 

 

0

100

200

300

400

500

600

700

800

900

el
ev

at
io

n

sl
o
p

e

V
H

V
V B
1

B
1
1

L
S

W
I

B
5

N
D

V
I_

v
ar

B
1
2

B
3

N
D

V
I_

sa
v

g

B
2

N
D

V
I_

co
n
tr

as
t

B
I

N
D

W
I

B
9

N
D

V
I_

id
m B
4

S
A

V
I

N
D

V
I_

co
rr

B
8
A

N
D

V
I

E
V

I

B
7

B
8

B
6

as
p

ec
t

h
il

ls
h

ad
e

N
D

V
I_

as
m

N
D

V
I_

en
t

Im
p
o

rt
an

ce
 S

co
re

Variables

Figure 4. Distribution of the importance scores of the variables used in the RF classification algorithm.

3.2.2. Influence of the Feature Variables on the OA

A comparison of the overall classification accuracies of the different classifiers when
different feature variables were inputted is shown in Figure 5. It can be seen that the OA
of the same classifier was different when different feature variables were involved in the
classification. For the SVM, in addition to the texture features, the participation of other
feature variables improved the value of OA. In particular, the participations of spectral
indices and radar features significantly improved the OA of SVM classifier, with a value of
0.76% and 1.33%, respectively. The SVM classifier had the highest OA when the spectral
bands, spectral indices, terrain features, and radar features participated in the classification
at the same time, with an OA of 95.65% and a Kappa coefficient of 0.93. The participations
of each type of feature variables increased the OA of the classification results when CART
and RF were used for classifications, respectively. They both reached the highest value of
OAs when the feature variables were combined with the spectral bands, spectral indices,
terrain features, radar features, and texture features. The highest OA of the CART was
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95.44%, and the Kappa coefficient was 0.93. For the RF, the highest OA was 97.18%, and
the Kappa coefficient was 0.95.
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Figure 5. The influences of the different feature variable combinations on the overall accuracy (OA) of the classification
results. Feature variable combination 01: spectral bands; feature variable combination 02: spectral bands + spectral indices;
feature variable combination 03: spectral bands + spectral indices + terrain features; feature variable combination 04:
spectral bands + spectral indices + terrain features + radar features); feature variable combination 05: spectral bands +
spectral indices + terrain features + radar features + texture features.

3.2.3. Influence of the Feature Variables on the PA of the Different Land Cover Types

Table A2 (Appendix A) shows the producer accuracies (PAs) of the different land cover
types obtained using the different remote sensing classification algorithms when different
feature variables participated in the classification. The PAs of the forests, grasslands,
water bodies, bare lands, and permanent snow and ice were generally higher and were
less affected by the inputted feature variable combinations, while the land cover types of
croplands, shrublands, wetlands, and construction land were greatly affected by the feature
variable combinations. Specifically, when the RF classifier was used and the feature variable
combination was spectral bands + spectral indices + terrain features + radar features, the PA
value of the cropland reached the highest value (71.25%). When all of the feature variables
were inputted into the RF classifier, the PA of the forest was the highest (94.13%). The
PA of the grassland reached the maximum value of 98.61% when only the spectral bands
were inputted into the SVM classifier. When the CART classifier was used and the feature
variable combinations was spectral bands + spectral indices + terrain features, the PAs of
the shrublands and water bodies reached the highest values (66.67% and 97.03). When the
RF classifier was used and the spectral bands, spectral indices, terrain features, and radar
features were involved in the classification, the PA of the wetlands was the highest (49%).
When the SVM classifier was used and all of the feature variables were involved in the
classification, the PA of the construction land reached the highest value of 90%. When the
spectral bands and spectral indices were inputted into the SVM classifier at the same time,
the PA of the bare lands reached the highest value of 99.4%. The PA of the permanent snow
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and ice reached the maximum value of 100% when only the spectral bands were inputted
into the SVM classifier.

3.2.4. Influence of the Feature Variables on the UA of the Different Land Cover Types

Table A3 (Appendix A) shows the user accuracies (UAs) of the different land cover
types for different remote sensing classification algorithms when different feature variables
participated in the classification. The UA of the croplands reached the maximum (100%)
when only the spectral bands were inputted into the SVM classifier. When the RF classifier
was used and all of the feature variables were involved in the classification, the UA of the
forest reached the highest value (94.15%). The UA of the grassland reached the maximum
value (96.97%) when the spectral bands, spectral indices, terrain features, and radar features
were inputted into the RF classifier. There were eight cases in which the UA of shrublands
reached the highest value of 100%. When the SVM classifier was used and only the spectral
bands were involved in the classification, the UAs of the wetlands, water bodies, and
construction lands reached their highest values (100%, 99.21%, and 100%, respectively).
The UA of the bare land reached the maximum value (98.63%) when all of the feature
variables were inputted into the RF classifier. When the SVM classifier was used and the
spectral bands, spectral indices, and terrain features were involved in the classification, the
UA of the permanent snow and ice cover reached the highest value (99.79%).

3.3. Comparison of Classification Results with Other Land Cover Products

In order to assess the land cover results obtained in this study, the classification results
obtained in this research were compared with existing high-spatial-resolution land cover
products, including the FROM-GLC30, FROM-GLC10, Land Cover Dataset for the Qilian
Mountains Area from 1985 to 2019 (V2.0) (LCD-QLM (V2.0)), and GlobeLand30. Figure 6
presents a visual comparison of the classification results obtained in this research and the
existing land cover products in three different magnified areas. The biggest difference
between the different land cover products lay in areas with complex land cover types.
Therefore, three areas in the QLM with complex land cover types that included construction
land, grassland, forests, farmland, and water bodies were selected as the magnified areas.
We also took the standard false-color composited images of the three regions as the true
value as a reference (Figure 6a–c). It can be seen that the classification effects of the land
cover results obtained in this research were significantly improved. For example, in term
of the identification and classification of construction lands, the zoomed-in display of
the classification results obtained in this study (Figure 6d–f) were more sufficient than
FROM-GLC10 (Figure 6j–l), although FROM-GLC10 had a higher spatial resolution and
accuracy among many land cover products. In addition, compared with the FROM-GLC30,
GlobeLand30, and LCD-QLM (V2.0) products, the classification results of this research had
a higher spatial resolution and more accurate identification of the boundaries between the
land cover types.

For the proportions of the total QLM area occupied by the different land cover types,
several land cover products were used to analyze the consistency of and differences
between the different land cover products (Table 4). In general, the distribution of the
land cover types for several of the land cover products was basically consistent, mainly
for bare land and grassland, and the sum of their area accounted for about 88% of the
total area of the QLM. However, specifically, the proportions of some land cover types
in the study area were different. Among them, the differences in the proportions of the
grassland and unused land were more obvious, and the differences in the proportions
of the water bodies and construction land were relatively small. Compared with other
products, the proportion of the cropland in LCD-QLM (V2.0) was significantly smaller. The
proportions of the grassland and permanent snow and ice in the study area decreased with
increasing spatial resolution, while the proportions of bare land increased with increasing
spatial resolution.
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Table 4. Ratios (%) of different land cover type areas of different classification maps.

Land Cover Types RF CART SVM FROM-
GLC30

FROM-
GLC10

LCD-QLM
(V2.0) GlobaLand30

CR 0.97 1.06 1.02 2.81 1.73 0.29 3.53
FO 1.67 1.92 3.75 2.98 4.53 1.72 2.72
GL 37.19 37.11 34.53 43.73 42.59 50.54 55.34
SL 0.02 0.43 0.02 0.14 0.06 0.003 0.63
WL 0.12 0.32 0.04 0.32 0.05 0.19 0.37
WB 3.24 3.56 3.15 3.73 3.02 3.12 3.11
CL 0.16 0.43 0.16 0.59 0.03 0.03 0.31
BL 55.5 53.91 56.21 43.81 46.7 38.63 31.36
PSI 1.14 1.24 1.15 1.87 1.28 5.21 2.63

CR = croplands; FO = forests; GL = grasslands; SL = shrublands; WL = wetlands; WB = water bodies; CL = construction lands; BL = bare
lands; PS = permanent snow and ice.

The same validation sample dataset was used to evaluate the accuracies of all of the
land cover products to analyze whether the results obtained in this research were better
than the existing high-spatial-resolution global land cover products. Table 5 compares
the accuracies of the classification results obtained in this study with those of the existing
land cover products. It can be seen that the overall accuracies and Kappa coefficients
of the products obtained in this study were higher than those of the data products of
the FROM-GLC30, FROM-GLC10, LCD-QLM (V2.0), and GlobeLand30. Therefore, the
classification effect of the 10 m spatial resolution land cover maps of the QLM obtained in
this study was better than those of the existing high-resolution land cover products.

Table 5. Accuracy comparison (%) of the classification results obtained in this study with the existing land cover products.

Land Cover
Types

This Study FROM-GLC10 FROM-GLC30 GlobeLand30 LCD-QLM (V2.0)

PA UA PA UA PA UA PA UA PA UA

CR 71.25 85.52 59.09 64.11 64.04 57.48 86.18 51.21 80.00 91.30
FO 94.02 94.15 87.50 58.79 89.22 65.16 52.86 53.78 46.67 47.14
GL 98.19 96.75 92.63 96.74 91.92 95.20 90.71 92.49 86.50 94.28
SL 55.60 100 36.57 33.54 66.67 71.43 32.25 26.32 21.36 19.09
WL 48.96 65.89 60.61 66.67 70.15 69.27 47.50 63.33 28.28 25.00
WB 95.86 98.49 98.91 96.27 89.27 90.15 92.75 97.46 88.66 72.88
CL 84.74 96.38 33.33 85.71 66.67 25.88 63.86 68.64 41.18 35.90
BL 99.26 98.63 92.17 92.54 89.76 98.03 97.50 99.38 90.96 96.79
PSI 99.42 99.14 90.00 93.75 92.00 95.83 94.00 79.66 96.00 50.53

OA (%) 97.18 89.67 87.77 85.18 79.81
Kappa 0.95 0.73 0.70 0.65 0.51

CR = croplands; FO = forests; GL = grasslands; SL = shrublands; WL = wetlands; WB = water bodies; CL = construction lands; BL = bare
lands; PS = permanent snow and ice; PA = producer accuracy; UA = user accuracy; OA = overall accuracy; Kappa = Kappa coefficient.

4. Discussion
4.1. Comparison of the Performances of the Different Classification Algorithms

Comparing the performances of the different classification algorithms used for the
land cover classification of QLM was one of the important research goals of this study.
Three classification algorithms, including the support vector machine (SVM), classification
regression tree (CART), and random forest (RF) algorithms were selected for analysis in this
research, and the classifications were performed using the feature variable combinations
with the best classification effect. The classification accuracies were compared, and it was
found that the three remote sensing classification algorithms produced accurate classifica-
tion results. Among them, the RF had the best OA, followed by the SVM and the CART.
This result was inconsistent with the results of several existing studies. For example, Abdi
used Sentinel-2 remote sensing data and remote sensing classifiers, including the SVM, RF,
extreme gradient boosting (Xgboost), and deep neural network (DNN) algorithms, for land



Remote Sens. 2021, 13, 5064 17 of 25

cover classification mapping of a 10 km × 12 km area in Uppsala County, south-central
Sweden, and determined that the SVM had the highest OA, followed by the Xgboost and
RF, and the DNN had the lowest OA [56]. Rana et al. used Sentinel-2 remote sensing data
to compare the effectiveness of the traditional and principal component analysis (PCA)-
based methods of different classification algorithms, including the maximum likelihood
estimation (MLE), RF, and SVM. Their results showed that whether the PCA was used, the
SVM had a higher accuracy than the RF [57]. These results were also similar to the previous
reported studies. For example, Talukdar et al. used Landsat 8 remote sensing data and
classification methods such as the artificial neural network (ANN), SVM, fuzzy ARTMAP
(FA), RF, Mahalanobis distance (MD), and spectral angle mapper (SAM) for classification,
and their results showed that the RF had the highest classification accuracy, followed by
the ANN, SVM, fuzzy ARTMAP, and SAM; and the MD was the lowest [4]. Ge et al. used
Landsat 8 image data and remote sensing classification algorithms, including the k-nearest
neighbor (KNN), RF, SVM, and ANN, to carry out land cover classification research in the
Dengkou Oasis in China. They found that the ANN had the highest classification accuracy,
followed by the RF, SVM, and KNN [58]. The basic reasons for the difference in results
were the different study area, topographic characteristics, and inconsistencies in the land
cover types. Secondly, different satellite data sources were used in the different studies,
and even the same data source with different time phases can also cause changes in the
classification results. Therefore, the differences in the study areas and remote sensing
data sources participating in the classification had a greater influence on the effects of the
different classifiers, and the classification effect of the same remote sensing classification
algorithm varied from one region to other.

4.2. Influence of Feature Variables on Remote Sensing Classification

The GEE cloud platform can be used to evaluate the contribution of the feature
variables participating in the RF classifier. In this study, the average importance scores
from high to low were as follows: terrain features, radar features, spectral bands, spectral
indices, and texture features. This result was inconsistent with the results of several
existing studies. For example, Li et al. used the RF classifier and fused Landsat data
and Sentinel data to classify and map Africa. Their results indicated that the highest
importance scores for the feature variables participating in the classification were those
of the NDVI_S2 and NDVI_L8, and the lowest importance scores were for Band2 and
Band8A of the Sentinel-2 and Band2 and Band10 of Landsat 8 [52]. Zhang et al. used
Landsat 8 OLI data and a GEE-based RF classifier to map the urban areas of three cities
in China. In the importance analysis of the variables, NDVI and NDWI had the highest
importance scores [59]. These results were also consistent with the findings of previous
reported studies. Liu et al. used the RF classifier to classify the Landsat TM and OLI data
for the Gannan Prefecture from 2000 to 2018. Their results showed that the topographic
features, including the altitude and slope, contributed the most, followed by the spectral
indices and spectral bands [53]. Phan et al. used Landsat 8 data from different seasons and
the RF classifier based on GEE to classify the land cover in Mongolia. The results showed
that among all the input variables, elevation was the most important variable, followed by
other feature variables [60]. Therefore, if the data sources used for the classification and the
study areas were different, the importance scores of the feature variables input into the RF
in the different studies were also different.

When different classification algorithms were used for classification, the participations
of different feature variables had different impacts on the PA values of the different land
cover types (Table A2 (Appendix A)). When three classification algorithms were used in
an image classification, compared with the land cover types of the croplands, shrublands,
wetlands, and construction lands, other land cover types had high PAs and were less
affected by the feature variable combinations. In addition, compared with CART and RF,
the differences in the feature variables had a greater impact on the PA of the various land
cover types when the SVM classification algorithm was used. Specifically, the participation
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of the most feature variables in the classification increased the PA values of the land cover
types, including croplands, shrublands, wetlands, and construction lands. It is worth
noting that the participation of spectral indices greatly increased the PA of croplands, by
24.91%; and the participations of terrain features and radar features greatly increased the
PA of construction lands, by 45.02% and 41.09%, respectively. In contrast, there were also
cases in which the feature variables had negative impacts on the PAs of some of the land
cover types. Among them, the participation of texture features caused decreases in the PAs
of the croplands and construction lands, by 3.27% and 1.66%, respectively. For the CART
classification algorithm, in general, the participation of most of the feature variables had
a positive effect on the increase in the PAs of most of the land cover types. Among them,
the participation of the terrain features significantly increased the PAs of wetlands and
construction lands, by 17.91% and 13.64%, respectively; and the participation of the radar
features significantly increased the PA of construction lands, by 14.24%. However, when the
radar features were inputted, the PAs of the croplands, shrublands, and wetlands decreased
slightly (by 5% on an average). When the RF algorithm was used, the participations of the
terrain features and radar features had a greatly positive effect on the PAs of the wetlands
and construction lands. However, the participation of the spectral indices had a small
negative effect on the PAs of some land cover types, including the shrublands, wetlands,
and construction lands, with an average decrease of 2–7.83%.

When the different classification algorithms were used for the classification, the
participation of the different feature variables also had different impacts on the UA
(Table A3 (Appendix A)). When the SVM classification algorithm was used for the clas-
sification, the participation of most of the feature variables had a positive effect on the
improvement of the UA values of the land cover types. Moreover, the most significant
effect was that the UAs of the wetlands and construction lands increased by 8.88% and
19.86%, respectively, when the radar features were inputted into the classification process.
In contrast, there were also cases in which the feature variables had a negative effect on
the UAs of some of the land cover types. Specifically, the participations of the spectral
indices and texture features resulted in a significant decrease in the UA of the wetlands
(16.67% and 28.01%). When the terrain features participated in the classification process,
the UA of the construction lands decreased by 27.8%. For the CART classification algorithm,
in general, the participation of most of the feature variables had a positive effect on the
improvement of the UAs of the land cover types. The most substantial effect was that the
UAs of the croplands and shrublands, which increased by an average value of 12%, and the
UA of wetlands increased by 23.02%. When the spectral indices, terrain features, and radar
features were added to the classifier in turn, the UA of the construction lands gradually
increased by 11.78%. However, when the spectral indices were added to the classifier, the
UAs of the croplands and grasslands decreased by 8.56%. In addition, the participation of
the radar decreased the UAs of the croplands, shrublands, and wetlands by an average
value of 5.46%. For the RF classifier, the different land cover had higher UA values, and
the feature variables had positive effects on the increase of the UA values, except for the
wetlands. Specifically, when the terrain features, radar features, and texture features were
added to the classifier in turn, the UA of the wetlands gradually decreased by 2.14%.

4.3. Comparison of the Land Cover Results Obtained in This Study with Existing Land
Cover Products

In this research, specific land cover classifications were performed, and then compared
with the existing global high-spatial-resolution products in the QLM. The land cover
results obtained in this study had higher spatial resolutions and classification accuracies.
Moreover, the identification and classification of the land cover types in a relatively small
area and the boundaries between the land cover types were more accurate. Nevertheless,
the classification results obtained in this study were different from the existing global
high-spatial-resolution land cover products in terms of consistency. The data sources,
classification algorithms, and feature variables involved in the classification were different,
which were the main reasons for the differences in the classification results. Optical remote



Remote Sens. 2021, 13, 5064 19 of 25

sensing imagery has the advantages of long-term coverage and wide coverage, and it
is the main data source for land use classification research. Different data sources have
different spatial and temporal resolutions, which leads to uncertainties in the classification
results and inconsistencies between the different land cover products. In the existing
high-spatial-resolution land cover products and land cover studies, most products used
Landsat images with a resolution of 30 m as the data source, which was different from
the Sentinel-2 images used in this study. For example, the GlobeLand30 developed by
Chen et al. used Landsat TM/ETM+ data from 2000 and 2010, supplemented by HJ-1
satellite data [16]. For the FROM-GLC30 developed by Gong et al., 8929 Landsat TM/ETM+
scenes of the green season from 1984 to 2011 were collected from various sources [17]. Based
on the Landsat 8 surface reflectance imagery from 2014 to 2016, Zhang et al. developed
global land cover products, including GLC_FCS30-2015 [19]. Second, in addition to the
supervised classification methods that are commonly used, some new methods have also
been proposed and used in land cover classification. For example, Zhong et al. [61,62]
proposed a new time series land cover mapping method based on machine learning and
applied it to the development of land cover products in the Qilian Mountains. The Chinese
land cover products developed by Zhang et al. were based on a new SPECLib-based
operational approach proposed in their research [27]. The pixel-based, object-oriented, and
knowledge fusion (POK)-based classification methods were used with the GlobeLand30
dataset [16]. Therefore, different classification algorithms will also result in differences in
the land cover results.

4.4. Limitations and Prospects of Land Cover Classification in QLM

There are many factors that can lead to an error in land cover classification. The
phenomenon of “the same subject with different spectra” and “different subjects with the
same spectra” are the most vital reasons for the misclassification of land cover types. For
example, misclassification of forest and grassland occurred in some areas in this study.
Secondly, the limitations of the classifiers also lead to classification biases. Specifically,
although the three methods achieved high classification accuracy, there were still some
problems worth noting. For example, the CART classifier had the problem of confusion
between bare land and water bodies. The SVM had a good recognition effect on urban
areas, but it recognized a very small area of bare land as construction land. In general, the
land cover types with the fewest misclassification phenomenon were water bodies and
permanent snow and ice. Third, the problem of mixed pixels was also one of the sources
of classification errors. In addition, the error source of classification was also caused by
cloud removal and hill shadows. The cloud removal process was performed during the
preprocessing of remote sensing images, but there were still very few cloud shadows and
hill shadows in the composited image, which created the classification biases.

With the gradual enrichment of remote sensing data sources, the opportunities and
challenges involved in obtaining land cover products using remote sensing image iden-
tification and classification are gradually increasing. The gradual improvement of the
spatial resolution of satellite data will produce more land cover products with finer spatial
resolutions. The application of multisource data fusion and the continuous update and
improvement of the classification algorithms will greatly improve of the accuracies of the
products. Therefore, remote sensing images with higher temporal and spatial resolutions
can be used as data sources for land cover studies in the future, and the classification
system can be further refined. In addition, shortening the time period of the products in the
QLM, such as the production of land cover products on a quarterly or monthly basis, will
be more conducive to monitoring the vegetation changes in the area, and will play a better
auxiliary role in the studies of seasonal changes and mutation detection of vegetation in
this area.
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5. Conclusions

Based on the Google Earth Engine and the various remote sensing satellite data
provided by it, a feature space composed of feature variables such as spectral bands,
spectral indices, terrain features, texture features, and radar features was constructed.
Three remote sensing image classification algorithms, including the SVM, CART, and
RF algorithms, were used to automatically extract the land cover types in the Qilian
Mountains. The accuracies of the classification results were evaluated, and the impacts
of the different classification algorithms and the different feature variable combinations
on the classification results were analyzed. In addition, the comparison between the
classification results obtained in this research and existing high-spatial-resolution products
were conducted. The results showed that the GEE platform, based on the cloud framework,
had the advantages of convenient data acquisition and strong data-processing capabilities,
and could be used to quickly and accurately extract and map land cover types in a large
area. Moreover, the three remote sensing image classification algorithms assessed in this
study could be used to obtain classification results with high classification accuracies. The
classification results obtained using the three classification algorithms had high consistency
in terms of the area ratio and the distribution characteristics of the land cover types,
but there were still differences in the classification accuracies of the classification results.
Among them, in terms of the OA of the classification results, the RF classifier was the
highest, with an average OA of 96.51%, followed by the SVM classifier (94.67%) and CART
classifier (94.50%). Therefore, the most appropriate classification algorithm was RF for the
land cover classification in QLM. Furthermore, the participation of feature variables in the
classification process improved the OA of the land cover classification results. Specifically,
the participations of spectral indices and radar features significantly improved the OA
of the SVM classifier, with values of 0.76% and 1.33%, respectively; the participations of
spectral indices significantly improved the OA of the CART classifier, with a value of 1.65%;
and the participations of each type of feature variables increased the OA of the RF classifier,
with an average value of 0.33%. Nevertheless, there were still cases in which the different
feature variables had different effects on the different classifiers, and the contributions
of the different feature variables to the identification and extraction of the different land
cover types were also different. These phenomena were reflected in the UA and PA values
of different land cover types in the classification results when different feature variables
combinations participated in the classification. Finally, compared with the existing global
land cover products, the 10 m spatial resolution land cover map of the QLM obtained
in this research had a higher spatial resolution and accuracy. When the same validation
sample dataset was used to evaluate the accuracies of all land cover products, the OA of the
classification results of this research was higher than the OA of FROM-GLC10, with a value
of 7.51%. This gap was much higher compared to other land cover products. The results
of this study provided a scientific basis for other related studies in the QLM, as well as a
reference for high-spatial-resolution land cover classification and mapping of large areas.
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Appendix A

Table A1. The number of sample points.

Code Land Cover Types Number

1 Croplands 328
2 Forests 1192
3 Grasslands 9103
4 Shrublands 113
5 Wetlands 199
6 Water bodies 703
7 Construction lands 261
8 Bare lands 8730
9 Permanent snow and ice 482

Total 21,111
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Table A2. Influences of the different feature variable combinations on the producer accuracies (PAs) (%) of the different land cover types.

Land
Cover
Types

Feature Variable Combinations

Spectral Bands Spectral Bands + Spectral Indices Spectral Bands +
Spectral Indices + Terrain Features

Spectral Bands +
Spectral Indices + Terrain Features +

Radar Features

Spectral Bands + Spectral Indices +
Terrain Features + Radar Features +

Texture Features

SVM CART RF SVM CART RF SVM CART RF SVM CART RF SVM CART RF

CR 9.42 55.33 61.59 34.33 58.04 63.47 47.76 66.32 68.60 59.10 60.23 71.25 55.83 65.55 66.66
FO 79.24 90.09 90.93 84.67 87.14 91.95 83.18 89.38 93.02 86.43 90.49 94.02 80.44 89.70 94.13
GL 98.61 94.61 97.89 98.45 94.85 97.99 97.53 96.01 98.16 97.63 95.44 98.19 97.61 96.34 98.44
SL 8.61 66.28 58.68 14.22 62.41 50.85 11.81 66.67 51.30 13.00 64.03 55.60 33.89 57.72 52.55
WL 6.26 24.30 22.55 16.09 24.44 21.80 17.08 42.35 41.87 19.78 39.49 49.00 32.71 40.79 44.97
WB 92.49 92.44 93.35 92.58 92.19 94.76 95.04 97.03 96.67 95.25 95.46 95.86 95.58 95.77 96.16
CL 2.25 56.29 49.32 5.55 55.45 46.82 50.57 69.09 73.55 91.66 83.33 84.74 90.00 82.63 87.31
BL 99.15 96.80 99.05 99.40 97.02 99.01 99.01 97.80 99.21 99.23 98.15 99.26 99.17 98.18 99.37
PSI 100 99.11 99.42 99.07 97.93 99.31 97.51 99.08 99.44 94.22 99.08 99.42 94.44 97.90 99.57

CR = croplands; FO = forests; GL = grasslands; SL = shrublands; WL = wetlands; WB = water bodies; CL = construction lands; BL = bare lands; PS = permanent snow and ice.

Table A3. Influences of the different feature variable combinations on the user accuracies (UAs) (%) of the different land cover types.

Land
Cover
Types

Feature Variable Combinations

Spectral Bands Spectral Bands + Spectral Indices Spectral Bands +
spectral Indices + Terrain Features

Spectral Bands +
Spectral Indices + Terrain Features +

Radar Features

Spectral Bands + Spectral Indices +
Terrain Features + Radar Features +

Texture Features

SVM CART RF SVM CART RF SVM CART RF SVM CART RF SVM CART RF

CR 100 59.26 77.65 86.79 51.01 81.25 72.07 65.26 82.90 67.34 57.78 84.50 65.52 61.44 85.52
FO 87.42 86.07 92.50 86.02 86.75 91.08 89.82 88.55 93.40 88.05 89.21 93.32 83.89 90.90 94.15
GL 91.79 95.54 95.55 93.19 95.37 95.79 93.44 96.14 96.49 94.73 95.99 96.97 94.18 96.14 96.75
SL 100 61.21 100 100 52.35 100 100 62.54 100 100 57.65 99.20 93.75 54.80 100
WL 100 20.69 63.16 83.33 20.91 72.32 83.33 43.92 71.24 92.21 39.90 69.67 64.20 38.13 65.89
WB 99.21 94.56 98.09 98.75 94.06 97.69 98.38 95.97 97.87 98.52 96.68 98.52 97.66 97.34 98.49
CL 100 51.94 94.74 100 59.59 90.65 72.20 73.75 95.74 92.06 87.23 98.09 92.16 82.02 96.38
BL 95.48 96.71 96.94 95.48 97.12 97.02 96.54 97.71 98.10 98.06 97.82 98.21 98.34 98.46 98.63
PSI 99.29 97.89 98.50 99.29 98.83 98.51 99.79 99.76 98.45 100 99.53 99.18 97.77 99.75 99.14

CR = croplands; FO = forests; GL = grasslands; SL = shrublands; WL = wetlands; WB = water bodies; CL = construction lands; BL = bare lands; PS = permanent snow and ice.
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