Hydrometeor Classification of Winter Precipitation in Northern China Based on Multi-Platform Radar Observation System
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Data Processing Method for X- and Ka-Band Radars
3.2. Attenuation Correction Method for the MMCR Reflectivity
3.3. Phase Classification Method
3.4. Description of Hydrometeor Classification Parameters
4. Validation of Hydrometeor Classification at the Surface
5. Classification Results Based on X-/Ka-Band Radars and Verifications in Multiple Ways
5.1. Comparison with the Surface Observation
5.2. Comparison with the Aircraft Observation
5.3. Compare with the WRF Simulations
6. Summary
- (1)
- The MMCR reflectivity attenuation mainly derives from system deviation and snow on the antenna, whereby the attenuation is up to 8 dBZ. The corrected MMCR reflectivity is consistent with that in the XPOL, especially above the height of 1 km.
- (2)
- The ranges of XPOL and MMCR parameters were classified into three categories of particles (i.e., snow, graupel and mixture of snow and graupel). The hydrometeor classification result, identified by the MMCR, is highly consistent with the ground observations.
- (3)
- Three vertical layers, i.e., ice crystal, mixed snow–graupel and snowflake, exist from top to bottom in the winter precipitation cloud system. However, mixed-phases of snow and graupel exist in the upper air. In addition, the riming processes of various types of snowflakes were observed in the near-surface. This indicates that there was a small amount of supercooled liquid water found in the bottom.
- (4)
- The simulated snowfall echo is similar to the MMCR result in terms of the evolution, echo intensity and echo top height. Moreover, the simulated position and specific mass of snow, ice crystal and graupel compare well with the identification results based on the combination of XPOL and MMCR.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennedy, P.C.; Rutledge, S.A. S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol. 2011, 50, 844–858. [Google Scholar] [CrossRef]
- Andrić, J.; Kumjian, M.R.; Zrnić, D.S.; Straka, J.M.; Melnikov, V.M. Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol. 2013, 52, 682–700. [Google Scholar] [CrossRef]
- Bechini, R.; Baldini, L.; Chandrasekar, V. Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol. 2013, 52, 1147–1169. [Google Scholar] [CrossRef]
- Wolde, M.; Vali, G. Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci. 2001, 58, 828–841. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Bringi, V.N.; Hagen, M.; Meischner, P. Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.V.; Zrnić, D.S.; Gordon, B.A. Polarimetric method for ice water content determination. J. Appl. Meteor. 1998, 37, 125–134. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V.; Reeves, H.D.; Schuur, T.J. A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol. 2013, 52, 2549–2566. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; p. 636. [Google Scholar]
- Straka, J.K.; Zrnić, D.S. An algorithm to deduce hydrometeor types and contents from multi-parameter radar data. Preprints, 26th Conf. on Radar Meteorology, Norman, OK. Am. Meteor. Soc. 1993, 513, 516. [Google Scholar]
- Holler, H.; Bringi, V.N.; Hagen, M.; Meischner, P.F. Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and doppler radar measurements. J. Atmos. Sci. 1994, 51, 2500–2522. [Google Scholar] [CrossRef]
- Liu, H.; Chandrasekar, V. Classification of hydrometeors based on polarimetric Radar measurements: Development of fuzzy logic and neuro-fuzzy systems and in-situ verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Zeng, Z.X.; Sandra, E.Y.; Robert, A.H.; David, E.K. Microphysics of the Rapid Development of Heavy Convective Precipitation. Mon. Weather Rev. 2001, 129, 1882–1904. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.V.; Schuur, T.J.; Burgess, D.W.; Heinselman, P.L.; Giangrande, S.E.; Zrnić, D.S. The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Am. Meteor. Soc. 2005, 86, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Heinselman, P.L.; Ryzhkov, A.V. Validation of polarimetric hail detection. Weather Forecast. 2006, 21, 839–850. [Google Scholar] [CrossRef]
- Park, H.S.; Ryzhkov, A.V.; Zrnić, D.S.; Kim, K.-E. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather Forecast. 2009, 24, 730–748. [Google Scholar] [CrossRef]
- Apffel, K.R.; Reynolds, A.; Zaff, D. Improving the Quantitative Precipitation Estimate for Hydrometeors Classified as Dry Snow by Polarimetric Radars. NOAA/National Weather Service Eastern Regional Tech. Attachment. 2015; p. 6. Available online: https://www.weather.gov/media/erh/ta2015-06.pdf (accessed on 4 December 2021).
- Kurdzo, J.M.; Bennett, B.J.; Smalley, D.J.; Donovan, M.F. The WSR-88D Inanimate Hydrometeor Class. J. Appl. Meteor. Climatol. 2020, 59, 841–858. [Google Scholar] [CrossRef] [Green Version]
- Elmore, K.L. The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Weather Forecast. 2011, 26, 756–765. [Google Scholar] [CrossRef]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Chandrasekar, V.; Cheong, B.L. A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Ocean. Technol. 2014, 31, 1457–1481. [Google Scholar] [CrossRef] [Green Version]
- Reinking, R.F.; Matrosov, S.Y.; Bruintjes, R.T.; Martner, B.E. Identification of hydrometeors with elliptical and linear polarization Ka-band radar. J. Appl. Meteor. 1997, 36, 322–339. [Google Scholar] [CrossRef]
- Shupe, M.D. A ground-based multiple remote-sensor cloud phase classifier. Geophys. Res. Lett. 2007, 34, L22809. [Google Scholar] [CrossRef] [Green Version]
- Khain, A.P.; Pinsky, M.; Magaritz, L.; Krasnov, O.; Russchenberg, H.W. Combined observational and model investigations of the Z-LWC 216 relationship in strato-cumulus clouds. J. Appl. Met. Clim. 2008, 47, 591–606. [Google Scholar] [CrossRef]
- Mace, G.G.; Heymsfield, A.J.; Poellot, M.R. On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. J. Geophys. Res. 2002, 107, 4815. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.P.; Zheng, J.F.; Ruan, Z. The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the vavious radars. Acta Meteorol. Sin. 2015, 73, 635–647. [Google Scholar]
- Chen, Y.C.; Jin, Y.L.; Ding, D.P. Preliminary analysis on the application of millimeter wave cloud radar on snow observation. J. Atmos. Sci. 2018, 42, 134–149. (In Chinese) [Google Scholar]
- Li, H.; Korolev, A.; Moisseev, D. Supercooled liquid water and secondary ice production in Kelvin–Helmholtz instability as revealed by radar Doppler spectra observations. Atmos. Chem. Phys. 2021, 21, 13593–13608. [Google Scholar] [CrossRef]
- Li, H.; Moisseev, D. Two layers of melting ice particles within a single radar bright band: Interpretation and implications. Geophys. Res. Lett. 2020, 47, e2020GL087499. [Google Scholar] [CrossRef]
- Li, H.; Tiira, J.; von Lerber, A.; Moisseev, D. Towards the connection between snow microphysics and melting layer: Insights from multifrequency and dual-polarization radar observations during BAECC. Atmos. Chem. Phys. 2020, 20, 9547–9562. [Google Scholar] [CrossRef]
- Li, Y.L.; Sun, X.J.; Zhao, S.J. Analysis of snowfall’s microphysical process from Doppler spectrum using Ka-band millimeter-wave cloud radar. J. Infrared. Millim. Waves 2019, 38, 245–253. [Google Scholar]
- Matrosov, S.Y. Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci. 2007, 64, 1727–1736. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Shupe, M.D.; Djalalova, I.V. Snowfall Retrievals Using Millimeter-Wavelength Cloud Radars. J. Appl. Meteor. Climatol. 2008, 47, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Battan, L.J. Radar Observations of the Atmosphere; University of Chicago Press: Chicago, IL, USA, 1973; p. 324. [Google Scholar]
- Matrosov, S.Y. A Dual-Wavelength Radar Method to Measure Snowfall Rate. J. Appl. Meteor. Climatol. 1998, 37, 1510–1521. [Google Scholar] [CrossRef]
- He, Y.X.; Xiao, H.; Lü, D.R. Analysis of hydrometeor distribution characteristics in stratiform clouds using polarization radar. J. Atmos. Sci. 2010, 34, 23–34. (In Chinese) [Google Scholar]
- Wang, D.W.; Liu, L.P.; Zong, R. Fuzzy Logic Method in Retrieval Atmospheric Cloud Particle Phases and Effect Analysis. Meteor. Mon. 2015, 41, 171–181. [Google Scholar]
- Han, J.J.; Chen, F.; Zhang, Z. Assessment and Characteristics of MP-3000A Ground-Based Microwave Radiometer. Meteor. Mon. 2015, 41, 226–233. [Google Scholar]
- Liu, X.E.; He, H.; Gao, Q. Research on application of the mesoscale silver iodide seeding numerical model. Acta Meteor. Sin. 2021, 79, 359–368. [Google Scholar]
- Han, M.; Braun, S.A.; Matsui, T.; Williams, C.R. Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements. J. Geophys. Res. Atmos. 2013, 118, 1401–1419. [Google Scholar] [CrossRef]
- Takamichi, I.; Toshihisa, M. Advances in Clouds and Precipitation Modeling Supported by Remote Sensing Measurements. In Remote Sensing of Clouds and Precipitation; Springer International Publishing: New York, NY, USA, 2018; pp. 257–277. [Google Scholar]
- Gang, C.; Kun, Z.; Hao, H.; Zheng, W.Y.; Ying, H.L.; Ji, Y. Evaluating Simulated Raindrop Size Distributions and Ice Microphysical Processes with Polarimetric Radar Observations in a Meiyu Front Event Over Eastern China. J. Geophys. Res. Atmos. 2021, 126, 22. [Google Scholar]
- Zhong, J.; Lu, B.; Wang, W.; Huang, C.; Yang, Y. Impact of Soil Moisture on Winter 2-m Temperature Forecasts in Northern China. J. Hydrometeor. 2020, 21, 597–614. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.; Suarez, M. A solar radiation parameterization (CLIRAD-SW) for atmospheric studies. NASA Tech. Memo. 1999, 40, 104606. [Google Scholar]
- Morrison, H.; Curry, J.; Khvorostyanov, V. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Molthan, A.; Colle, B. Comparisons of single and double moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Weather Rev. 2012, 140, 29823002. [Google Scholar] [CrossRef]
- Qian, Q.; Lin, Y.; Luo, Y.; Zhao, X.; Zhao, Z.; Luo, Y.; Liu, X. Sensitivity of a simulated squall line during Southern China Monsoon Rainfall Experiment to parameterization of microphysics. J. Geophys. Res. Atmos. 2018, 123, 4197–4220. [Google Scholar] [CrossRef]
- Zhang, S.; Parsons, D.B.; Xu, X.; Wang, Y.; Liu, J.; Abulikemu, A.; Shen, W.; Zhang, X.; Zhang, X. A modeling study of an atmospheric bore associated with a nocturnal convective system over China. J. Geophys. Res. Atmos. 2020, 125, e2019JD032279. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, Z.; Wei, J.; Yang, C.; Kunstmann, H. Performance of the WRF Model in Simulating Intense Precipitation Events over the Hanjiang River Basin, China—A Multi-Physics Ensemble Approach. Atmos. Res. 2020, 248, 105206. [Google Scholar] [CrossRef]
- Yuan, F.; Heng, C.L.; Jie, F.Y.; Zhi, B.G. Evaluating the performance of a WRF microphysics ensemble through comparisons with aircraft observations. Atmos. Ocean. Sci. Lett. 2021, 14, 100013. [Google Scholar]
Instruments | Observed Parameters | Spatial and/or Temporal Resolution | Data Usage |
---|---|---|---|
MMCR | , , , | 30 m, 0.5 s | All the parameters are used for hydrometeor classification |
XPOL | , , , , | PPI: 150 m, 5 min RHI vertical resolution of 100 m (over the MMCR), 1 min | , and are used for hydrometeor classification |
Microwave radiometer | Total water vapor volume, total liquid water volume, and profiles of temperature, humidity, water vapor, and liquid water | 1 min | Temperature and total liquid water volume are used for hydrometeor classification as the auxiliary parameters |
Snow particle imager (SPI) | Shape and variation characteristics of surface precipitation particles | 30 min | Ground measured particles used for hydrometeor classification |
Airborne equipment 3V-CPI | Particle images within the range of 10–1280 μm | 2D-S: 9–11 μm CPI: 2.3 μm | Hydrometeor classification verification |
Airborne equipment HVPS-3 | Larger particle images within the range of 150–19,200 μm | 150 μm | Hydrometeor classification verification |
Airborne equipment AIMMS-20 | Temperature, humidity, air pressure, horizontal and vertical wind speed | 1 s | Hydrometeor classification verification and temperature parameter correction |
Year | Number of Cases | |||
---|---|---|---|---|
Winter Precipitation | Snow | Graupel | Mixture of Snow and Graupel | |
2016 | 8 | 8 | 2 | 3 |
2017 | 5 | 5 | 2 | 2 |
2018 | 6 | 6 | 1 | 2 |
2019 | 15 | 15 | 5 | 8 |
2020 | 8 | 8 | 3 | 2 |
Total | 42 | 42 | 13 | 20 |
Hydrometeor | MMCR | XPOL | Microwave Radiometer | |||||
---|---|---|---|---|---|---|---|---|
Z (dBZ) | LDR (dB) | V (m/s) | Sw (m/s) | ZDR (dB) | KDP (°/km) | ρHV | T (°C) | |
Snow | −5~15 | −22~−16 | −2.5~0.5 | 0~0.6 | −4.8~0.8 | −0.1~1.2 | 0.66~0.99 | −40~0 |
Ice | −40~0 | −30~−18 | −1.5~2 | 0~0.4 | −2.25~1.5 | 0.09~1 | 0.4~0.9 | −50~−10 |
Snow + Graupel | −20~15 | −23~−14 | −4.5~1 | 0.1~1 | −2.5~2.5 | −0.2~1.6 | 0.6~0.98 | −40~5 |
Mixed | −25~10 | −18~−11 | −2~1 | 0.2~4 | −0.8~1.5 | 0.1~1.2 | 0.6~0.9 | −40~5 |
Liquid | −20~−10 | −30~−20 | −1~1 | 0.1~1 | 0~0.5 | −0.06~0.26 | 0.97~1 | −20~50 |
Graupel | 2.5~16 | −25~−13 | −2.8~−1.2 | 0.1~0.5 | −0.8~2.5 | −0.2~1.6 | 0.91~0.96 | −40~0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, X.; Bi, K.; Zhao, D. Hydrometeor Classification of Winter Precipitation in Northern China Based on Multi-Platform Radar Observation System. Remote Sens. 2021, 13, 5070. https://doi.org/10.3390/rs13245070
Chen Y, Liu X, Bi K, Zhao D. Hydrometeor Classification of Winter Precipitation in Northern China Based on Multi-Platform Radar Observation System. Remote Sensing. 2021; 13(24):5070. https://doi.org/10.3390/rs13245070
Chicago/Turabian StyleChen, Yichen, Xiang’e Liu, Kai Bi, and Delong Zhao. 2021. "Hydrometeor Classification of Winter Precipitation in Northern China Based on Multi-Platform Radar Observation System" Remote Sensing 13, no. 24: 5070. https://doi.org/10.3390/rs13245070
APA StyleChen, Y., Liu, X., Bi, K., & Zhao, D. (2021). Hydrometeor Classification of Winter Precipitation in Northern China Based on Multi-Platform Radar Observation System. Remote Sensing, 13(24), 5070. https://doi.org/10.3390/rs13245070