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Abstract: Remote sensing (RS) of alteration zones and anomalies can provide information that is
useful for geological prospecting and exploration. RS is an effective method for porphyry copper
mineral exploration and prospecting prediction. More specifically, the Advanced Spaceborne Thermal
Emission and Reflection radiometer (ASTER) data, which include 14 spectral channels from visible
light to thermal infrared, are useful in such cases. This study uses visible-shortwave infrared and
thermal infrared ASTER data together with surface material spectra from the Duolong porphyry copper
ore district to construct an RS-based alteration zonation model of the deposit. In this study, an RS
alteration zoning model is established based on ground-spectral alteration zoning results. The methods
include PCA (Principal Component Analysis), Ratio, and Slope methods. The information obtained
by each method is different. RS-based alteration zonation is developed based on the intersection of
maps, resultant from the different methods for extracting information related to different minerals.
The alteration zonation information extracted from ASTER RS data is consistent with geological
observations. Using information from the RS-based model, we mapped the alteration minerals and
zones of the Duolong ore district, thereby identifying prospecting target areas of the deposit.

Keywords: porphyry copper deposit; alteration zone; Tibet; ore prospecting; target area; ASTER

1. Introduction

Multi-spectral remote sensing (RS) techniques have been increasingly and successfully
applied in geological prospecting. Early work in this area includes the recognition of
limonite alteration using Landsat multi-spectral data [1], as well as the extraction of the
spectral characteristics of hydroxyl minerals in the visible near-infrared (VNIR) to short
wave infrared (SWIR) bands [2,3]. Since the early studies, multi-spectral RS and allied
techniques have been widely used to investigate the presence and type of alteration [4–6].
For example, a principal component analysis (PCA) has been applied to help classify and
establish the distribution of alteration minerals in greenstone belt, Minas Gerais, Brazil [7].
Besides PCA, other techniques for extracting remote-sensing-based alteration information
include the ratio method, spectral angle mapper (SAM), minimum noise fraction (MNF),
and linear spectral unmixing (LSU) [8–12].

RS multi-spectral applications in mineral exploration have been summarized [13,14]
and focus on mapping mineral resources and lithological units [14,15], as well as aspects
related to RS-detected anomalies, such as deposit type [16], volcanic genesis [17], porphyry
copper and epithermal gold exploration [18], and the alteration characteristics of rocks [19].
Landsat TM/ETM (Thematic Mapping /Enhanced Thematic Mapping) data can extract the
information of hydroxyl minerals, carbonate minerals, and iron oxides, but cannot be used
to distinguish minerals or mineral assemblages such as minerals consisting of magnesium
hydroxyl and aluminium hydroxyl, due to band limitations. However, the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensor provides
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high-spectral-resolution RS data, containing 14 bands, of which 9 bands are VNIR–SWIR
RS and the remaining 5 bands are thermal infrared (TIR) RS data. Since the first use of
ASTER, some alteration minerals have been identified using VNIR and SWIR RS data,
including kaolinite, dickite, illite, and muscovite data for Cerro La Mina, Argentina [20].
Mars and Rowan [21] studied hydroxyl alteration mineral zonation of a porphyry copper
deposit, using ASTER VNIR and SWIR data. ASTER-based mineral mapping has also been
applied to investigations of geothermal resources [22], iron ore occurrence [23], and gold
deposits [24]. ASTER RS data can also be used to perform alteration mineral mapping [25].
An ASTER spectral database containing single mineral and rock spectral information
in the range of 400–15,400 nm has been established [26]. ASTER data have also been
used to distinguish single minerals, information for which is held in an ECOSTRESS
library [27,28]. ASTER TIR data have been applied to mineral mapping and quartz index
research, according to the spectral characteristics of various minerals and the thermal
infrared characteristics of silicified alteration zones [29], as well as information extracted
from quartzite and carbonate rock [30]. Information on mafic–ultramafic rocks has also
been extracted using ASTER TIR [31].

Most research on Copper (Cu) deposits using RS focus on extracting the alteration
information of altered minerals and iron oxides. Using the spectral characteristics of altered
minerals, various methods for extraction. The alteration information extracted by ASTER is
mainly aluminum hydroxyl (Al-OH) and magnesium hydroxyl (Mg-OH) [32–35], and most
of the research on porphyry Cu deposits using ASTER focus on hydrothermal alteration
mapping [36–41]. Recently, a very large porphyry Cu deposit, the Duolong ore district, was
discovered in north Tibet. This deposit is the largest Cu deposit in the Bangonghu–Nujiang
metallogenic belt and shows highly developed alteration zonation [42,43]. Here, we use
ASTER RS data to extract and analyze alteration zonation information for this porphyry
Cu deposit, with the objective of guiding mineral prospecting in the region. Using RS
methods to establish alteration zonation of porphyry copper deposits in the Bangonghu–
Nujiang metallogenic belt should be useful for establishing mineral prospectivity in this
region. We focus on alteration zone mapping based on an ASTER RS spectral analysis of
surface materials and rocks to extract alteration zonation information and then construct
an RS-based model of mineral alteration zonation.

2. Geological Setting
2.1. Tectonic Setting

The Duolong district comprises two major deposits, namely Duobuza and Bolong. The
Duolong district is located on the southern margin of the Qiangtang terrane, to the north
of the Bangong–Nujiang suture zone (herein after referred to as BNS) in Tibet (Figure 1a).
It extends over 2000 km across the central Tibetan plateau and western Yunnan province,
and is thought represent the remnants of the Bangong-Nujiang Tethyan Ocean [44].

The oldest rocks in the Duolong district are represented by the Triassic Riganpeicuo
Group, which mainly consists of marble and limestone (Figure 1b). Overlying the Triassic
rocks is the Jurassic Quse Formation, comprising two units: the basal Quse I unit of
quartz sandstone, overlain by the upper Quse II unit that is composed of sequences of
intercalated sandstone and slate. Cretaceous Meiriqie Formation is composed up of basaltic
andesite and andesite, and widely distributed in the Duolong district (Figure 1c). An
extensive emplacement of volumetrically small intermediate–felsic porphyritic intrusions
that comprise similar major minerals (quartz, ±plagioclase, ±amphibole, ±biotite) and
accessory minerals (magnetite, ±zircon, ±apatite) took place from 120 to 110 Ma [45,46],
which was accompanied by large-scale mineralization in the Duobuza and Bolong deposits.
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Figure 1. The geotectonic areal division sketch map of Duolong porphyry copper ore field (a); an ASTER false-color com-
posite image of b6(R), b3(G) and b1(B) (b); the geological sketch of Duobuze and Bolong deposits [43] (c). 
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composite image of b6(R), b3(G) and b1(B) (b); the geological sketch of Duobuze and Bolong deposits [43] (c).

2.2. Ore Geology

Porphyry Cu deposits are normally located in the basement beneath a comagmatic
volcanic pile [47]. Generalized alteration mineralization zoning patterns show that sericitic
alteration may project vertically downward as an annulus, separating the potassic and
propylitic zones as well as cutting the potassic zone. Sericitic alteration tends to be more
abundant in porphyry Cu–Au deposits, whereas chlorite sericite alteration develops pref-
erentially in porphyry Cu–Au deposits. Alteration-mineralization in lithocap is commonly
far more complex [48,49]. The Duobuza deposit protrudes in the center of the Duolong
district. Several porphyritic intrusions have been recognized based on field mapping and
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exploration drilling, two of which are host rocks for Cu–Au mineralization of the Duobuza
deposit, a granodiorite porphyry and a quartz diorite porphyry. Hydrothermal alteration
and mineralization patterns of the Duobuza deposit are typical of Cu–Au porphyry de-
posits around the world [50,51]. The mineralized intrusions are affected by an early potassic
alteration that is evident from the abundance of magnetite, K-feldspar, biotite and quartz,
followed by chlorite alteration and characterized by partial to complete replacement of
early potassic alteration minerals by chlorite and minor muscovite. Late sericitic alter-
ation occurs along structurally controlled zones and/or as irregular sericite–quartz–pyrite
replacement in altered zones. Most of the ore-grade Cu–Au mineralization at Duobuza
appears to have a spatial association with the potassic alteration, which is represented
by chalcopyrite, bornite and magnetite-bearing quartz veins as well as disseminations of
chalcopyrite, bornite and magnetite.

3. Methodology
3.1. Remote Sensing Data

Landsat TM/ETM data and ASTER data can be analyzed to obtain alteration zone
information from porphyry Cu deposits, including the Duolong ore district. TM/ETM
data from the Landsat sensor encompass six spectral bands, one panchromatic band, and
one thermal infrared band. ASTER data from the TERRA encompass nine spectral bands,
one rearview band, and five thermal infrared bands. ASTER data have a wide spectral
coverage, high spectral resolution, and are able to provide information for various fields of
application. For geological applications, owing to the higher number of shortwave infrared
bands (six) and thermal infrared bands (five) of ASTER compared with TM/ETM, ASTER
data can be used to distinguish various alteration minerals and mineral assemblages and
to examine alteration zonation. To obtain accurate spectral data, we used a field-portable
shortwave infrared spectrometer (Analytical Spectral Devices) and a portable infrared
mineral analyzer (ASD, Malvern Panalytical Ltd., Malvern, UK).

For this study, spectra of samples obtained from the ground surface were collected
using the FieldSpec3 instrument, with a wavelength range of 350–2500 nm. Fieldspec3 has
two fast-scanning and reflecting holographic diffraction gratings. Its spectral resolution
is 3 nm at 350–700 nm and 10 nm at 700–2500 nm. The analysis of alteration minerals
was performed using spectral measurements of surface samples in the horizontal and
vertical directions. ASTER data were bought from Pasco China Corporation, Beijing, China
in 2008. The scene number is ASTL1B 0704140516580707100089. The data acquisition
date is 14 April 2007. The spectral features and variations of alteration zonation were
analyzed based on the data collected using the portable instrument. According to these
characteristics, ASTER data were used to obtain alteration zonation information for the
porphyry Cu using PCA (Principal Component Analysis) and Ratio methods based on the
reflectivity of ASTER different wavebands [27,52–56].

3.2. Technical Flow

Alteration minerals and alteration zones are determined according to the spectra of
ground samples. ASTER data was selected as the RS data source. The values of each band
of ASTER data were compared according to the spectral alteration zonation of ground
samples. Based on altered mineral assemblages in different zones, different information
extraction methods were designed for each mineral. Ratio, slope, correction absorption,
and PCA were used to extract mineral anomalies, and these anomalies were combined to
extract alteration zonation. Finally, an RS alteration zoning model was built to interpret
multiple hydrothermal centers in Duolong ore district (Figure 2).
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3.3. Spectral Analysis of Ground Samples

Spectra were collected using a FieldSpec instrument. PimaView [57] software was
used to process the spectra. To investigate surface alteration zonation, 280 samples were
collected. Each sample was measured three times using the FieldSpec instrument, and each
spectrum was then analyzed for alteration minerals using PimaView software.

To obtain surface samples at the Duolong district, we collected metamorphic felds-
pathic quartz sandstone, granite porphyry, lithic quartz sandstone, gabbro, breccia, granite,
basaltic andesite, and quartz porphyry. Of these, 112 samples from the Duobuza deposit
and 168 samples from the Bolong deposit were sampled at 300 m intervals according to
variations in lithology and alteration (Figure 3).

Spectral reflectances of typical rock samples for each alteration zone, collected from the
land surface, were measured using an analytical spectral device (ASD) spectrometer with
2151 bands (350–2500 nm) in the field. The environments of all spectral measurements had
sunny and dry weather conditions to reduce the influence of water vapor as far as possible.
A contact probe with an internal light source was used to obtain spectra. Dark current
correction and white reference correction were made again before each measurement at a
new location (Figure 4a). All spectra were also resampled to match the ASTER VNIR–SWIR
bands (Figure 4b). Location of the samples is shown in Figure 3. The spectrum number
(No.) 2-3 and No. 3-5 were collected in the illite-hydromica zone; No. 8-6 and No. 1-10
were collected in the potassium zone; No. 7-5, No.7-6 and No.7-7 were collected in the
propylitic zone; No. 8-8 and No.5-10 were collected in the gossan.
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3.4. Remote Sensing of Alteration Minerals

The major alteration zones of the Duolong ore district include potassic silicification,
phyllic, prophylitic, illite–hydromica, and gossan zones [17,58]. Alteration minerals vary
according to zone, as follows: (i) orthoclase, muscovite, chlorite, and quartz in the potassic
silicification zone; (ii) muscovite, kaolinite(for substitute of halloysite), illite, and quartz
in the phyllic zone; (iii) calcite and chlorite in the propylitic zone; (iv) illite and montmo-
rillonite in the illite–hydromica zone; and (v) geothite in the gossan zone. The spectral
characteristics of all alteration minerals were analyzed over the SWIR and TIR bands and
then resampled to ASTER spectral responses [27–53,56] (Figure 5). The RS characteristics
of these minerals are provided in Table 1.
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Figure 5. Visible-shortwave infrared and thermal infrared characteristics of each zone of porphyry Cu deposit (resampled to
ASTER) [48–52]. Note: The spectra of K-feldspar, Halloysite, and Limonite from the USGS spectral library and wavelength
in units of µm.

Table 1. The characteristics of the alteration minerals.

Bands
ASTER Bands

VNIR SWIR TIR

Zones B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

Potassium
silicification

zone

Orthoclase H H H L L H L L - L(L) L H H

Muscovite L H L H L L - L L H H

Chlorite L H H L L H H - L -

Quartz H H H L L L(H) L H H

Phyllic zone

Mucovite L H L H L L - L L H H

kaolinite H L L L - L L H H

Illite H L L - L L H H

Quartz H H H L L L(H) L H H

Prophylitic
zone

Calcite H H L H H H H L

Chlorite L H H L L H H - L -

Illite-
hydromica

zone

Illite H L L - L L H H

Montmorillonite H H L L L L - L L H H(L)

Gossan Geothite L H L H H H H L
Note: “H” indicates a high value of reflectance or emissivity. “L” means a low value of reflectance or emissivity.
VNIR: The Visible and Near-Infrared; SWIR: The Short-Wave Infrared; TIR: The Thermal Infrared.
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3.5. Alteration Zones Information Extraction

According to the characteristics of alteration minerals (Table 1), we used a vari-
ety of techniques to analyze spectral information, including PCA, the ratio method, the
slope method, correlation absorption, polynomial equations, and the thermal and visible-
shortwave infrared data of ASTER. Among these methods, PCA and ratio are quoted from
Ninomiya and Crosta et al. [7,54,55]. Additionally, slope and correlation absorption are
from the ratio, in order to amplify the spectral characteristics of minerals. For the same
kinds of minerals, relevant information can be extracted by one method, which covers a
large range. By designing these methods to extract the intersection information, the results
are closer to the actual situation. Table 2 summarizes the main methods of information
extraction with respect to the spectral characteristics of each alteration mineral. Different
thresholds are used for each method in order to obtain a more suitable alteration range.
The results for each method are shown in Figure 6.

Table 2. The algorithm of information extraction of each alteration mineral of the Duolong ore district.

Methods
Ratio Slope Correlation Absorption PCA [7]Minerals

Quartz B11*B11/B10/B12 [55]

Chlorite B5/B8 (B5 − B8)/B5 (B4 − B9)/(B4 − B8) PCA1.3.4.8 PC4

Orthoclase

B7/B6
B11*B11/B10/B12

B12*B14*B14*B14/B13/
B13/B13/BA13 [54,55]

(B4 − B6)/B4 (B4 − B6)/(B4 − B7) PCA1.3.4.6 PC4

Muscovite B4/B6 (B4 − B6)/B4 (B4 − B6)/(B4 − B7) PCA1.3.4.6 PC4

Kaolinite B4/B6 (B4 − B6)/B4 (B4 − B6)/(B4 − B7) PCA1.3.4.6 PC4

Calcite (B6 + B7)/(2*B8)
B13/B14 [54,55] (B4 − B8)/B4 (B4 − B8)/(B4 − B6) PCA1.3.4.8 PC4

Illite (B7 + B5)/(B6 + B9) (B4 − B6)/B4 (B4 − B9)/(B4 − B6) PCA1.3.4.9 PC4

Geothite B3/B6

Montmorillonite (B7 + B5)/(B6 + B9) (B4 − B6)/B4 (B4 − B6)/(B4 − B7) PCA1.3.4.6 PC4

Note: B1 is first band of ASTER data. PCA: Principal Component Analysis. Some algorithms are given in experimental formula.

3.6. Application of Magnetic Anomalies

Hydrothermal alteration causes mineralogical changes in the host rocks of ore bod-
ies, and consequently, the original magnetic properties of these rocks could be strongly
modified [58]. In Duolong district, a high-precision magnetic survey was performed. From
the magnetic survey results, the porphyry Cu deposits were found to be in low positive
magnetic anomalies, of around 300–650 nT [43].
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4. Results and Analysis

According to analysis results of the spectra of surface samples using PimaView soft-
ware, the alteration mineral assemblage of the Duobuza and Bolong deposits comprises
kaolin, white-mica, smectite, chlorite, epidote, carbonate, but 10% of the samples are
invalid. The alteration types of surface samples include limonitization, propylitization,
chloritization, and sericitization (Figure 7).
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Figure 7. Frequency of alteretion minerals interpreted by surface spectra.

4.1. Horizontal Alteration Zonation

According to the frequency of minerals analyzed by spectra (Figure 7), muscovite,
chlorite, and calcite were used to divide the alteration zonation with respect to the horizon-
tal dimension because of high frequencies. The distribution of the main alteration minerals
in the alteration zones at the Duolong district is as follows: potassic silicification zone:
K-feldspar, kaolinite and muscovite; phyllic zone: kaolinite and muscovite; propylitic zone:
chlorite and calcite.

The outcome is therefore a semi-quantitative description of the alteration zonation.
The obtained results show that the potassic silicification zone is located mainly in the
northeast of the Duobuza deposit, whereas the phyllic zone is in the center of the deposit
and the propylitic zone is located in the periphery. In the Bolong deposit, the potassic
silicification zone occurs in the western part, and the phyllic and propylitic zones are found
in the southeastern part (Figure 3).

4.2. Remote Sensing Model

Alteration zonation information was extracted using superposition of minerals cor-
responding to each zone, including union information extracted using all methods, and
revealed the following: quartz, orthoclase, muscovite, and chlorite in the potassic silicifica-
tion zone; quartz, muscovite, halloysite, and illite in the phyllic zone; calcite and chlorite in
the propylitic zone; illite and montmorillonite in the illite–hydromica zone; and limonite in
the gossan zone. Results of the RS-based alteration zonation are shown in Figure 8.
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4.3. Field Validation

The alteration zones of Duolong ore district in Tibet were verified in the field (Table 3).
The corresponding results of the potassic zone, phyllic zone and propylitic zone as extracted
by RS are consistent with field (Figure 9). The main minerals in the potassic zone are
quartz and orthoclase, and some kaolinite. The main altered minerals in phyllic zone
are muscovite, halloysite, kaolinite and illite. Chlorite and calcite are the main altered
components of propylitic zone. These minerals are generally consistent with the altered
minerals analyzed by spectra. Additionally, the minerals composition and distribution are
basically consistent with the minerals extracted by RS.

Table 3. Field verification points.

Field No. Longitude Latitude Altered Rocks Alteration

D01 83.45036111 32.84075 Propylitic quartz sandstone Chloritization, Carbonation

D02 83.44861111 32.83725 Potassic quartz porphyry Potassium, Silicification

D03 83.44538889 32.83722222 Potassic quartz porphyry Potassium, Silicification

D04 83.34377778 32.73613889 Phyllic quartz sandstone Muscovitization, Kaolinization

D05 83.34375 32.73641667 Phyllic quartz sandstone Muscovitization, Kaolinization

D06 83.34116667 32.74077778 Phyllic quartz sandstone Muscovitization, Kaolinization

D07 83.33833333 32.74188889 Phyllic quartz sandstone Muscovitization, Kaolinization

D08 83.33583333 32.74344444 Phyllic quartz porphyry Muscovitization, Kaolinization

D09 83.33947222 32.73866667 Phyllic quartz porphyry Muscovitization, Kaolinization

D10 83.29894444 32.72783333 Phyllic quartz sandstone Muscovitization, Kaolinization

D11 83.39752778 32.807 Propylitic quartz sandstone Chloritization, Carbonation

D12 83.39363889 32.812 Propylitic quartz sandstone Chloritization, Carbonation

D13 83.39238889 32.81647222 Propylitic quartz sandstone Chloritization, Carbonation

D14 83.38902778 32.82333333 Propylitic quartz sandstone Chloritization, Carbonation

D15 83.38833333 32.81644444 Propylitic quartz sandstone Chloritization, Carbonation

D16 83.40566667 32.80652778 Potassic quartz sandstone Potassium, Silicification

D17 83.41097222 32.81058333 Propylitic quartz sandstone Chloritization, Carbonation

D18 83.44463889 32.83075 Propylitic quartz sandstone Chloritization, Carbonation

D19 83.43777778 32.8275 Propylitic quartz sandstone Chloritization, Carbonation

D20 83.44347222 32.83641667 Propylitic quartz porphyry Chloritization, Carbonation

D21 83.70294444 32.79388889 Phyllic schist Muscovitization, Kaolinization

D22 83.54788889 32.78622222 Propylitic quartz sandstone Chloritization, Carbonation

D23 83.56686111 32.78875 Phyllic quartz porphyry Muscovitization, Kaolinization

D24 83.58688889 32.82641667 Potassic quartz porphyry Potassium, Silicification
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5. Discussion

Porphry Cu deposits are a veinlet type of sulfide copper deposit formed by a post mag-
matic medium high temperature hydrothermal solution of potash and hydrogen altered
mineral [17,59]. Ideal porphyry Cu deposits are typically related to hydrothermal alteration
zones, such as potassic, phyllic and propylitic zones [60]. Hydrothermal alteration minerals
with diagnostic spectral absorption properties in VNIR, SWIR, and TIR can be identified
by ASTER RS data [17,21,23,26,37,61–66]. The core of the potassium zone is surrounded by
phyllic and propylitic zones. The phyllic zone is characterized by sericite, which has an
Al-OH absorption feature at 2.20 µm, coinciding with ASTER band 6. The mineral assem-
blages of the outer propylitic zone include chlorite, epidote, and calcite have absorption
features at 2.35 µm, coinciding with ASTER band 8 [2,17,21,63,67–69]. ASTER provides
useful data for studying mapping hydrothermal alteration mineral zones associated with
porphyry copper. Several spectral mineralogic indices, using ASTER VNIR, SWIR, and TIR
bands, were proposed [70–80]. These indices provided accurate spectral information for
minerals [17]. The PCA method can extract the characteristic spectral information of key
hydrothermal alteration mineral end-members [76]. These methods can be used to extract
information of minerals or mineral assemblages.

Previous studies indicated small intermediate–felsic porphyritic intrusions and Cu-Au
sulfide ores in Duolong ore district were from 120 to 110 Ma [45,46], which was accompa-
nied by large-scale mineralization. In fact, aluminum hydroxyl (Al-OH) and magnesium
hydroxyl (Mg-OH) were important prospecting indicators [36–39]. The advantages of
the RS alteration model of porphyry copper deposits mainly correspond with alteration
zones of porphyry copper deposits. The study indicated multiple hydrothermal ore-
forming centers with obvious signs. The magma involved in the formation of the porphyry
copper deposit is inferred to have been intermediate–felsic in composition [38], forming
hypabyssal or ultra-hypabyssal rocks and producing altered minerals. The diagnostic spec-
tral absorption features of hydroxyl-bearing minerals including clay and sulfate groups,
as well as carbonate minerals due to vibrational processes of fundamental absorptions
of Al-OH, Mg-OH, and CO3 groups in the SWIR and TIR regions of the electromagnetic
spectrum [2,17,67,68,77]. Some spectra of surface samples were collected. These spectra
indicate spectral features of kaolin, white-mica, chlorite, epidote, carbonate and smectite by
PimaView software analysis. These mineral assemblages belong to the alteration minerals
of porphyry Cu deposits [60]. According to the combinations of alteration minerals in each
alteration zone, the information extracted by RS corresponds to the characteristics of quartz,
potash feldspar, kaolin, white-mica, chlorite, epidote, carbonate. In these samples, quartz,
potash feldspar, biotite, anhydrite, halloysite and illite cannot be identified. Therefore,
when the information of the alteration zones was extracted using RS image, we had to
recommend the reference spectra [48–52]. Our ASTER RS-based alteration zonation model
for the Duolong ore district should help to guide mineral exploration in the region. The
alteration zonation model shows that the magmatic rock mass occupies the center of the
deposit, the near periphery comprises the sericite zone, and the distal periphery contains
the propylitic zone, with the illite–hydromica zone intersecting across these zones. The
gossan zone is located in the periphery of the propylitic zone. During the ascent of the
magma that was emplaced in the hypabyssal subsurface in the deposit area, the crust
became domed, and fractures developed, providing channels for magmatic–hydrothermal
fluids to migrate. The country rock was altered to form the potassic silicification zone.
Biotite in the alteration zone was altered to chlorite, and K-feldspar was altered to mus-
covite and sericite. At a distance from the magmatic body, sericitization and silicification
occurred in the surrounding rock outside the potassic silicified zone, with the inner part
of this zone being characterized by sericite, illite, kaolinite, and halloysite. Further out,
the illite–hydromica zone and the gossan zone constitute the propylitic zone, containing
predominantly chlorite and calcite, and the sericitization zone. These zones were largely
formed by the replacement and sulfurization of iron-bearing materials in volcanic rocks of
the Early Cretaceous Meiriche Formation, by sulfur-containing magmatic–hydrothermal
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fluids (Figure 10). Meanwhile, hydrothermal magnetite coexists with chalco-pyrite at
Duolong ore district, consistent with the mineralization characteristics of porphyry Cu–Au
deposit [78–80]. Positive and low magnetic anomalies indicate the location of metallogenic
porphyry (Figure 11). Here, we used RS to extract alteration zonation information for the
Duolong porphyry copper ore district, based on geological information and the spectra
of altered rocks of the deposit, after which we constructed a model of the zonation. Our
model can be applied to optimizing ore prospecting target areas in the deposit. The metals
and ore-forming fluids of Porphyry deposits in Duolong ore district are more likely to be
released from magma chamber [45,46].
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The RS-based model of alteration zonation constructed for the Duolong ore district was
integrated with various prospecting factors in the western part of the Bangong–Nujiang
metallogenic belt. Factors related to prospecting include magmatic rock type, country
rock, geological structure, alteration zonation, geophysical properties, and geochemical
characteristics [43]. These factors were superposed to evaluate prospectivity using GIS
software. The predicted areas were located in typical RS alteration zones, in a favorable
metallogenic geological position, and have a high geochemical value area of Cu or Au, as
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well as positive and low magnetic anomalies. Seven target areas were selected for porphyry
Cu ore-deposit prospecting, distributed along the large-scale structural belt of the Tiegelong
Mountains (Figure 11). Of the seven areas, six were class A target areas and one was a class
B target area. A class A target area generally has outcrops of granodiorite porphyry and
favorable geochemistry, alteration zonation, and magnetic anomalies, whereas a class B
target area lacks one or two of these favorable characteristics.

6. Conclusions

We investigated alteration zonation and prospectivity in the Duolong porphyry copper
ore district by analyzing the remote sensing (RS) spectra of altered rock on the surface
and integrating this information with the deposit geology of the Duolong ore district. We
established the spectral characteristics of altered minerals and distinguished alteration
zones in the deposit. The mineralization of the deposit is magmatic–hydrothermal in origin
and alteration zonation extends from the center of the deposit, where the magmatic body
was emplaced into country rock, to the periphery. From the center to the periphery, with
decreasing temperatures of magmatic–hydrothermal fluids from medium–high to medium–
low, the order of alteration zoning is as follows: (i) potassic silicified zone (containing
biotite and chlorite); (ii) sericitization zone (Sericite, illite and kaolinite); (iii) argillization
zone (kaolinite, halloysite, chlorite, illite, and montmorillonite); and (iv) propylitic zone
(carbonate, chlorite epidote, and montmorillonite).

In this study, an ASTER RS alteration zoning model was established based on ground
spectral alteration zoning results. The methods include PCA (Principal Component Anal-
ysis), Ratio, and Slope methods. RS-based alteration zonation was developed based on
the intersection of maps, resultant from the ratio, slope, extraction information of different
minerals obtained through PCA methods. An RS-based alteration zonation model of the
Duolong copper porphyry district was constructed by combining alteration-mineral and
zone-spectral information with the mineral and geological characteristics of the deposit.
This suggests that the model provides a suitable tool for establishing alteration zonation
and, when combined with other information, for predicting prospectivity. Combining
the RS-based alteration-zonation information with prospecting factors such as magnetic
anomaly and geological structure information, allowed target areas to be established for the
Duolong ore district. This method is applicable to an exploration of other similar porphyry
copper deposits. In future, we will identify minerals using hyperspectral embedded with
an unmanned aerial vehicle (UAV). A three-dimensional prospecting method will be built
by satellite RS, UAV hyperspectral and ground and boreholes.
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