Variability and Formation Mechanism of Polynyas in Eastern Prydz Bay, Antarctica
Abstract
:1. Introduction
2. Data and Methods
2.1. AMSR-E SIC Data
2.2. MODIS Visible Images
2.3. EnviSat ASAR Images
2.4. ECMWF Reanalysis Data
2.5. Sea Ice Motion Vectors
3. Results
3.1. Locations of Polynyas in Eastern Prydz Bay
3.2. Variability of Polynya Area in Eastern Prydz Bay
3.3. Relationship between Polynya Area and Wind Time Series
3.4. Ice Barriers of the Polynyas in Eastern Prydz Bay
4. Discussion
4.1. Relationship between Small Icebergs and Fast Ice
4.2. Formation and Categories of Ice Barriers in the FLBP
4.3. Activity and Influence of the Group of Giant Icebergs
4.4. Relationship between the Ice Barrier and Wind Direction with the Maximum Correlation Coefficient for the Wind and Polynya Area
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, S.D.; Muench, R.D.; Pease, C.H. Polynyas and Leads: An Overview of Physical Processes and Environment. J. Geophys. Res. 1990, 95, 9461. [Google Scholar] [CrossRef]
- Morales Maqueda, M.A.; Willmott, A.J.; Biggs, N.R.T. Polynya Dynamics: A Review of Observations and Modeling. Rev. Geophys. 2004, 42, RG1004. [Google Scholar] [CrossRef] [Green Version]
- Barber, D.G.; Massom, R.A. Chapter 1 The Role of Sea Ice in Arctic and Antarctic Polynyas. In Polynyas: Windows to the World; Elsevier: Amsterdam, The Netherlands, 2007; Volume 74, pp. 1–54. [Google Scholar]
- Markus, T.; Kottmeier, C.; Fahrbach, E. Ice Formation in Coastal Polynyas in the Weddell Sea and Their Impact on Oceanic Salinity. Antarct. Sea Ice Phys. Process. Interact. Var. 1998, 74, 273–292. [Google Scholar]
- Renfrew, I.A.; King, J.C. Coastal Polynyas in the Southern Weddell Sea: Variability of the Surface Energy Budget. J. Geophys. Res. 2002, 107, 16-1–16-22. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Ohshima, K.I.; Nihashi, S. Mapping of Sea Ice Production for Antarctic Coastal Polynyas. Geophys. Res. Lett. 2008, 35, L07606. [Google Scholar] [CrossRef]
- Williams, G.D.; Aoki, S.; Jacobs, S.S.; Rintoul, S.R.; Tamura, T.; Bindoff, N.L. Antarctic Bottom Water from the Adélie and George V Land Coast, East Antarctica (140–149° E). J. Geophys. Res. 2010, 115, C04027. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Fukamachi, Y.; Williams, G.D.; Nihashi, S.; Roquet, F.; Kitade, Y.; Tamura, T.; Hirano, D.; Herraiz-Borreguero, L.; Field, I.; et al. Antarctic Bottom Water Production by Intense Sea-Ice Formation in the Cape Darnley Polynya. Nat. Geosci. 2013, 6, 235–240. [Google Scholar] [CrossRef]
- Rintoul, S.R. On the Origin and Influence of Adélie Land Bottom Water. In Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, Antarctic Research Series; 2013; Volume 75, pp. 151–171. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/AR075p0151?__cf_chl_jschl_tk__=aQlZPFJJjGcwi5XD4DmzsYURfJctSBdl.Blfpiiwmw4-1639469933-0-gaNycGzNDz0 (accessed on 8 December 2021).
- Williams, G.D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K.I.; Fukamachi, Y.; Fraser, A.D.; Gao, L.; Chen, H.; McMahon, C.R.; et al. The Suppression of Antarctic Bottom Water Formation by Melting Ice Shelves in Prydz Bay. Nat. Commun. 2016, 7, 12577. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.R.; Zhaoqian, D.; Kerry, K.R.; Wright, S. Water Masses and Circulation in the Region of Prydz Bay, Antarctica. Deep Sea Res. Part A Oceanogr. Res. Pap. 1984, 31, 1121–1147. [Google Scholar] [CrossRef]
- Yabuki, T.; Suga, T.; Hanawa, K.; Matsuoka, K.; Kiwada, H.; Watanabe, T. Possible Source of the Antarctic Bottom Water in the Prydz Bay Region. J. Oceanogr. 2006, 62, 649–655. [Google Scholar] [CrossRef]
- Schaffer, J.; Timmermann, R.; Arndt, J.E.; Kristensen, S.S.; Mayer, C.; Morlighem, M.; Steinhage, D. A Global, High-Resolution Data Set of Ice Sheet Topography, Cavity Geometry, and Ocean Bathymetry. Earth Syst. Sci. Data 2016, 8, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Massom, R.A.; Harris, P.T.; Michael, K.J.; Potter, M.J. The Distribution and Formative Processes of Latent-Heat Polynyas in East Antarctica. Ann. Glaciol. 1998, 27, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Arrigo, K.R. Phytoplankton Dynamics within 37 Antarctic Coastal Polynya Systems. J. Geophys. Res. 2003, 108, 3271. [Google Scholar] [CrossRef]
- Markus, T.; Burns, B.A. A Method to Estimate Subpixel-Scale Coastal Polynyas with Satellite Passive Microwave Data. J. Geophys. Res. 1995, 100, 4473. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Markus, T.; Cavalieri, D.J.; Nihashi, S.; Hirasawa, N. Estimation of Thin Ice Thickness and Detection of Fast Ice from SSM/I Data in the Antarctic Ocean. J. Atmos. Ocean. Technol. 2007, 24, 1757–1772. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Fraser, A.D.; Williams, G.D. Sea Ice Production Variability in Antarctic Coastal Polynyas. J. Geophys. Res. Ocean. 2016, 121, 2967–2979. [Google Scholar] [CrossRef] [Green Version]
- Nihashi, S.; Ohshima, K.I. Circumpolar Mapping of Antarctic Coastal Polynyas and Landfast Sea Ice: Relationship and Variability. J. Clim. 2015, 28, 3650–3670. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I.; Tamura, T. Sea-Ice Production in Antarctic Coastal Polynyas Estimated From AMSR2 Data and Its Validation Using AMSR-E and SSM/I-SSMIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3912–3922. [Google Scholar] [CrossRef] [Green Version]
- Herraiz-Borreguero, L.; Church, J.A.; Allison, I.; Peña-Molino, B.; Coleman, R.; Tomczak, M.; Craven, M. Basal Melt, Seasonal Water Mass Transformation, Ocean Current Variability, and Deep Convection Processes along the Amery Ice Shelf Calving Front, East Antarctica. J. Geophys. Res. Ocean. 2016, 121, 4946–4965. [Google Scholar] [CrossRef] [Green Version]
- Kaleschke, L.; Lüpkes, C.; Vihma, T.; Haarpaintner, J.; Bochert, A.; Hartmann, J.; Heygster, G. SSM/I Sea Ice Remote Sensing for Mesoscale Ocean-Atmosphere Interaction Analysis. Can. J. Remote Sens. 2001, 27, 526–537. [Google Scholar] [CrossRef]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea Ice Remote Sensing Using AMSR-E 89-GHz Channels. J. Geophys. Res. 2008, 113, C02S03. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Shi, J.; Zheng, S. Temporal and Spatial Variation of the Mackenzie Bay Polynya, Antarctica and Its Main Impact Factors. Period. Ocean Univ. China 2012, 42, 1–9. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 29 September 2020).
- Tschudi, M.; Meier, W.N.; Stewart, J.S.; Fowler, C.; Maslanik, J. Polar Pathfinder Daily 25 Km EASE-Grid Sea Ice Motion Vectors, Version 4. [2002–2011]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Guo, G.; Shi, J.; Gao, L.; Tamura, T.; Williams, G.D. Reduced Sea Ice Production Due to Upwelled Oceanic Heat Flux in Prydz Bay, East Antarctica. Geophys. Res. Lett. 2019, 46, 4782–4789. [Google Scholar] [CrossRef] [Green Version]
- Herraiz-Borreguero, L.; Coleman, R.; Allison, I.; Rintoul, S.R.; Craven, M.; Williams, G.D. Circulation of Modified Circumpolar Deep Water and Basal Melt beneath the Amery Ice Shelf, East Antarctica. J. Geophys. Res. Ocean. 2015, 120, 3098–3112. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Shi, J. Variations In Coastal Polynyas In The Alaskan Chukchi Sea And Major Influencing Factors. Chin. J. Polar Res. 2015, 27, 379–391. [Google Scholar]
- Massom, R.A.; Hill, K.L.; Lytle, V.I.; Worby, A.P.; Paget, M.J.; Allison, I. Effects of Regional Fast-Ice and Iceberg Distributions on the Behaviour of the Mertz Glacier Polynya, East Antarctica. Ann. Glaciol. 2001, 33, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Nakata, K.; Ohshima, K.I.; Nihashi, S.; Kimura, N.; Tamura, T. Variability and Ice Production Budget in the Ross Ice Shelf Polynya Based on a Simplified Polynya Model and Satellite Observations. J. Geophys. Res. Ocean. 2015, 120, 6234–6252. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S. Seasonal and Spatial Variations of Iceberg Drift off Dronning Maud Land, Antarctica, Detected by Satellite Scatterometers. J. Oceanogr. 2003, 59, 629–635. [Google Scholar] [CrossRef]
- Mazur, A.K.; Wåhlin, A.K.; Kalén, O. The Life Cycle of Small-to Medium-Sized Icebergs in the Amundsen Sea Embayment. Polar Res. 2019, 38, 3313. [Google Scholar] [CrossRef] [Green Version]
- Rackow, T.; Wesche, C.; Timmermann, R.; Hellmer, H.H.; Juricke, S.; Jung, T. A Simulation of Small to Giant Antarctic Iceberg Evolution: Differential Impact on Climatology Estimates. J. Geophys. Res. Ocean. 2017, 122, 3170–3190. [Google Scholar] [CrossRef]
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|
Yearly average area | ||||||||||
BaP | 6009 | 5172 | 5370 | 5521 | 6681 | 3489 | 5362 | 5449 | 6343 | 5488 |
DaP | 4872 | 3139 | 4021 | 4957 | 5068 | 3655 | 4873 | 2184 | 4185 | 4106 |
FLBP | 4579 | 3758 | 5285 | 4414 | 6298 | 5657 | 5275 | 2663 | 3931 | 4651 |
D15P | 1548 | 1439 | 1297 | 1269 | 1942 | 1612 | 867 | 1107 | 1321 | 1378 |
EPBPS | 17,008 | 13,509 | 15,972 | 16,161 | 19,989 | 14,413 | 16,377 | 11,403 | 15,780 | 15,624 |
Daily maximum area | ||||||||||
BaP | 14,384 | 13,573 | 12,541 | 13,274 | 14,808 | 12,276 | 12,162 | 13730 | 14,462 | 13,468 |
DaP | 15,726 | 13,081 | 13,193 | 10,865 | 18,427 | 17,466 | 12,899 | 7145 | 17,308 | 14,012 |
FLBP | 22,828 | 16,974 | 18,281 | 16,376 | 17,083 | 16,661 | 19,279 | 14,513 | 18,278 | 17,808 |
D15P | 5586 | 4562 | 3840 | 5132 | 5057 | 4940 | 3304 | 3652 | 5471 | 4616 |
EPBPS | 58,525 | 39,044 | 43,503 | 38,737 | 52,646 | 40,394 | 40,338 | 29,532 | 54,560 | 44,142 |
Ratio of maximum daily area to yearly average area | ||||||||||
BaP | 2.39 | 2.62 | 2.34 | 2.40 | 2.22 | 3.52 | 2.27 | 2.52 | 2.28 | 2.51 |
DaP | 3.23 | 4.17 | 3.28 | 2.19 | 3.64 | 4.78 | 2.65 | 3.27 | 4.14 | 3.48 |
FLBP | 4.99 | 4.52 | 3.46 | 3.71 | 2.71 | 2.95 | 3.65 | 5.45 | 4.65 | 4.01 |
D15P | 3.61 | 3.17 | 2.96 | 4.04 | 2.60 | 3.06 | 3.81 | 3.30 | 4.14 | 3.41 |
EPBPS | 3.44 | 2.89 | 2.72 | 2.40 | 2.63 | 2.80 | 2.46 | 2.59 | 3.46 | 2.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Shi, J. Variability and Formation Mechanism of Polynyas in Eastern Prydz Bay, Antarctica. Remote Sens. 2021, 13, 5089. https://doi.org/10.3390/rs13245089
Hou S, Shi J. Variability and Formation Mechanism of Polynyas in Eastern Prydz Bay, Antarctica. Remote Sensing. 2021; 13(24):5089. https://doi.org/10.3390/rs13245089
Chicago/Turabian StyleHou, Saisai, and Jiuxin Shi. 2021. "Variability and Formation Mechanism of Polynyas in Eastern Prydz Bay, Antarctica" Remote Sensing 13, no. 24: 5089. https://doi.org/10.3390/rs13245089
APA StyleHou, S., & Shi, J. (2021). Variability and Formation Mechanism of Polynyas in Eastern Prydz Bay, Antarctica. Remote Sensing, 13(24), 5089. https://doi.org/10.3390/rs13245089