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Abstract: Building-change detection underpins many important applications, especially in the
military and crisis-management domains. Recent methods used for change detection have shifted
towards deep learning, which depends on the quality of its training data. The assembly of large-scale
annotated satellite imagery datasets is therefore essential for global building-change surveillance.
Existing datasets almost exclusively offer near-nadir viewing angles. This limits the range of changes
that can be detected. By offering larger observation ranges, the scroll imaging mode of optical
satellites presents an opportunity to overcome this restriction. This paper therefore introduces
S2Looking, a building-change-detection dataset that contains large-scale side-looking satellite images
captured at various off-nadir angles. The dataset consists of 5000 bitemporal image pairs of rural
areas and more than 65,920 annotated instances of changes throughout the world. The dataset
can be used to train deep-learning-based change-detection algorithms. It expands upon existing
datasets by providing (1) larger viewing angles; (2) large illumination variances; and (3) the added
complexity of rural images. To facilitate the use of the dataset, a benchmark task has been established,
and preliminary tests suggest that deep-learning algorithms find the dataset significantly more
challenging than the closest-competing near-nadir dataset, LEVIR-CD+. S2Looking may therefore
promote important advances in existing building-change-detection algorithms.

Keywords: change detection; remote sensing; benchmark dataset; neural networks

1. Introduction

Building-change detection underpins a range of applications in domains such as urban
expansion monitoring [1], land use and cover type change monitoring [2,3], and resource
management and evaluation [4]. It is of particular importance in the contexts of military
surveillance and crisis management [5], where changes in buildings may be indicative of
a developing threat or areas in which to focus disaster relief. Change detection involves
identifying changes and differences in an object or phenomenon at different times [6].
Remote-sensing-based change detection uses multitemporal remote-sensing image data
to analyze the same area in order to identify changes in the state information of ground
features according to changes in the images.

Many change-detection methods have been proposed over the years. Traditional
methods tended to be either pixel-based [7,8] or object-based [9–11]. Pixel-based change-
detection methods involve pixel by pixel analysis of spectral or textural information of input
image pairs followed by threshold-based segmentation to obtain the detection results [7,8].
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Object-based change-detection methods similarly rely on spectral and textural information,
but also consider other cues, such as structural and geometric details [9,10]. However,
while these methods can effectively extract geometric structural details and set thresholds,
they are easily influenced by variations in image detail and quality. This undermines their
accuracy [12]. In recent years, the principal methods used for remote-sensing-based change
detection have therefore shifted towards deep learning. This reflects a wider revolution
in computer vision research [13]. Change-detection methods based on deep-learning
include dual-attention fully convolutional Siamese networks (DASNet) [14], image fusion
networks (IFN) [15], end-to-end change detection based on UNet++ (CD-UNet++) [13], fully
convolutional Siamese networks based on concatenation and difference (FC-Siam-Conc
and FC-Siam-Diff) [16], and dual-task constrained deep Siamese convolutional networks
(DTCDSCN) [17]. Each of these reduces the risk of error by eliminating the need for
preprocessing of the images [18].

Although deep-learning-based change-detection methods generally outperform other
change-detection methods, their performance is heavily dependent on the scale, quality,
and completeness of the datasets they use for training. A strong demand has therefore
emerged for large-scale and high-quality change-detection datasets. A number of open
datasets for remote-sensing change detection have been developed to meet this demand,
such as the Change Detection Dataset [19], the WHU Building Dataset [1], the SZTAKI
Air Change Benchmark Set (SZTAKI) [20,21], the OSCD dataset (OSCD) [16], the Aerial
Imagery Change Detection dataset (AICD) [22], and the LEVIR-CD dataset [23], which
was released last year. In addition, the privacy concerns can be addressed by privacy-
preserving deep-learning-based techniques while providing the real-world data from
satellite images [24].

However, most of these change-detection datasets are based on near-nadir imagery.
While this is sufficient for certain kinds of change detection, the observed building features
in these datasets are relatively simple, limiting the scope for change-detection algorithms
to serve a comprehensive range of practical applications.

A potential solution to this constraint is offered by the scroll imaging mode adopted
by the cameras in a number of modern optical satellites. Figure 1 shows the basic way in
which this works.

Off-Nadir Angle

Orbit

Off-Nadir Obervation

On-Nadir Obervation

Scroll

Figure 1. Scroll imaging. The satellite scrolls during the imaging process and obtains side-looking
remote-sensing images.

In outline, as an optical satellite pursues its orbit, the onboard high-resolution cameras
are able to scroll so that they can capture multiple images of the same object from different
angles, rather than solely from overhead [25]. Unlike near-nadir satellite imagery, side-
looking imagery can capture more relevant details of ground objects and yield more
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potentially useful information. Scroll imaging endows surveillance satellites with a better
imaging range and a shorter revisit period than conventional mapping satellites [26]. For
example, the GF-1 satellite has a revisit period of 41 days, together with 4 days for ±35◦

off-nadir angles; the GF-2 satellite has a revisit period of 69 days, together with 5 days for
±35◦ off-nadir angles.

To date, the only study that has made a serious effort to develop a dataset consisting
of multiangle satellite-derived images of specific objects in this way is SpaceNet MVOI [27].
However, this dataset is not focused on change detection, so it does not offer bitemporal
images, and only contains 27 views from different angles at a single geographic location.

In this paper, we therefore introduce S2Looking, a building-change-detection dataset
that contains large-scale side-looking satellite images captured at various off-nadir angles.
The dataset consists of 5000 bitemporal pairs of very-high-resolution (VHR) registered
images collected from the GaoFen (GF), SuperView (SV) and BeiJing-2 (BJ-2) satellites from
2017 to 2020. The imaged areas cover a wide variety of globally-distributed rural areas,
with very different characteristics, as can be seen in Figure 2. The dataset shown in Figure 2
contains various scenes from all over the world, including villages, farms, villas, retail
centers, and industrial areas, which relate to each row above, respectively. Each image in
the pairs is 1024× 1024 with an image resolution of 0.5∼0.8 m/pixels. The image pairs in
the dataset are converted from the original TIFF format with 16 bit to PNG format with
8 bit. The pairs are accompanied by 65,920 expert-based annotations of changes and two
label maps that separately indicate newly built and demolished building regions for each
sample in the dataset. The side-view imaging and complex rural scenes in the dataset
present whole new challenges for change-detection algorithms by making the identification
and matching of buildings notably more difficult. Placing higher requirements on an
algorithm’s robustness by confronting it with more complex ground targets and imaging
conditions increases its practical value if it can successfully meet such challenges. Thus,
S2Looking offers a whole new resource for the training of deep-learning-based change-
detection algorithms. It significantly expands upon the degree of richness offered by
available datasets, by providing (1) larger viewing angles; (2) large illumination variances;
and (3) the added complexity of the characteristics encountered in rural areas. It should
also be noted that algorithms trained on S2Looking are likely to be better able to deal with
other forms of aerially-acquired imagery, for instance by aircraft, because such images
present similarly offset viewing angles. To facilitate use of the dataset, we have established
a benchmark task involving the pixel-level identification of building changes in bitemporal
images. We have also conducted preliminary tests of how existing deep-learning algorithms
might perform when using the dataset. When this was compared with their performance
on the closest-competing dataset, LEVIR-CD+, which is based on near-nadir images, the
results revealed that S2Looking was substantially more challenging. This suggests it has
the potential to induce step-change developments in building-change-detection algorithms
that seek to address the challenges it presents.

In the next two subsections, we discuss work relating to change detection based on
remote-sensing images and change-detection datasets, with the latter playing an important
role in the analysis and processing required for the prior.
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Figure 2. Samples from the S2Looking dataset. Images 1 and 2 in Figure 2 are bitemporal remote-
sensing images, while Labels 1 and 2 are the corresponding annotation maps. Labels 1 and 2 indicate
pixel-precise newly built and demolished areas of buildings, respectively.

1.1. Change Detection Methods

Traditional change-detection methods were originally either pixel-based [7,8] or object-
based [9–11]. Traditional methods of change detection in remote-sensing images are
designed on the basis of handcrafted features and supervised classification algorithms.
These methods were capable of extracting geometric structural features from images and
then applying thresholds that would indicate some kind of change when they were cross-
compared. However, as pointed out in [12], these kinds of methods are very susceptible to
variations in the images and their quality, making their accuracy questionable. However,
with the rapid development of computer hardware and artificial intelligence, deep-learning-
based methods have also been widely studied and applied. When methods based on deep
learning began to hold sway in image processing, it became apparent that they could be
used to address these issues, leading to their rapid adoption in change detection.



Remote Sens. 2021, 13, 5094 5 of 20

Deep-learning-based change detection can be roughly divided into metric-based
methods and classification-based methods. Metric-based methods involve learning a
parameterized embedding space where there is a large distance between the changed
pixels and a small distance between the unchanged pixels. A change map can then be
obtained by calculating the distances between embedded vectors at different times in the
same position. Zhan et al. [28] used a deep Siamese fully convolutional network with
weight sharing to learn the embedding space and extract features from images captured
independently at different times. Saha et al. [29] proposed an unsupervised deep change
vector analysis method based on a pretrained convolutional neural network (CNN) and
contrastive/triplet loss functions [30,31]. Chen et al. [14] proposed DASNet to overcome
the influence of pseudo change information in the recognition process. Chen et al. [23]
proposed a spatiotemporal attention neural network (STANet) based on the FCN-network
(STANet-Base). This enabled them to produce two improved models with self-attention
modules; one with a basic spatiotemporal attention module (STANet-BAM), the other with
a pyramid spatiotemporal attention module (STANet-PAM).

Classification-based methods typically use CNNs to learn the mapping from bitem-
poral data to develop a change probability map that classifies changed categories in a
pixelwise fashion. A changed position has a higher score than an unchanged position.
Zhang et al. [15] proposed the IFN model, which relies on a deep supervised differ-
ence discrimination network (DDN) to detect differences in the proposed image features.
Peng et al. [13] developed an improved automatic coding structure based on the UNet++
architecture and proposed an end-to-end detection method with a multilateral fusion
strategy. Daudt et al. [16,32] proposed a fully convolutional early fusion (FC-EF) model,
which concatenates image pairs before passing them through a UNet-like network. They
also developed the FC-Siam-Conc and FC-Siam-Diff models, which concatenate image
pairs after passing them through a Siamese network structure. Liu et al. [17] proposed
a dual-task constrained deep Siamese convolutional network DTCDSCN, within which
spatial and channel attention mechanisms are able to obtain more discriminatory features.
This network also incorporates semantic segmentation subnetworks for multitask learning.
Chen et al. [33] proposed a simple yet effective change-detection network (CDNet) that
uses a deep Siamese fully convolutional network as the feature extractor and a shallow
fully convolutional network as the change classifier for feature differences in the images.
Very recently, Chen et al. [34] proposed an efficient transformer-based model (BiT), which
leverages a transformer to exploit the global context within a token-based space, thereby
enhancing the image features in the pixel space.

The main difference between metric-based and classification-based approaches is the
network structure. A classification-based approach offers more diverse choices than a
metric-based one. For example, the former mostly makes use of a late fusion architecture,
where the bitemporal features are first extracted and then compared to obtain the change
category. The latter, however, can make use of both late and early fusion. As a result,
classification-based methods are more commonly used than metric-based methods. In
terms of the loss function, the former usually uses contrastive loss, which is designed
for paired bitemporal feature data, while the latter uses cross-entropy loss for the fused
features. Overall, deep learning approaches are very robust when it comes to variability
in the data, but one of their key drawbacks is that they are only as good as the datasets
that they use for training [35–37]. This places a heavy emphasis upon the development of
high-quality and comprehensive datasets, with change detection being no exception.

1.2. Change Detection Datasets

There are many large-scale benchmark datasets available for detection, recognition,
and segmentation based on everyday images. These include ImageNet [38], COCO [39],
PIE [40], MVTec AD [41], Objects365[42], WildDeepfake [43], FineGym [44], and ISIA Food-
500 [45]. There are also large-scale datasets containing satellite and aerial imagery, such
as ReID [46], which contains 13 k ground vehicles captured by unmanned aerial vehicle
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(UAV) cameras, and MOR-UAV [47], which consists of 30 UAV videos designed to localize
and classify moving ground objects. WHU [48] consists of thousands of multiview aerial
images for multiview stereo (MVS) matching tasks. DeepGlobe [49] provides three satellite
imagery datasets, one for building detection, one for road extraction, and one for land-cover
classification. xBD [50] and Post-Hurricane [51] consist of postdisaster remote-sensing
imagery for building damage assessment. SensatUrban [52] contains urban-scale labeled
3D point clouds of three UK cities for fine-grained semantic understanding. FAIR1M [53]
provides more than 1 million annotated instances labeled with their membership in 5 cat-
egories and 37 subcategories, which makes it the largest dataset for object detection in
remote-sensing images presented so far. The stereo satellite imagery [54] and light detec-
tion and ranging (LiDAR) point clouds [55] provide the base data for the 3D city modeling
technology. However, in the above datasets, each area is covered by only a single satellite
or aerial image. Change-detection models need to be trained on datasets consisting of
bitemporal image pairs, which typically correspond to different sun/satellite angles and
different atmospheric conditions.

In Table 1, we present the statistics relating to existing change-detection datasets,
together with those for our S2Looking dataset. It can be seen that SZ-TAKI [20,21] contains
12 optical aerial image pairs. These focus on concerns such as building changes and the
planting of forests. OSCD [16] focuses on urban regions and includes 24 multispectral satel-
lite image pairs. Unlike other datasets, AICD [22] is a synthetic change-detection dataset
containing 500 image pairs. The LEVIR-CD dataset [23] consists of 637 manually-collected
image patch pairs from Google Earth. Its recently expanded version, LEVIR-CD+, contains
985 pairs. The Change Detection Dataset [19] is composed of 11 satellite image pairs. The
WHU Building Dataset [1] consists of just one max-width aerial image collected from a
region that suffered an earthquake and was then rebuilt in the following years. Our own
dataset, S2Looking, contains 5000 bitemporal pairs of rural images. Generally, S2Looking
has the most image pairs; WHU has the largest size and best resolution; S2Looking offers
the most change instances and change pixels. Apart from these general change-detection
datasets, a river change-detection dataset [56] has also been released that specifically con-
centrates on the detection of changes in rivers that are locatable through hyperspectral
images.

Table 1. Statistical characteristics of existing change-detection datasets.

Dataset Pairs Size Is Real? Resolution/m Change Instances Change Pixels

SZTAKI [20,21] 12 952 × 640
√

1.5 382 412,252
OSCD [16] 24 600 × 600

√
10 1048 148,069

AICD [22] 500 600 × 800 × none 500 203,355
LEVIR-CD [23] 637 1024 × 1024

√
0.5 31,333 30,913,975

Change Detection Dataset [19] 7/4 4725 × 2700/1900 × 1000
√

0.03 to 1 1987/145 9,198,562/400,279
WHU Building Dataset [1] 1 32,507 × 15,354

√
0.075 2297 21,352,815

LEVIR-CD+ 985 1024 × 1024
√

0.5 48,455 47,802,614
S2Looking 5000 1024 × 1024

√
0.5∼0.8 65,920 69,611,520

The datasets described above (excepting our new S2Looking) have played an impor-
tant part in promoting the development of change-detection methods. However, they share
a common drawback in that most of the images they contain have been captured at near-
nadir viewing angles. The absence of large-scale off-nadir satellite image datasets limits
the scope for change-detection methods to advance to a point where they can handle more
subtle incremental changes in objects such as buildings. This is the underlying motivation
behind the development of the S2Looking dataset, as described in more detail below.

1.3. Contributions

Overall, the primary contributions of this paper are as follows: (1) a pipeline for
constructing satellite remote-sensing image-based building-change-detection datasets; (2)
presentation of a unique, large-scale, side-looking, remote-sensing dataset for building-
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change detection covering rural areas around the world; (3) a benchmark test upon which
existing algorithms can assess their capacity to undertake the monitoring of building
changes when working with large-scale side-looking images; (4) a preliminary evaluation
of the added complexity presented by the dataset. On the basis of this, we reflect briefly
upon potential future developments in building-change detection based on surveillance
satellites.

2. Materials and Methods

As noted in [37], the lack of public large-scale datasets that cover all kinds of satellites,
all kinds of ground surfaces, and from a variety of angles, places limits upon how much
progress can be made in change-detection algorithm research and the resulting applications.
This has driven our development of the S2Looking dataset. The situation was somewhat
improved by the release of the LEVIR-CD dataset in 2020 [23], which presented a good
range of high-resolution change instances. LEVIR-CD has very recently been superseded
by LEVIR-CD+ (also available at https://github.com/S2Looking/, accessed 1 November
2021), with an even larger number of bitemporal image pairs. However, the LEVIR-CD+
dataset mainly targets urban areas as captured in survey or mapping satellite data from
Google Earth. It also retains the focus of prior datasets upon near-nadir imagery. As
LEVIR-CD+ was, until the development of S2Looking, the richest dataset available for
testing change-detection algorithms, S2Looking has, in many ways, been framed against
it, hence the focus in S2Looking upon mainly rural targets captured by surveillance or
reconnaissance satellites at varying off-nadir angles. S2Looking thus provides both the
largest and the most challenging change-detection dataset available in the public domain.
Throughout the remainder of the paper, active comparisons are made between S2Looking
and LEVIR-CD+ because the latter constitutes the immediately preceding state-of-the-art.
Over the course of this section, we look in more detail at the objectives we were pursuing
in developing S2Looking and its data-processing pipeline.

2.1. Motivation for the New S2Looking Dataset

As noted above, S2Looking was actively developed to expand upon the change-
detection affordances of LEVIR-CD+. LEVIR-CD+ is itself based on the LEVIR-CD dataset
presented in [23]. In comparison with the 637 image patch pairs in the LEVIR-CD dataset,
LEVIR-CD+ contains more than 985 VHR (0.5 m/pixel) bitemporal Google Earth images,
with a size of 1024× 1024 pixels. These bitemporal images are from 20 different regions
located in several cities in the state of Texas in the USA. The capture times of the image
data vary from 2002 to 2020. Images of different regions were taken at different times. Each
pair of bitemporal images has a time span of 5 years.

Unlike the LEVIR-CD+ dataset, S2Looking mostly targets rural areas. These are
spread throughout the world and were imaged at varying large off-nadir angles by optical
satellites. The use of Google Earth by LEVIR-CD+ actually places certain limits upon
it, because, while Google Earth provides free VHR historical images for many locations,
its images are obtained by mapping satellites to ensure high resolution and geometric
accuracy. In contrast, images captured by optical satellites, especially surveillance satellites,
can benefit from their use of scroll imaging to achieve a better imaging range and a shorter
revisit period (as shown in Figure 1). For example, when a disaster occurs, scroll imaging
by satellites is used to support analysts who require quick access to satellite imagery of the
impacted region, instead of waiting until a satellite reaches orbit immediately above. By
varying the camera angle on subsequent passes, it is also possible to revisit the impacted
region more often to monitor recovery and look for signs of further events. For military
applications, scroll imaging by satellites is frequently used to obtain a steady fix on war
zones [57]. However, a challenge arising from using off-nadir angles that needs to be
properly met by new change-detection algorithms is that there is a lack of geometric
consistency between tall objects in the gathered satellite images. This effect can be seen in
Figure 3. The subvertical objects highlighted in yellow in Figure 3 become more visible

https://github.com/S2Looking/
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and have a larger spatial displacement proportionate with the off-nadir angle in the middle
and right images.

（a） （b） （c） 

Scrolling direction Scrolling direction 

Figure 3. Examples of side-looking remote-sensing images. (a) Near-nadir imagery from Google
Earth. (b) Side-looking imagery at an off-nadir angle of 10◦ from S2Looking. (c) Side-looking imagery
at an off-nadir angle of 18◦ from S2Looking.

A further value of developing an off-nadir-based dataset for change detection is that
aerial imagery, airborne and missile-borne, also tends to be captured at large off-nadir
angles to maximize visibility according to the flight altitude (see, for instance, [58]). As such
imagery presents the same problem of there being a lack of geometric consistency caused
by the high off-nadir angles, an image processing model trained on side-looking satellite
imagery will more easily adapt to aerial imagery, raising the possibility of it supporting
joint operations involving satellites and aircraft.

Figure 4 illustrates the geospatial distribution of our new dataset. Most remote-sensing
images in S2Looking relate to rural areas near the marked cities. The chosen cities have
been a particular focus of satellite imagery, so it was easier to acquire bitemporal images
for these locations. Together, the adjacent rural areas cover most types of rural regions
around the world.

Figure 4. The global locations covered by the bitemporal images in the S2Looking dataset.

When it comes to remote sensing change detection, data from rural areas generally
have more value than data from urban areas. There are several reasons for this. First of
all, in the case of military surveillance, sensitive installations are usually built in isolated
areas for safety reasons [25]. In the case of disaster rescue, satellite images of remote rural
regions can be obtained faster than aerial photographs because satellites do not have a
restricted flying range [59]. Therefore, rural images offer the scope to train remote-sensing
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change-detection models that can find and update the status of military installations or
destroyed buildings for disaster rescue teams. As is noted in Section 4 regarding the
challenges posed by S2Looking, there are certain characteristics that accrue to rural images
that can render it more difficult to recognize buildings, enhancing their value for training.

However, side-looking satellite imagery of rural areas is more difficult to collect than
vertical-looking imagery of urban areas. The buildings can be imaged by satellites from
different sides and projected along different angles into 2D images, as we see in Figure 3.
Table 2 provides a summary of our dataset. The off-nadir angles have an average absolute
value of 9.86◦ and a standard deviation of 12.197◦. A frequency histogram of the dataset
is also given in Figure 5. Here, it can be seen that the off-nadir angles ranged from −35◦

to +40◦, with the highest frequency of 1158 clustering between −5◦ and 0◦, reflecting the
optimal imaging angle. Optical satellites usually have on-nadir observation angles of within
±15◦ to maximize their lifespan. The off-nadir mode typically relates to observation angles
larger than 15◦. Our dataset consists of 71.9% on-nadir and 28.1% off-nadir image pairs.
This level of variation makes it difficult for a registration algorithm to match feature points
between the bitemporal images. Additionally, irrelevant structures, such as greenhouses
and small reservoirs, can interfere with the building annotation process.
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Figure 5. Frequency histogram of the off-nadir angles of the satellite images in the S2Looking dataset.

Table 2. A summary of the S2Looking dataset.

Type Item Value

Image Info

Total Image Pairs 5000
Image Size 1024 × 1024

Image Resolution 0.5∼0.8 m
Time Span 1∼3 years
Modality RGB image

Image Format PNG 8bit

Off-Nadir Angle Info

Average Absolute Value 9.861◦

Median Absolute Value 9.00◦

Max Absolute Value 35.370◦

Standard Deviation 12.197◦

Accuracy Info Registration Accuracy ≤ 8 pixels
Annotation Accuracy ≤ 2 pixels

2.2. The S2Looking Data Processing Pipeline

An illustration of the data-processing pipeline for our S2Looking dataset is shown in
Figure 6. This pipeline is discussed in greater detail below:
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Collection of
bi-temporal entire

images files in rural 
areas

Crop entire image file 
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Registration of slices 
based on SIFT method 

and cropping into 
1024×1024 slices

Side-looking remote 
sensing database from 
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S2Looking Dataset

Registration 分段 注册

Figure 6. Data processing pipeline for the S2Looking dataset.

Image Selection. The images in the dataset were selected on the basis of both time
and location. Locations were selected that covered typical types of rural areas around the
world. The satellite images were then checked, and only locations that had been captured
more than once in the past 10 years were retained.

Collection of bitemporal image files. Based on the chosen rural locations, we next
checked our satellite image database and collected time-series images for each specific
location. We then selected entire bitemporal image files with an intersection-over-union
(IoU) greater than 0.7 and a time span greater than 1 year.

Cropping into slices based on geometric coordinates. Each remote-sensing image
contained the rough coordinate information for each pixel, which was obtained by geomet-
ric inversion of the position of the satellite and the camera angle. Based on these geometric
coordinates, the intersecting areas were selected and cropped into 3000× 3000 slices. The
final image size of 1024× 1024 is better suited to GPU acceleration because it matches the
number of GPU threads. The accuracy of the coordinates was about 20 m (about 40∼100
pixels), so we cropped the intersection areas into 3000× 3000 slices with a stride of 1024 for
the registration. The 3000× 3000 slices therefore overlapped. After the registration process,
the central 1024× 1024 area was retained to form the bitemporal pairs in the S2Looking
dataset.

Bitemporal image registration. Image registration is essential for the preparation of
image pairs for a change-detection dataset [60]. Although accurate spatial coregistration
for images captured at near-nadir angles can be achieved with accurate digital elevation
models (DEMs) [61,62], the geolocalization accuracy deteriorates for large off-nadir angles,
especially in the case of hilly/mountainous areas [63,64]. In addition, dense global DEMs
(i.e., with a resolution of at least 2 m) were not available.

According to our experience, the building-change-detection task is achievable when
the precision of the geometric alignment of bitemporal image pairs is less than 8 pixels.
We therefore used a scale-invariant feature transform (SIFT) algorithm [65] to find and
match the feature points in each pair of corresponding images. The SIFT algorithm con-
structs a multiscale image space by means of Gaussian filtering and searches for extreme
points in the difference of Gaussian (DOG) image, which are used as feature points. For the
feature description, the SIFT algorithm uses a gradient direction histogram to describe the
feature points and uses the ratio of the distances to the nearest and second nearest points as
the basis for matching. The SIFT algorithm is robust to illumination changes and can even
handle some degree of affine or perspective distortion [66]. To improve the accuracy of the
SIFT algorithm, we used floating-point variables to store the gray values of each image.
This avoids ending up with missing values because of integer approximation when the
Gaussian filtering and DOG results are calculated.

After this, incorrectly matched pairs were deleted according to a random sample
consensus (RANSAC) homography transformation [67]. Finally, based on the matched
points, the image pairs were resampled using a homography matrix to ensure the matched
points had the smallest possible pixel distances in each image, as shown in Figure 7.
Thus, the same features and buildings in the image pairs had the same pixel index in the
bitemporal images and were suitable for change detection by recognizing any inconsistent
buildings.
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To avoid misaligned image pairs and guarantee the registration accuracy, all the
bitemporal images in the S2Looking dataset were manually screened by remote sensing
image-interpretation experts to ensure that the maximum registration deviation was less
than 8 pixels. This means that misaligned areas are less than 1/16 of the average build-
ing change size in S2Looking (1056 pixels). Although absolutely accurate registration is
probably impossible, further improvement of the registration of S2Looking is required.
This would enhance the performance of change-detection models trained on the dataset.
Registration could be improved, for instance, by manual annotation of the same points
in the bitemporal pairs. A large number of registration methods are now available based
on deep learning, and our hope is that the process can be iteratively refined by various
researchers making use of the S2Looking dataset and undertaking their own registration
activities prior to applying change-detection methods.

 

   

   

 Figure 7. Registered feature points. The images in the left and right columns form bitemporal pairs.
The numbered points are the matched feature points in the two images.

Annotation and Quality Control. The bitemporal images were also annotated by the
remote sensing image-interpretation experts. All newly built and demolished building
regions in the dataset were annotated at the pixel level in separate auxiliary graphs, thus
making further registration processes possible. The task was jointly completed by 5
remote-sensing experts from the authors’ research institution, 8 postgraduate students
from partner universities and more than 20 well-trained annotators employed by the
Madacode AI data service company (www.madacode.com, accessed 1 November 2021).
The remote-sensing experts have been undertaking military surveillance and damage
assessment for natural disasters such as fires for many years. The annotation accuracy
was required to be higher than 2 pixels. All annotators had rich experience in interpreting
remote-sensing images and a comprehensive understanding of the change-detection task.
They followed detailed specifications made by the remote-sensing experts for annotating
the images to yield consistent annotations. Moreover, each sample in our dataset was
annotated by one annotator and then double-checked by another to maximize the quality

www.madacode.com
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of the annotations. The labels were checked by the postgraduate students, then batches
containing 20 bitemporal images were randomly reexamined by the remote-sensing experts.
It took approximately 2000 person-days to manually annotate and review the entire dataset.

We saw some selected samples from the dataset in Figure 2. It should be noted that
the construction of new buildings and the demolition of old buildings was annotated in
separately labeled images. In this way, if the registration accuracy is improved, these
labeled images can be simply adjusted without the need for any further annotation.

The S2Looking Dataset. As noted previously, the dataset can be downloaded from
https://github.com/S2Looking/ accessed on 1 November 2021, with our hope being that
innovative use of the dataset in the image-processing and change-detection communities
will give rise to new requirements that can then be addressed through further dataset
refinements.

2.3. The S2Looking Challenge

Buildings are representative manmade structures. During the last few decades, the
areas from which our images were collected have seen significant land-use changes, espe-
cially in terms of rural construction. This presents more difficulties for change detection
than construction in urban areas. Our VHR remote-sensing images provide an opportu-
nity for researchers to analyze more subtle changes in buildings than simple construction
and destruction. This might include changes from soil/grass/hardcore to building ex-
pansion and building decline. The S2Looking dataset therefore presents current deep
learning techniques with a new and significantly more challenging resource, the use of
which will likely lead to important innovation. To further promote change-detection re-
search, we are currently organizing a competition based on the S2looking dataset (see
https://www.rsaicp.com, accessed 1 November 2021), which will be addressed to the
challenges identified below.

The S2Looking dataset was extracted from side-looking rural-area remote-sensing
images, which makes it an expanded version of the LEVIR-CD+ dataset that will inevitably
be harder to work with. Given S2Looking as training data, the challenge for the change-
detection community is to create models and methods that can extract building growth
and decline polygons quickly and efficiently. Furthermore, these models and methods
will need to assign each polygon in a way that will accurately cover the range of building
changes, meaning that each polygon and building region must be matched pixel by pixel.

Many methods have achieved satisfactory results on the LEVIR-CD dataset (F1-score
> 0.85) [23,34], but the S2Looking dataset presents a whole new set of challenges that
change-detection algorithms will need to be able to address. These are summarized below:

Sparse building updates. The changed building instances in the S2Looking dataset are far
sparser than those in the LEVIR-CD+ dataset due to the differences between rural and
urban areas. Most rural areas are predominantly covered with farmland and forest,
while urban areas are predominantly covered with buildings that are constantly being
updated. The average number of change instances in S2Looking is 13.184, while the
average number of change instances in LEVIR-CD is 49.188 [23]. This makes it more
difficult for networks to extract building features during the training process.

Side-looking images. The S2Looking dataset concentrates on side-looking remote-sensing
imagery. This makes the change-detection problem different from ones relating to
datasets consisting of Google Earth images. The buildings have been imaged by
satellites from different sides and projected along varying off-nadir angles into 2D
images, as we see in Figure 3. This means that a change-detection model is going to
have to identify the same building imaged from different directions and detect any
updated parts.

Rural complexity. Seasonal variations and land-cover changes unrelated to building up-
dates are more obvious in rural areas than in urban areas. Farmland is typically
covered by different crops or withered vegetation, depending on the season, giving

https://github.com/S2Looking/
https://github.com/S2Looking/
https://www.rsaicp.com
https://www.rsaicp.com
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it a different appearance in different remote-sensing images. A suitable change-
detection model needs to distinguish building changes from irrelevant changes in
order to generate fewer false-positive pixels.

Registration accuracy. The registration process for the bitemporal remote-sensing images
in S2Looking is not completely accurate due to the side-looking nature of the images
and terrain undulations. Based on the manual screening by experts, we have managed
to bring the registration accuracy to 8 pixels or better, but this necessitates a change-
detection model that can tolerate slightly inaccurate registration.

2.4. Challenge Restrictions

To better accommodate operational use cases and maintain fairness, the geographic
coordinate information has been removed from the data used for inference in the challenge.
Thus, no geographic base map database can be applied in the change-detection challenge.
The models for change detection and subsequent image registration are only allowed to
extract information from the images themselves.

3. Results

In order to provide a benchmark against which change-detection algorithms can assess
their performance with regard to meeting the above challenges, we have established a
set of evaluation metrics. To gain a sense of the extent to which S2Looking has moved
the requirements imposed on change-detection algorithms beyond those posed by the
current baseline dataset, LEVIR-CD+, we undertook a thorough evaluation of benchmark
and state-of-the-art deep-learning methods using both LEVIR-CD+ and S2Looking. This
exercise confirmed the scope of our dataset to establish a new baseline for change detection.
We report below upon the benchmark metrics and the evaluation that was undertaken. We
conclude this section with a close analysis of the evaluation results and the ways in which
existing change-detection algorithms are failing to meet the identified challenges.

3.1. Benchmark Setup

Train/Val/Test Split Statistics. We evaluated the performance of four classic (FC-
EF, FC-Siam-Conc, FC-Siam-Diff, and DTCDSCN) and five state-of-the-art (STANet-Base,
STANet-BAM, STANet-PAM, CDNet, and BiT) deep-learning methods on both the LEVIR-
CD+ dataset and S2Looking dataset. The specific state-of-the-art methods were chosen
because they had previously performed well for change detection on the LEVIR-CD+
dataset. As noted in Section 2, the LEVIR-CD+ dataset contains 985 image patch pairs. We
designated 65% of these pairs as a training set and the remaining 35% as a test set. This is
consistent with our previous work on LEVIR-CD+. The S2Looking dataset consists of 5000
image patch pairs, which we split into a training set of 70%, a validation set of 10%, and a
test set of 20%. Strictly speaking, a validation set is not necessary for the training process
and it can be merged with the training set. However, the validation set was able to capture
the effect of each iteration during the training process, as shown in Figure 8. After each
iteration, the algorithm was tested on the validation set to assess the level of convergence.
In view of the relative difficulty of the S2Looking dataset, it was felt that it would need a
larger training set. The relative proportions of 70%, 10%, and 20% are also widely used in
other deep-learning-based studies.

Evaluation Metrics. In remote sensing change detection, the goal is to infer changed
areas between bitemporal images. To this end, we took three-channel multispectral image
pairs as the input, then output a single-channel prediction map. The Label 1 and Label 2
maps, when combined into one map, form a pixel-precise ground-truth label map. The
performance of a change-detection method is reflected in the differences between the
prediction maps and the ground-truth maps. To evaluate an algorithm’s performance,
Precision, Recall, and F1-scores can be used as evaluation metrics:
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Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1-score =
2

Precision−1 + Recall−1 (3)

Here, TP, FP, and FN correspond to the number of true-positive, false-positive, and
false-negative predicted pixels for class 0 or 1. These are standard metrics used in the
evaluation of change-detection algorithms [68]. Both Precision and Recall have a natural
interpretation when it comes to change detection. Recall can be viewed as a measure of the
effectiveness of the method in identifying the changed regions. Precision is a measure of
the effectiveness of the method at excluding irrelevant and unchanged structures from the
prediction results. The F1-score provides an overall evaluation of the prediction results; the
higher the value, the better.

Training Process. For their implementation, we followed the default settings for each
of the classic and state-of-the-art methods. Due to memory limitations, we kept the size
of the original input images to 1024× 1024 for the classic methods (FC-EF, FC-Siam-Conc,
FC-Siam-Diff, and DTCDSCN) and cropped the images to 256× 256 for the state-of-the-art
methods (STANet-Base, STANet-BAM, STANet-PAM, CDNet, and BiT). It can be seen from
Figure 8 that the performance of the model improves when iteration number N increases.
We also observe that the marginal benefit on the model performance is declining with the
number of instances increasing. Moreover, there is an upper limit for N when the image
does not have more space to superimpose more building instances. Therefore, depending
on the recommended settings for each of the methods, we set maximum number N = 50 for
the classic methods and N = 180 for the state-of-the-art methods. We trained the detection
models on a system with a Tesla P100 GPU accelerator and an RTX 2080 Ti graphics card.
All of the methods were implemented with PyTorch.
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Figure 8. Results of fine-tuning the algorithms on the LEVIR-CD+ and S2Looking datasets. The top
row presents the Precision, Recall, and F1-score metrics for the LEVIR-CD+ dataset. The bottom row
presents the metrics for the S2Looking dataset.

3.2. Benchmark Results

Figure 8 shows the results of fine-tuning the various change-detection algorithms on
the LEVIR-CD+ and S2Looking datasets.
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Each algorithm took more epochs to converge and obtained lower F1-scores on
S2Looking than on LEVIR-CD+. The evaluation metrics and visualizations of the re-
sults of the remote sensing change detection for all methods and dataset categories are
presented in Table 3 and Figure 9, respectively. The F1-scores of the evaluated methods
for the S2Looking dataset were at least 25% lower than the scores for LEVIR-CD+. This
confirms that S2Looking presents a far more difficult challenge than LEVIR-CD+.

We also conducted an experiment where only a subset of the pixels with angles
close to on-nadir, i.e., ±15◦, were used. This subset contained 3597 image pairs. The
evaluated methods performed much better on the on-nadir subset of S2Looking, helping
us to quantify the effect of using strongly off-nadir pixels. The evaluation metrics for the
on-nadir subset are presented in Table 4. The F1-scores of the evaluated methods were
about 46.4% greater than their average scores for the overall dataset. This confirms that the
principal difficulty confronting change-detection algorithms when using the S2Looking
dataset arises from the side-looking images.

Table 3. Results for the evaluated methods.

Method
LEVIR-CD+ S2Looking

Precision Recall F1-Score Precision Recall F1-Score

FC-EF[16] 0.6130 0.7261 0.6648 0.8136 0.0895 0.0765
FC-Siam-Conc [16] 0.6624 0.8122 0.7297 0.6827 0.1852 0.1354
FC-Siam-Diff [16] 0.7497 0.7204 0.7348 0.8329 0.1576 0.1319
DTCDSCN [17] 0.8036 0.7503 0.7760 0.6858 0.4916 0.5727

STANet-Base [23] 0.6214 0.8064 0.7019 0.2575 0.5629 0.3534
STANet-BAM [23] 0.6455 0.8281 0.7253 0.3119 0.5291 0.3924
STANet-PAM [23] 0.7462 0.8454 0.7931 0.3875 0.5649 0.4597

CDNet [33] 0.8896 0.7345 0.8046 0.6748 0.5493 0.6056
BiT [34] 0.8274 0.8285 0.8280 0.7264 0.5385 0.6185

Image 1 Image 2 Ground Truth FC-EF   FC-Siam-Conc FC-Siam-Diff     DTCDSCN  STANet-Base  STANet-BAM  STANet-PAM   CDNet BiT

Figure 9. Visualizations of the results of the different methods on the S2Looking dataset.

Table 4. Evaluation metrics of on-nadir subset of S2Looking.

Precision Recall F1-Score

FC-EF 0.7605 0.1155 0.1825
FC-Siam-Conc 0.7461 0.1663 0.2541
FC-Siam-Diff 0.6609 0.115 0.1749
DTCDSCN 0.7403 0.6155 0.6436

STANet-Base 0.3852 0.7344 0.4822
STANet-BAM 0.4366 0.7215 0.5206
STANet-PAM 0.5103 0.7477 0.5865

CDNet 0.8036 0.7375 0.7545
BiT 0.8512 0.733 0.7738
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4. Discussion

A comparison of the results of the evaluation on the benchmark set for the two datasets
is able to reveal the current failings of various algorithms with regard to how they handle
the challenges posed by S2Looking. This, in turn, can provide insights into how they might
be improved. We, therefore, now look at the evaluation results for each individual method.

FC-Net [16] consists of three different models, namely, FC-EF, FC-Siam-Conc, and FC-
Siam-Diff. As shown in Table 3, FC-Siam-Conc and FC-Siam-Diff performed better on both
datasets than FC-EF. FC-Net performed poorly on S2Looking compared to LEVIR-CD+.
This is because the structure of FC-Net is too simple to be effectively trained on the complex
problems presented by the S2Looking dataset. Unlike the DTCDSCN model, which has
512 channels, the deepest layer of FC-Net has only 128 channels. As a result, the ability of
FC-Net to capture feature representations is limited. From the predictions produced for
the S2Looking test set, we can see that the change-detection performance of FC-Net was
largely premised upon image contrast, which fails to recognize building structures. This
results in the detection of small objects with strong contrast, such as white cars, darkened
windows, and the shadows of changed buildings, rather than whole building boundaries.
This is evident in Figure 9.

DTCDSCN [17] is also a Siamese network, but it combines the task of change detection
with semantic detection. DTCDSCN contains a change-detection module and two semantic
segmentation modules. It also has an attention module to improve its feature-representation
capabilities. Compared with FC-Net, DTCDSCN was better able to identify changed regions
and was more robust to side-looking effects and building shadows. In addition, DTCDSCN
was better at detecting small changes in building boundaries between the bitemporal
images. Therefore, DTCDSCN performed much better than FC-Net on the S2Looking
dataset. However, DTCDSCN failed to recognize a number of small prefabricated houses,
as can be seen in the third and fourth rows of Figure 9. Additionally, because of the
complexity of the rural scenes, some large greenhouses, cultivated land, and hardened
ground were misrecognized as changed buildings.

STANet [23] is a Siamese-based spatiotemporal attention network designed to explore
spatial–temporal relationships. Its design includes a base model (STANet-Base) that uses a
weight-sharing CNN to extract features and measure the distance between feature maps
to detect changed regions. STANet also includes a basic spatiotemporal attention module
(STANet-BAM) and a pyramid spatiotemporal attention module (STANet-PAM) that can
capture multiscale spatiotemporal dependencies. As shown in Table 3, STANet-PAM
performed better (for its F1-score) than STANet-BAM and STANet-Base on both datasets.
We also found that STANet had a relatively high Recall but low Precision compared to
other methods. This may be because the batch-balanced contrastive loss that it employs in
the training phase gives more weight to the misclassification of positive samples (change),
resulting in the model having a tendency to make more positive predictions. Note that
STANet-PAM performed better than DTCDSCN on the LEVIR-CD+ dataset but worse
than DTCDSCN on the S2Looking dataset. From this, we conclude that STANet is more
vulnerable to side-looking effects and illumination differences, which are more severe in
the S2Looking dataset. Thus, it was more frequently misrecognizing the sides of buildings
as building changes, which influenced the FP value in Eq. 1 and reduced its Precision.

CDNet [33] is a simple, yet effective, model for building-change detection. It uses
a feature extractor (a UNet-based deep Siamese fully convolutional network) to extract
image features from a pair of bitemporal patches. It also has a metric module to calculate
bitemporal feature differences and a relatively simple classifier (a shadow fully convolu-
tional network), which can produce change-probability maps from the feature difference
images. CDNet produced better detection results than the previous methods on both
datasets. This may be because the structure of CDNet, including its deep-feature extractor,
can better handle moderate illumination variances and small registration errors, enabling
it to produce high-resolution, high-level semantic feature maps. Note in Figure 9, for
instance, that CDNet was robust in relation to misregistered hilly regions. However, it
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failed to predict some small prefabricated houses and structures that appeared bright in
one bitemporal image and dim in another, which were misrecognized as changed buildings.
CDNet has a pixelwise change-discrimination process that is performed on the two feature
maps. This model is not well-equipped to deal with large side-looking angles.

BiT [34] is an efficient change-detection model that leverages transformers to model
global interactions within the bitemporal images. As with CDNet, the basic model [34] has
a feature extractor and a prediction head. Unlike CDNet, however, it has a unique module
(a bitemporal image transformer) that can enhance features. BiT consists of a Siamese
semantic tokenizer to generate a compact set of semantic tokens for each bitemporal input, a
transformer encoder to model the context of semantic concepts into token-based spacetime,
and a Siamese transformer decoder to project the corresponding semantic tokens back
into the pixel space and thereby obtain refined feature maps. Table 3 shows that BiT
outperformed all the other methods on the two datasets. Only small prefabricated houses
on hills were misrecognized, due to the lower registration accuracy, as can be seen in the
fourth row of Figure 9. Most incorrect pixel predictions produced by BiT were due to
side-looking effects associated with the expansion of building boundaries, which make
building boundaries harder to accurately recognize in remote-sensing images.

Consequently, more sophisticated change-detection models are going to be needed to
efficiently tackle the challenges posed by the S2Looking dataset. It should be noted that
the change-detection methods here evaluated were all basically robust to seasonal and
illumination variations in S2Looking, therefore building-change detection using the dataset
is a solvable problem.

5. Conclusions

This paper has introduced the S2Looking dataset, a novel dataset that makes use of
the camera scroll facility offered by modern optical satellites to assemble a large collection
of bitemporal pairs of side-looking remote-sensing images of rural areas for building-
change detection. The overall goal was to create a new baseline against which change-
detection algorithms can be tested, thereby driving innovation and leading to important
advances in the sophistication of change-detection techniques. A number of classic and
state-of-the-art change-detection methods were evaluated on a benchmark test that was
established for the dataset. To assess the extent to which the S2Looking dataset has added
to the challenges confronting change-detection algorithms, deep-learning-based change-
detection methods were applied to both S2Looking and the expanded LEVIR-CD+ dataset,
the most challenging change-detection dataset previously available. The results show
that contemporary change-detection methods perform much less well on the S2Looking
dataset than on the LEVIR-CD+ dataset (by as much as 25% lower in terms of their F1-
score). Analysis of the performance of the various methods enabled us to identify potential
weaknesses in their change-detection pipelines that may serve as a source of inspiration for
further developments.

There are several things that could to be actioned to improve upon the S2Looking
dataset. First of all, the level of variation in the captured image pairs makes it difficult
for a registration algorithm to match feature points between them. Improving current
registration techniques would enhance the performance of change-detection models trained
on the dataset. We therefore hope to see S2Looking driving a move towards innovative new
image-registration methods and models. There are also flaws in current change-detection
models, whereby irrelevant structures such as greenhouses and small reservoirs can be
misidentified as building changes. Generally, by bringing this work to the attention of
image-processing researchers with an interest in change detection, we feel that refinement
of both the dataset and existing change-detection methodologies can be driven forward.
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