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Abstract: Accurate cropland burned area estimation is crucial for air quality modeling and cropland
management. However, current global burned area products have been primarily derived from
coarse spatial resolution images which cannot fulfill the spatial requirement for fire monitoring at
local levels. In addition, there is an overall lack of accurate cropland straw burning identification
approaches at high temporal and spatial resolution. In this study, we propose a novel algorithm to
capture burned area in croplands using dense Landsat time series image stacks. Cropland burning
shows a short-term seasonal variation and a long-term dynamic trend, so a multi-harmonic model
is applied to characterize fire dynamics in cropland areas. By assessing a time series of the Burned
Area Index (BAI), our algorithm detects all potential burned areas in croplands. A land cover mask is
used on the primary burned area map to remove false detections, and the spatial information with
a moving window based on a majority vote is employed to further reduce salt-and-pepper noise
and improve the mapping accuracy. Compared with the accuracy of 67.3% of MODIS products and
that of 68.5% of Global Annual Burned Area Map (GABAM) products, a superior overall accuracy
of 92.9% was obtained by our algorithm using Landsat time series and multi-harmonic model. Our
approach represents a flexible and robust way of detecting straw burning in complex agriculture
landscapes. In future studies, the effectiveness of combining different spectral indices and satellite
images can be further investigated.

Keywords: cropland burned area; Landsat time series; multi-harmonic model; spatial information

1. Introduction

As a largely agricultural country, China is rich in crop straw resources, but it faces
large-scale open-air cropland burning every year [1,2]. When crop straw (also referred
to as crop stubble) is burned, large amounts of harmful gases are emitted, which causes
air pollution, and at the same time affects the environment, air quality, traffic safety, and
human health [3,4]. Compared with forest fires and grassland fires, fires in croplands occur
at small scales with low-intensity burning [5,6]. Furthermore, cropland fires are randomly
distributed and dispersed but present a clear seasonality [2,7]. It is difficult to obtain the
large-scale spatial distribution of cropland residue burning by traditional methods such
as ground surveys. Remote sensing technology is characterized by broad coverage, high
temporal resolution, and low cost. Therefore, it has become the main method to monitor
cropland burning [8,9].
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Burned area mapping and monitoring at a global scale have been widely based on
coarse spatial resolution data such as MODIS, AVHRR, and SPOT VEGETATION [10–12].
In addition, there are a wide variety of global burned area products that facilitated the
management and environmental applications. Among them, MCD45A1, MCD64A1, and
Fire_CCI are commonly used burned area products [13–15]. However, the coarser spatial
resolution makes it impossible to monitor small burning patches such as cropland straw
burning. Meanwhile, there are large omission and commission errors in the location and
mapping area of the burned area product [16,17]. Cropland straw burning is the main
type of open biomass burning in China and is also an important variable for calculating
biomass burning emissions [1,4]. It is the largest source of error in the current biomass
burning emission source inventory. Therefore, an accurate estimate of cropland burned
area is necessary and needed for research and management applications.

Medium spatial resolution satellite data such as Landsat is capable to monitor crop-
land burned area dynamics with higher accuracy than coarse spatial resolution data and
provides an ideal spatial resolution for the dynamics of cropland residue burning. In the
past few years, burned area products based on Landsat images have been generated and
released, including the Australian Fire Scars (AFS) product [18] and the Burned Area Es-
sential Climate Variable (BAECV) product developed and provided by the U.S. Geological
Survey (USGS) [19] that cover regional scales. The Chinese Academy of Sciences released
the Global Annual Burned Area Map (GABAM) for the year 2015 [20]. However, these
existing burned area products with a resolution of 30 m still cannot satisfy the demand for
an accurate estimate of cropland burned area, and they have large omission and commis-
sion errors in cropland burned area monitoring [20,21]. The errors are due to the spectral
similarities between burn scars and various other classes including bare soil, water, and
built-up area. Hence, the use of Landsat images to accurately estimate cropland burned
area remains a difficult problem.

Compared with forest fires, fires in croplands are commonly small and non-contiguous
with a short duration, and cropland residue burning is a common farming practice in
agricultural land management [22–24]. In addition, the estimation of cropland burned
area is sensitive to the temporal resolution of remote sensing data, as the fires start and
end at different times, making it difficult for mapping burned area through comparison
between pre-fire and post-fire images. Hence, burned area detection and monitoring
approaches using time series data are needed, as they can describe cropland phenological
features throughout the time segment [25–27], and also effectively reduce the influence of
cloud contamination.

Time-series approaches effectively weaken the seasonal influence of vegetation, as all
phenological characteristics were modeled throughout the year. A large number of time
series methods using dense Landsat time series image stacks have been widely applied
to capture burned areas with the support of free access to Landsat images [18,19,28]. Re-
cently, an algorithm integrating Landsat time series and a simple harmonic model has
demonstrated good performance in mapping burned areas in a savanna area [29]. The
study of the continuous change detection and classification (CCDC) method confirmed
that the harmonic model can extract different land cover features, and it was developed
and well-performed in monitoring land cover changes [30]. Further study of the Trend
Forecast-based change detection (TFCD) method revealed that a simple harmonic model
failed to capture and detect cropland changes because of the strong seasonal dynamics [31].
However, the integration of the harmonic model with Landsat time series is rarely applied
in burned area monitoring over croplands where straw burning occurs frequently. Fur-
thermore, none of these methods consider the spatial correlation of pixels’ neighborhoods,
which may reduce noises generated from false detection.

Because of the diversity of land cover types and burn severity, various spectral in-
dices have been extensively employed and evaluated for burned area monitoring [32,33],
including those particularly created for burned area detection, such as the Burned Area In-
dex (BAI) [34], the Normalized Burned Ratio (NBR) [35], and the Char Soil Index (CSI) [36],
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and others that can discriminate burned area from unburned as they are sensitive to vege-
tation changes, such as the Normalized Difference Vegetation Index (NDVI) [37], and the
Global Environmental Monitoring Index (GEMI) [38]. Moreover, it was indicated from
a previous study that BAI achieved the best performance in burned area detection in a
savanna area using a harmonic model [33]. However, the sensitivity of BAI in burned area
detection over croplands needs further investigation and evaluation.

In this study, we aim to propose a novel algorithm to identify burned areas caused by
straw burning in croplands, evaluate its performance with current burned area products,
and investigate how its output provides more detailed information about straw burn-
ing distribution. To achieve this goal, we integrate the multi-harmonic model with the
Landsat time series to capture cropland burned pixels and adopt the land cover mask and
spatial information to reduce the false detections. The proposed algorithm was tested in
northeastern China where straw burning in croplands occurs frequently.

2. Material and Methods
2.1. Study Area

Our study area (45◦5′−45◦12′W and 122◦53′−123◦12′E) is located in the Hinggan
League, northeastern Inner Mongolia, China (Figure 1). Hinggan League is the transitional
zone from Daxing’an Mountains to Songnen Plain, and this area has a typical temperate
continental monsoon climate, with an average annual precipitation of 420 mm and a
temperature of 5 ◦C. This area has a short warm summer, but a long cold winter with heavy
snow from December to March. There are several land cover types, including built-up area,
cropland, water, and bare land, among which cropland is the main type.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 18 
 

 

[36], and others that can discriminate burned area from unburned as they are sensitive to 
vegetation changes, such as the Normalized Difference Vegetation Index (NDVI) [37], and 
the Global Environmental Monitoring Index (GEMI) [38]. Moreover, it was indicated from 
a previous study that BAI achieved the best performance in burned area detection in a 
savanna area using a harmonic model [33]. However, the sensitivity of BAI in burned area 
detection over croplands needs further investigation and evaluation. 

In this study, we aim to propose a novel algorithm to identify burned areas caused 
by straw burning in croplands, evaluate its performance with current burned area prod-
ucts, and investigate how its output provides more detailed information about straw 
burning distribution. To achieve this goal, we integrate the multi-harmonic model with 
the Landsat time series to capture cropland burned pixels and adopt the land cover mask 
and spatial information to reduce the false detections. The proposed algorithm was tested 
in northeastern China where straw burning in croplands occurs frequently. 

2. Material and Methods 
2.1. Study Area 

Our study area (45°5′−45°12′W and 122°53′−123°12′E) is located in the Hinggan 
League, northeastern Inner Mongolia, China (Figure 1). Hinggan League is the transitional 
zone from Daxing’an Mountains to Songnen Plain, and this area has a typical temperate 
continental monsoon climate, with an average annual precipitation of 420 mm and a tem-
perature of 5 °C. This area has a short warm summer, but a long cold winter with heavy 
snow from December to March. There are several land cover types, including built-up 
area, cropland, water, and bare land, among which cropland is the main type. 

 
Figure 1. Location and demonstration of the study area. The image (true color composite) in the right panel was captured 
by Landsat 8 image acquired on 7 July 2015. 

Due to constraints of climate and rainfall, maize is the most popular variety for local 
agricultural cultivation. Straw burning is the main method to help restore cropland after 
harvesting in the study area. Fire signals caused by burning activity could be captured by 
MODIS and Landsat data. Based on these data and the characteristics of maize planting, 
we find that cropland fires often occur before the snow in October to November, or after 
the snow in March to April in the following year. However, straw burning often causes 
agricultural disasters that result in economic losses and serious air pollution, and hence 
an accurate method of burned area detection is needed for straw burning in this area. 

  

Figure 1. Location and demonstration of the study area. The image (true color composite) in the right panel was captured by Landsat
8 images acquired on 7 July 2015.

Due to constraints of climate and rainfall, maize is the most popular variety for local
agricultural cultivation. Straw burning is the main method to help restore cropland after
harvesting in the study area. Fire signals caused by burning activity could be captured by
MODIS and Landsat data. Based on these data and the characteristics of maize planting,
we find that cropland fires often occur before the snow in October to November, or after
the snow in March to April in the following year. However, straw burning often causes
agricultural disasters that result in economic losses and serious air pollution, and hence an
accurate method of burned area detection is needed for straw burning in this area.
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2.2. Data

We used a series of Landsat 8 images in our study. A total of 39 images were obtained
in 2015, as we can produce the annual cropland burned area map through the time-series
image stack and make a comparison with GABAM 2015 product. Details of the Landsat
8 images are shown in Table 1. All surface reflectance (SR) images of Landsat 8 were
downloaded from the Google Earth Engine (GEE) platform. These images with the highest
quality suitable for time series analysis were placed into Tier 1 (T1), which included L1
precision for topographical accuracy. The SR product could help detect earth surface
changes by accounting for atmospheric effects. For each image, most clouds and cloud
shadows were labeled and eliminated by the Fmask algorithm [39]. We selected red and
near-infrared (NIR) bands for further analysis, and all images were projected into the same
coordinate system (EPSG:3857).

Table 1. The number of Landsat 8 images per month for the study area in 2015.

Month
January February March April May June July August September October November December

Path/Row

121/027 2 1 2 1 2 1 2 1 2 2 1 0
120/028 2 1 2 2 2 2 1 2 2 2 2 2

2.3. Burned Area Detection Algorithm

An overview of the cropland burned area detection algorithm is displayed in Figure 2.
The whole procedure can be divided into four steps. First, we created BAI time-series data
from Landsat 8 images. Next, we fitted a multi-harmonic model using the BAI time series
observation values, and the outliers were determined by thresholds in the multi-harmonic
regression. The outliers within the fire seasons were labeled as potentially burned pixels.
Then, we combined all potentially burned pixels in fire seasons into an annual burned area
map for the year 2015. A land cover mask based on a classification map with the land
cover type of cropland was applied to exclude false detections, and the spatial information
was used to reduce noises displayed as isolated pixels in the cropland burned area map.
Finally, we carried out the stratified random sampling scheme to collect the reference
data and performed an accuracy assessment by calculating the overall accuracy (OA),
producer’s accuracy (PA), and user’s accuracy (UA) based on the reference data for our
derived annual cropland burned area map, GABAM 2015 product, and MCD64A1 product.
Details of each step are given below.

2.3.1. BAI Time Series Creation

Compared with vegetation indices, Burned Area Index (BAI) is much more accurate
and successfully utilized in burned area monitoring, since BAI was developed to emphasize
post-fire charcoal signal [33,40]. BAI is calculated based on red and near-infrared spectral
bands, which is expressed as the following formula:

BAI =
1

(0.1− RED)2 + (0.06−NIR)2 (1)

where RED and NIR represent the reflectance in the red and near-infrared bands of Landsat
8 OLI data, respectively.

To fit the multi-harmonic model, we firstly applied the BAI formula to convert all
Landsat images into BAI images. Furthermore, all clouds and cloud shadows identified
by the Fmask algorithm were set into null values (NA) to avoid disturbance of abnormal
values when fitting the multi-harmonic model. Then, we stacked all BAI images following
their temporal orders to generate the annual BAI time series data.
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2.3.2. From Single-Harmonic to Multi-Harmonic Model

A recent study indicated that the integration of sinusoidal harmonic model and time-
series data could help to predict all land cover changes in a baseline period [30], and in a
previous study an algorithm using a harmonic model with BAI time series data achieved
satisfactory performance in burned area mapping in a savanna area [29]. Here we combined
and developed the method to help detect cropland fires. The single-harmonic model is
described as follows:

yt = a0 + a1 sin
(

2πt
T

)
+ b1 cos

(
2πt
T

)
+ et (2)

where,

yt = predicted BAI value at Julian date t,
a0 = coefficient for overall value,
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a1, b1 = coefficients for intra-annual change,
t = Julian date,
T = number of days per year,
et = remainder component.

However, the spectral characteristics of cropland had strong seasonal patterns [31]. In
our study area, there were two main periods, including plowing and productive growth
that generally last from May to September, harvesting and snow cover lasts from October
to April. The single-harmonic model is designed for continuous monitoring of land
cover changes with unimodal change, but the croplands display bimodal features due
to phenology information. In addition, cropland fires demonstrate as ephemeral signals
in the bimodal changes of croplands in our study area, making the simple-harmonic
model invalid for burned area detection in croplands. The multi-harmonic model with
six coefficients is suitable to capture surface dynamics and temporal variations in detail
and has been successfully utilized in monitoring forest disturbance [41,42]. Hence, the
multi-harmonic model was applied to reflect phenological features of croplands and extract
burned area over croplands in the following experiments.

The samples of cropland demonstrated a bimodal trend in Figure 3. Compared with
the single-harmonic model fitting curve, the samples of cropland were well fitted by the
multi-harmonic model. Furthermore, the three samples with relatively high BAI values
were potentially burned pixels. Therefore, a multi-harmonic model was applied to fit the
intra-annual bimodal changes of cropland by using the BAI time series in our study.
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The multi-harmonic model is described as follows:

yt = a0 + a1 cos
(

2πt
T

)
+ b1 sin

(
2πt
T

)
+ a2 cos

(
4πt
T

)
+ b2 sin

(
4πt
T

)
+ et (3)

where,

a1, b1 = coefficients for intra-annual unimodal change of the harmonic model,
a2, b2 = coefficients for intra-annual bimodal change of the harmonic model.
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2.3.3. Fire Season

According to the information of Ecological Environment Bureau of Hinggan League
(http://sthjj.xam.gov.cn/hjzdlyxxgk/kqzl/11438.htm accessed on 8 February 2021), there
were two periods of extensive and persistent straw burning in a year. The divider was
the long snow cover period, which lasted from December to February and separated
straw burning into two fire seasons over an agricultural cycle. Farmers had to burn the
straws after harvesting in autumn, or spring before plowing, to help recover farming land.
Therefore, there were two fire seasons in our study area within a year: one was the spring
fire season from March to April, and the other was the autumn fire season from October to
December. The intensity of the straw burning was different in the two fire seasons, and
generally, the burning process was more dramatic and noticeable in the autumn fire season.
The definition of fire seasons could help reduce the false detections caused by water and
the built-up area in other months. To determine fire seasons more accurately, we checked
MODIS burned area product which contained monthly fire date and location information,
and the fire seasons it showed were consistent with those in the previous research [43].

2.3.4. Burned Area Detection

In our study area, BAI values of the non-cropland area, such as built-up area, water,
and bare land are relatively small and more stable over time than those of cropland within
a certain period. The values of the pixels for the burned area are abnormally high, therefore
they can be detected by a certain threshold when fitting the multi-harmonic model.

The detection method included three steps. First, the BAI time series data were
fitted with the multi-harmonic model (Equation (3)). Besides model parameters, we also
computed the root mean square error (RMSE). Then a threshold generated from the multi-
harmonic model was defined to identify the burned pixels by comparing the predicted
BAI values with the observations. If the difference between observation and prediction
values was larger than the threshold value, the pixel was identified as an outlier (potential
burned pixel) and eliminated from the BAI time series. On the contrary, it was identified as
an unburned pixel and remained. The threshold was a model predicted range aiming to
separate outliers from the stable values, and was calculated as a constant value multiplied
by the RMSE from the multi-harmonic model fitting. However, it was difficult to extract all
burned pixels in a single regression, and we carried out the procedure repeatedly until no
more outliers (potential burned pixels) were identified. In addition, only outliers within
fire season were regarded as burned pixels. Finally, we unstack the BAI time series data
into several separate burned area images after the iterative regression process. To derive
the annual cropland burned area map, we incorporated all the burned area images in fire
seasons. During the spring and autumn fire season, we set the first burned area image
within fire season ranges as the reference image separately, and the remaining images were
combined with the reference image by following the rule for image combination (Table 2).
After the combination, a binary cropland burned area map was produced.

Table 2. The rule for image combination. The first image in fire seasons is used as a reference image,
and the remaining images during fire seasons are operating images.

Reference Image Operating Image Result

0
1 1
0 0

1
1 1
0 1

0 = Unburned pixel, 1 = Burned pixel.

2.3.5. Land Cover Mask, Spatial Information and Accuracy Assessment

In our study area, water and built-up area were easily confused with burn scars due
to similar BAI values [34]. However, all the burning signals should be from straw burning
in the cropland. A reliable way for reducing the potential false detections is to restrict the

http://sthjj.xam.gov.cn/hjzdlyxxgk/kqzl/11438.htm
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area with a land cover mask to further minimize the negative impacts of non-cropland
areas [22,44]. We used the land cover map of GLC_FCS30 in 2015, which was a land cover
classification product with a resolution of 30 m [45], to extract croplands in the study
area. After cropland masking, most falsely detected fire pixels in water and built-up area
were removed.

The algorithm integrating Landsat time series and multi-harmonic model in our
study was calculated and implemented on a pixel-by-pixel basis, and this model without
considering spatial information could cause error accumulation and much noise [46].
According to Tobler’s First Law, everything is related to everything else, but those that are
close to each other are more related compared to those that are distant. The majority vote
algorithm applied in spatial dimensions proved to be valid to eliminate sharp noise [47].
Thus, we applied the majority vote algorithm with a 3 × 3 moving window in the spatial
dimension of our derived cropland burned area map. When the number of the burned
pixels in the moving window was more than four, the center pixel was labeled as burned
pixel, otherwise, the center pixel was determined as unburned. However, because of the
moving window filtering, burned areas below 4500 m2 are not taken into account. The
majority vote method with a moving window was effective for improving the quality of
classified maps, and the method with a suitable window size was able to suppress the
salt-and-pepper noise caused by false detections.

It was difficult to collect reference data for the accuracy assessment of cropland burned
area since cropland straw burning was geographically small and temporally dynamic.
Visual interpretation proved to be effective in the accuracy assessment of the burned area in
previous studies [18,29,48]. We generated 700 random samples with the random stratified
sampling scheme. After we visually checked and removed incorrect points on edges, there
remained 606 sample points. We interpreted all the validation sample points based on
comparison with pre-fire and post-fire images to identify whether the pixel was burned or
not, and the corresponding Google Earth high resolution images in the fire seasons also
aided in the visual interpretation process. In addition, we considered the neighboring
pixels in spatial dimension to help the visual interpretation. Based on these validation
sample points, we computed OA, PA, and UA with the optimal threshold of 3 × RMSE
for mapping the annual cropland burned area. We further compared our cropland burned
area map with MCD64A1 burned area product and GABAM 2015 burned area product to
investigate the capability of our cropland burned area detection method.

3. Results
3.1. Burned Area Detection by BAI Time Series

In our study area, straw burning showed a clear temporal pattern, and it could be
divided into three patterns by fire seasons within the whole year. The fire occurred only
in spring or autumn, or in both periods. Figure 4 shows the process of detecting burned
area for a cropland pixel time series with BAI values in the multi-harmonic model, and all
burned pixels were detected after four iterations. We observed that burned pixels exhibited
higher BAI values than unburned pixels, and they turned out to be outliers when fitting the
multi-harmonic model. During the fourth fitting process, no burned pixels were detected,
so the iteration terminated. In addition, the dates of all the detected outliers revealed
that the pixels appeared during the autumn fire season in our study area, and they were
regarded as potential burned pixels.

However, the difference between the old burned patches that occurred in the previous
year and the unburned patches were smaller than the thresholds, so it was difficult to
accurately extract the old burn scars in the fire season. Figure 5 illustrates the old and new
burned patches detection in the spring fire season. We selected three points A, B, and C to
illustrate the detection results with cropland pixel BAI time series. Points A and B were
detected as burned pixels which occurred on 4 April 2015 and 26 March 2015, respectively,
indicating a progressive burning in the spring fire season. Point C is located at the place
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with an old burn scar that occurred and remained from autumn fire season in the previous
year, and our method was invalid to detect this type of burned pixel.
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Figure 6 shows the burned area detection results for the BAI time series with different
land cover types. From the three multi-harmonic model fitting curves, we observed that the
trends of BAI values for built-up area and cropland were similar, leading to false detections
in cropland burned area monitoring. Moreover, the water showed much higher mean and
abnormal BAI values than other land cover types. Additionally, if pixels with high BAI
values fall into fire seasons, then those pixels would be falsely detected and regarded as
burned pixels. Thus, a land cover mask based on the land cover classification result is
needed to exclude the pseudo detections in water and built-up area.
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3.2. Accuracy Improvement via Land Cover Mask and Spatial Information

Figure 7 illustrates the effect of the land cover mask and spatial information on the
autumn burned area map. We observed that the incorporation of land cover masks and
spatial information eliminated some isolated burned pixels, and the mosaics in large burn
scars were filled. Some slightly scattered burn scars were combined into larger patches.
We extracted three sub-regions (A, B, and C) from the Landsat images for a demonstration
in detail. The burned area maps before improvement were directly generated from the
multi-harmonic model fitting algorithm without applying any accuracy improvement



Remote Sens. 2021, 13, 5131 11 of 17

method, and the burned area maps after improvement were applied through the land
cover mask and spatial information. For sub-regions A and B, land cover masks played a
major role in reducing false detections in water and built-up area, respectively. In contrast,
for sub-region C, the majority vote method considering spatial information achieved a
considerable improvement in suppressing noises in unburned areas. The comparison
between before and after improvement of burned area maps showed that many small
scattered false detections were removed.
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3.3. Accuracy Assessment

The performances of cropland burned area between our identification result and the
other two products are compared in Figure 8. Among all the derived maps for cropland
burned area, our cropland burned area map incorporating Landsat time series with multi-
harmonic model achieved the highest OA of 92.9%, followed by GABAM 2015 product
(68.5%), while MCD64A1 had the lowest OA (67.3%). The comparison of different products
provides an insight into the agreement level between our cropland burned area result
and other products in this study area. The PA and UA values demonstrated considerable
variations among the three different cropland burned area detection results. The PA value
for our cropland burned area result was 84.2%, much higher than PA values of 20.4% and
22.5% from the MCD64A1 product and GABAM 2015 product, respectively, indicating
that our result had the capability of detecting small cropland burn scars. In contrast, small
patchy burn scars were neglected and considered as unburned in products of MCD64A1
and GABAM 2015, revealing large omission errors. We clearly observed that UA values for
cropland burned area derived from our method, the GABAM 2015 product and MCD64A1
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product had a small variation, with values of 95.9%, 72.5%, and 67.2% respectively, sug-
gesting lower commission errors with all the derived cropland burned area maps. The UA
values were constantly higher than the PA values for the three products, however, the crop-
land burned area from our algorithm had a similar PA and UA value with the best accuracy
performance, demonstrating a good balance between the two accuracy evaluation indices.
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3.4. Comparison with MCD64A1 and GABAM 2015 Burned Area Products

Figure 9 illustrates the spatial comparison of the cropland burned area maps from
our algorithm, MODIS burned area product and GABAM 2015 product in our study area.
Overall, all the burned area maps shared similar spatial distribution in cropland burned
area over large areas, although there are substantial differences in some small areas among
different products. Specifically, cropland burned area map based on our algorithm correctly
captured most smaller patches of burned area than other products. A Landsat 8 images
with obvious burn scars acquired on 5 November 2015 was selected as the demonstration
image, and it can be seen that the burned area map generated from our algorithm revealed
a higher detection accuracy and more details than the MCD64A1 product on this specific
day. In addition, large and severe burn scars clustered in the center of our study area
were able to be identified by GABAM 2015 product. However, the burn scars around the
corners were not observed from GABAM 2015 product, which were identified by our result.
Furthermore, the MCD64A1 product failed to capture the small and fragmented burn scars
because of the coarse spatial resolution.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 9. Comparison of different cropland burned area maps for the year 2015: (a–c) true-color composite Landsat 8 
image acquired on 5 November 2015, and cropland burned area maps based on Landsat 8 image with our algorithm and 
MCD64A1 product on the same day. Panels (d–f) show derived annual cropland burned area maps with our algorithm, 
GABAM 2015 product, and MCD64A1 product, respectively. The derived annual cropland burned area map and the 
GABAM 2015 map have a 30 m spatial resolution while the MCD64A1 product has a 500 m spatial resolution. 

4. Discussion 
In this study, we presented a time series-based multi-harmonic model to detect 

cropland burned area, and the performance was compared with the products of 
MCD64A1 and GABAM. We observed that our results had more similarity with the other 
two products in large burn scars than in small and fragmented burned areas, which was 
consistent with previous studies [17,49]. The discrepancy between our cropland burned 
area and MCD64A1 product was due to the difference in spatial resolution, as the resolu-
tion of the MCD64A1 product failed to capture small and patchy burned areas, indicating 
the impact of a higher spatial resolution on cropland burned area mapping and monitor-
ing. Thus, a fine spatial resolution burned area product is required for solving the prob-
lem, and the GABAM product was a global burned area map with 30 m resolution based 
on Landsat images and Google Earth Engine. However, the GABAM product showed a 
poor accuracy in capturing seasonal fires over croplands in our study area, which was 
similar to the results reported by Long et al. [20]. The large uncertainty in cropland burned 
area mapping with GABAM product was due to the spectral confusions between burned 
area over cropland and the area that was harvested or plowed. The multi-harmonic model 
we employed was sensitive to abrupt land cover changes [41], and the features of BAI in 
capturing post-fire charcoal signal further facilitated cropland burned area identification. 
The advantages of this algorithm helped us to extract not only severe and large burned 
scars, but also slight and fragmented ones. 

The change detection method using time series data can eliminate many noises 
caused by the effects of cloud, cloud shadow, and snow [42]. But some pseudo burn scars 
were falsely detected due to the threshold in the multi-harmonic fitting process. To solve 
this problem, a temporal restriction accounting for the fire seasons was adopted in our 
cropland burned area detection method. The temporal restriction helped exclude false 

Figure 9. Comparison of different cropland burned area maps for the year 2015: (a–c) true-color composite Landsat
8 images acquired on 5 November 2015, and cropland burned area maps based on Landsat 8 images with our algorithm and
MCD64A1 product on the same day. Panels (d–f) show derived annual cropland burned area maps with our algorithm,
GABAM 2015 product, and MCD64A1 product, respectively. The derived annual cropland burned area map and the
GABAM 2015 map have a 30 m spatial resolution while the MCD64A1 product has a 500 m spatial resolution.

4. Discussion

In this study, we presented a time series-based multi-harmonic model to detect crop-
land burned area, and the performance was compared with the products of MCD64A1 and
GABAM. We observed that our results had more similarity with the other two products
in large burn scars than in small and fragmented burned areas, which was consistent
with previous studies [17,49]. The discrepancy between our cropland burned area and
MCD64A1 product was due to the difference in spatial resolution, as the resolution of
the MCD64A1 product failed to capture small and patchy burned areas, indicating the
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impact of a higher spatial resolution on cropland burned area mapping and monitoring.
Thus, a fine spatial resolution burned area product is required for solving the problem,
and the GABAM product was a global burned area map with 30 m resolution based on
Landsat images and Google Earth Engine. However, the GABAM product showed a poor
accuracy in capturing seasonal fires over croplands in our study area, which was similar
to the results reported by Long et al. [20]. The large uncertainty in cropland burned area
mapping with GABAM product was due to the spectral confusions between burned area
over cropland and the area that was harvested or plowed. The multi-harmonic model
we employed was sensitive to abrupt land cover changes [41], and the features of BAI in
capturing post-fire charcoal signal further facilitated cropland burned area identification.
The advantages of this algorithm helped us to extract not only severe and large burned
scars, but also slight and fragmented ones.

The change detection method using time series data can eliminate many noises caused
by the effects of cloud, cloud shadow, and snow [42]. But some pseudo burn scars were
falsely detected due to the threshold in the multi-harmonic fitting process. To solve this
problem, a temporal restriction accounting for the fire seasons was adopted in our cropland
burned area detection method. The temporal restriction helped exclude false detections
caused by mist and thin clouds outside fire seasons, which was also employed successfully
for burned area detection in a savanna area by Liu et al. [29]. In addition, cropland residue
burning was commonly fragmented within a short duration and less obvious given the fast
vegetation recovery. Those factors made it difficult to capture small and low severity burn
scars and caused omission errors. To minimize the influence of temporal resolution, two
tiles (path/row: 121/027 and 120/028) of Landsat time series data were exploited to make
the Landsat time series image stacks denser, which could help reduce temporal gaps for a
higher observation frequency. In the future study, a combination of Landsat and Sentinel-2
datasets can provide a good opportunity to cope with the observation limitation, as the
temporal resolution of combined datasets was less than 5 days [20,50].

Another error arose from the spectral dimension, as different land cover types had
similar BAI values to the burned area, and a small value change could amplify the result of
the index when performing band ratio operation [50], resulting in noises in our burned
area map. Therefore, a land cover mask was applied to minimize the negative effect, and
it was worth considering the accuracy of the land cover mask as it could directly affect
our detection result. In addition, the combination of multiple spectral indices can also
be an alternative to cope with the confusion between burned and unburned areas [33,51].
Moreover, some isolated false detections appeared as salt-and-pepper noises, and a spatial
filter with a moving window proved to be useful for reducing the noises and refining
the results by following the majority vote rule [52]. However, this method only consid-
ers simple spatial relationships within a certain distance, and it has an erosion effect in
morphology, which may remove pixels on object boundaries and decrease burned area
detection accuracy. So, an object-oriented algorithm considering spatial information could
be applied in future studies.

The combination of Landsat time series and harmonic model was successfully con-
ducted for burned area detection in savanna area by Liu et al. [29]. The cropland burned
area results further confirmed the effectiveness of this method with a multi-harmonic
model for identifying cropland burned area. Moreover, our cropland burned area detection
method exhibited great potential in coping with heterogeneous burn severity patterns,
as it considered the temporal features from the whole year and was sensitive to sudden
changes caused by fires. Another advantage is that training sample selection is not needed
in our method, and our derived result could even provide training seeds for region growth
algorithm and image classification. However, the threshold value and fire season can vary
spatially, and thus need to be selected and defined according to the specific region that
is being analyzed. Furthermore, the lack of precise burned date is one limitation of our
method, because the temporal gaps can cause lagged observations of the burning events,
and also affect the detection accuracy especially when the recovery time of vegetation
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was shorter than the satellite revisiting period. The proposed method was successfully
conducted under the assumption that no land cover changes occurred in our study area
during this year. Therefore, it is recommended that this method should be applied with
caution in areas where repeated land cover changes may occur.

5. Conclusions

In this study, we investigated the capacity of a multi-harmonic model based on the BAI
time series in detecting burned areas over croplands in northeastern China. Our derived
map of the cropland burned area from 2015 with 30 m resolution was generated with all
available Landsat 8 images, and the detection result was compared with MODIS burned
area product and GABAM 2015 product. Among all the detection results, our cropland
burned area result based on the multi-harmonic approach outperformed the other two
burned area products and revealed the effectiveness of this approach. By incorporating
the fire seasons and the land cover mask based on land cover classification, the false
identifications due to cloud shadows, thin clouds, and mist outside the fire seasons and non-
cropland land cover areas can be further excluded, increasing the detection accuracy. Based
on a spatial filter with a 3 × 3 moving window, we eliminated the isolated false detection
pixels by following the majority vote rule. Our approach provides a new perspective for
monitoring cropland burned areas in a timely and feasible way by incorporating temporal
and spatial information. Future research should evaluate the suitability of our approach in
other geographical areas and environmental conditions.
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