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Abstract: In recent years, image classification on hyperspectral imagery utilizing deep learning algo-
rithms has attained good results. Thus, spurred by that finding and to further improve the deep learn-
ing classification accuracy, we propose a multi-scale residual convolutional neural network model
fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral
image classification. The suggested technique comprises a multi-staged architecture, where initially
the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utiliz-
ing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is
input to our proposed ECA-NET deep network, which exploits the advantages of its core components,
i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the
proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall,
the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher
compared to the corresponding accuracy of current networks such as 3D convolutional neural net-
work (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum
joint deep network (SSRN).

Keywords: hyperspectral image classification; convolutional neural networks; attention mechanism;
multi-scale; residual network

1. Introduction

A hyperspectral image presents a target region in a spectrum of continuous and narrow
bands, containing both spatial and spectral feature information at a pixel-level resolution [1].
Hyperspectral imagery is widely used in various applications such as urban planning,
agricultural development, and environmental testing [2]. Technically, a hyperspectral image
is a three-dimensional image composed of an image along several spectral dimensions.
The analysis of a hyperspectral image’s spatial and spectral characteristics can effectively
contribute to the classification of ground objects. However, hyperspectral images are prone
to the Hughes phenomenon due to the complexity of their structure and suffer from a
small number of labeled samples affecting the overall performance of hyperspectral image
classification. Due to these deficiencies, hyperspectral image classification still poses a hot
research topic.

Thus, the literature presents several attempts toward hyperspectral image classifica-
tion. For example, traditional classifiers are utilized such as the support vector machine
(SVM), K-nearest neighbor algorithm, and multinomial logistic regression (MLR) [3–6].
These algorithms mainly exploit the spectral information of the image due to its high dimen-
sionality. Principal component analysis (PCA), independent component analysis (ICA), and
image sparse representation (SR) methods are also used to process the spectral information,
by extracting its main features and reducing computational complexity [7–11]. However,
as opposed to deep learning networks, these traditional methods are not able to extract
deep-level features, imposing a relatively low classification accuracy. The deep learning
method can extract the abstract-level information of the image, so it is more effective to
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deal with the hyperspectral classification problem. Indeed, literature offers several deep-
learning-based hyperspectral image-classification solutions. In [12], the authors propose a
stacked autoencoder (SAE), while the work of [13] presents a convolutional neural network
(CNN) architecture appropriate for hyperspectral image classification. Both methods have
improved the accuracy of hyperspectral classification compared to the classic computer
vision type of approaches presented earlier. Further attempts utilizing deep networks
involve a two-dimensional CNN (Conv2D-CNN) to extract spectral–spatial feature infor-
mation, combined with an image dimensionality reduction algorithm [14,15]. To extract
better spatial and spectral features, [16–18] use 3D convolution to extract hyperspectral
image features, and [19–21] fuse a residual with an attention deep network. Methods
such as attention mechanism [22] and joint space–spectral features [23] that improve the
convolutional neural network classification accuracy and also increase the number of the
network parameters have also been used. Finally, in [24] the authors utilize the method
of generative adversarial networks (GANs), in [25] the transfer learning technique, in [26]
2D and 3D convolutions, respectively, in [27–29] multi-scale adaptive feature extraction,
combine these methods with hyperspectral classification problems to further improve the
hyperspectral image classification performance.

However, even though all these methods have achieved an acceptable classification
performance, the classification accuracy still needs to be further improved. Spurred by that,
this paper proposes a multi-scale residual convolutional neural network that integrates an
attention mechanism, embeds the lightweight and improved channel attention mechanism
proposed by Wang et al. [30], i.e., the efficient channel attention network (ECA-NET),
and uses local cross-channel interaction without dimensionality reduction. This strategy,
through the adaptive one-dimensional convolution, effectively extracts the spatial and
spectral features of the image and reduces the redundancy of the training sample infor-
mation. Convolutional kernels with different scales and sizes are used along with a novel
residual structure, and the space–spectrum features of the image are extracted multiple
times. Overfitting is effectively prevented by employing within our deep learning model
regularization and smoothing normalization strategies on multiple layers. Experiments on
the Pavia University (UP), Kennedy Space Center (KSC), and Indian Pines(IN) datasets
highlight the appealing classification performance of our method.

The remaining part of the paper is organized as follows: Section 2 presents the sug-
gested deep learning hyperspectral image-classification strategy, while Section 3 demon-
strates the classification capabilities of our method on three datasets. Finally, Section 4
concludes this paper.

2. Multi-Scale Residual Network Model Integrating Attention Mechanism

Hyperspectral images present high spectral resolution along with a large amount
of redundant information such as spatial, inter-spectrum, and band correlation. Thus,
in this work, we suggest a multi-scale residual convolutional neural network model to
extract image features from different scales and multiple times, which greatly improves the
classification accuracy on hyperspectral images. The core components of the suggested
deep network are presented in the following paragraphs.

2.1. ECA-NET Block

The efficient channel attention network (ECA-NET) is an improved attention mecha-
nism network for the squeeze and excitation network (SE-NET) [31]. Its core strategy is to
use non-dimensionality reduction local cross-channel interaction and use one-dimensional
convolution instead of SE-NET’s dimensionality reduction/upgrading mechanism to
reduce the number of network parameters. ECA-NET reduces the model complexity,
manages output feature channels with different weights, and achieves the extraction of
important features within the image. The ECA-NET network structure is shown in Figure 1.
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Figure 1. Efficient channel attention network (ECA-NET) block. 
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Figure 1. Efficient channel attention network (ECA-NET) block.

For the feature map with an input dimension of {W, H, C} along the corresponding
dimension, ECA-NET initially performs a global average pooling (GAP) [32] operation,
which reduces the number of parameters and integrates the spatial information of the
feature map. A reshape operation is carried out to obtain a matrix of size {1, 1, c}. The second
matrix with the shape {1, 1, c} is obtained via a one-dimensional convolution process, and
the last matrix is operated by the fully connected layer and the sigmoid activation function
and then output. Finally, the ECA-NET output feature is the multiplication of the original
feature map {W, H, C} with the feature map {1, 1, c}. In this work, we used the ECA-
NET with the improved attention mechanism to extract useful features that are associated
with the target feature classes and ultimately produce output feature information with
more characterization capabilities that fully combine the space–spectrum features of the
hyperspectral images.

2.2. S2A Block

The Spectral-Spatial Attention (S2A) block [33] combines the SE-Net structure with
the residual structure and uses two convolution kernels of different sizes to perform
deep separable convolution on the input feature map. The feature map obtained by the
convolution kernel is transposed and multiplied. Finally, the latter feature map is connected
with the residual network that has an attention mechanism to realize the extraction of
spatial and spectral feature information of the image. The S2A network structure diagram
is shown in Figure 2.
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Specifically, the SA2 block comprises three parallel processing subnetworks, the output
of which is ultimately fused into a single three-dimensional feature map. Given the feature
map with dimensions {a, a, h}, it is input in the first subnetwork after two-dimensional
convolution, and it undergoes two depth-separable convolutions with a convolution kernel
of (1*1), producing two feature maps of constant size. The first two channels of the two
feature maps are merged to obtain two matrices of shape {a*a, h}, then, the latter matrix is
transposed and multiplied with the former matrix to obtain the {a*a, a* a} matrix, which is
output from the first subnetwork through a Softmax activation function. Additionally, in the
second subnetwork, the input feature map is subjected to two-dimensional convolution
twice to obtain the shape {a, a, h2} feature map, and the first two channels are merged to
obtain the shape {a*a, h2} matrix. In the third subnetwork, the operation is the same as the
first subnetwork, the input matrix {a, a, h} is subjected to a two-dimensional convolution
and then two depth-separable convolutions to obtain two features. The difference from the
first subnet is that this time the former matrix is transposed, and the latter is multiplied to
obtain a matrix of shape {h2, h2}, which is then output by the Softmax activation function.
Finally, the three distinct outputs of the corresponding subnetworks are multiplied forming
a new matrix {a*a, h2}, which is then reshaped to an {a, a, h2} matrix. After passing the
input feature map through the two-dimensional convolution with filters h2 again, a new
feature map with shape {a, a, h2} is obtained. Ultimately, the newly obtained feature
map, the feature map output by the second subnetwork after the second convolution and
feature map of three subnetworks’ multiplied output are added together to obtain the final
feature map and is input to a batch standard normalization (BN) [34] function, a ReLU [35]
activation function, and a MaxPooling operation to produce the final output.

The SA2 block employs several convolutions with different kernel sizes, and also
transpose multiplication operations, to obtain matrices containing spatial and spectral
features that are connected by a residual structure to better capture the relationship between
the classified features and the spectral information.

2.3. Residual Convolutional Layer Structure (ECA_Residual_NET)

Considering that a deeper network may cause gradient dispersion, an improved
residual structure was used to build a neural network model, i.e., the ECA residual net.
This structure can retain weak image information, effectively deepen the neural network,
extract high-level abstract feature information of the image without increasing the number
of network parameters, and solve the problem of network degradation. This network
structure is presented in Figure 3. Given an input feature of {c, c, d}, it undergoes a
batch normalization (BN) operation, which greatly improves the processing speed of the
subsequent data information. The output is then input to a two-dimensional convolutional
layer utilizing a kernel of (3, 3) with a step size of a, and a ReLU activation function.
The output then passes through a BN process. The latter convolutional BN process is
repeated, and then, the output passes through an ECA-NET feature extraction module.
The ECA-NET output result is added to the feature map that passed the BN layer for
the first time, and ultimately the output is provided by a ReLU activation function. It is
worth noting that the output result assigns lower weights to insensitive features in the
hyperspectral domain and higher weights to abstract deep features.
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2.4. CRE_Block

The CRE_Block comprises a two-dimensional convolution process, a ReLU activation
function, a batch normalization, and an attention mechanism (ECA_NET) to aggregate the
spatial spectrum characteristics of the image. The module structure is depicted in Figure 4.
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2.5. Overall Network Structure of the Suggested Deep Classification Technique

The proposed deep network architecture uses the PCA algorithm to separate and
extract the image space–spectrum features for the first time, and then uses the S2A module,
which contains the attention mechanism and the improved residual network structure, to
extract the spatial and spectral features of the image multiple times. Additionally, in the
middle of the model, we also exploit the ECA-NET network, and finally perform a feature
fusion process to merge the features from the distinct subnetwork, e.g., S2A module, ECA-
NET, etc., and input the fused feature to a fully connected layer for classification. The
proposed model structure is shown in Figure 5.

We utilize the PCA method to reduce the image spectral dimensions to 3 and 20 and
select patches of different sizes to create two inputs (Input_1, Input_2) with size {27,27,3}
and {7,7,20}, respectively. The feature map with the large patch size and the small spectral
dimension, i.e., Input_2, contains more spatial feature information, while the feature map
with the small patch size but large spectral dimension contains more spectral feature
information, i.e., Input_1.

Initially, we input to our architecture the Input_1 feature map and extract the space–
spectrum feature information of the image through an S2A block module with 128 filters
and convolution kernels of (1,1) and (5,5). The output tensor of the S2A block is {13, 13,
128}, which is then input to the subnetworks Net_1 and Net_2, respectively. The Net_1
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network first consists of an S2A block module with 64 filters and convolution kernels
of (1, 1), (3, 3), and comprises of two CRE modules followed by MaxPooling operations.
Ultimately, the output shape is of this subnetwork is {3, 3, 64}. Regarding the Net_2
subnetwork, the Input_1 feature tensor is input to two ECA_Residual_NET modules and
then passes through two CRE modules and MaxPooling operations to obtain an output
feature map (map2) of size {3,3,64}. Considering the Input_2 feature map, it is initially
input to the two CRE modules to create a feature map of {7, 7, 192} that is sent to Net_3
and Net_4, respectively. The Net_3 network contains two CRE modules with different
parameters followed by a MaxPooling operation that outputs a feature map (map3) with
shape {3, 3, 64}. The Net_4 network considers an S2A block module with 64 filters and (1, 1),
(3, 3) convolution kernels followed by a MaxPooling layer, to ultimately create an output
feature map (map4) with shape {3, 3, 64}. Finally, the four output feature maps (maps) are
concatenated to realize the multi-scale feature extraction of the hyperspectral image, first
through the global average pooling layer (GAP), and then through the two fully connected
layers with two parameters (the variable g is used to represent the number of layers in
the legend) respectively of 200, 100. The connection layer adds the sigmoid activation
function, and finally, the hyperspectral image classification information is obtained through
a fully connected layer (the variable h represents the classification type) plus the Softmax
activation function output. This paper extracts hyperspectral image information from
four different scales for many times, and finally connects the extracted features, which
effectively improves the accuracy of the hyperspectral image classification problem.
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3. Experimental Platform and Experimental Result 
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3. Experimental Platform and Experimental Result

All experiments are performed on a Windows 10 system, with an Intel Core i7-9600
CPU, an Nvidia GeForce GTX2060S GPU with 8 GB video memory, using the TensorFlow2.3
deep learning framework and a Python 3.7 compiler. During trials, we challenge the
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classification performance of the proposed network model against current hyperspectral
classification models on various datasets. Additionally, we also analyze the influence of
various hyperparameters on the classification performance of our model. The evaluation
metrics used are the overall accuracy (OA), the average classification (AA) accuracy, and the
Kappa coefficient.

3.1. Introduction of the Dataset
3.1.1. Pavia University Dataset

The Pavia University dataset (UP) is a collection of hyperspectral images obtained
from Pavia, Italy, with an example presented in Figure 6a. The spatial image size is
610 × 340 pixels, while the spectral information has 103 effective bands, and the wavelength
range is 430~860 nm. The spatial resolution is 1.3 m, including nine types of ground features
such as grass, asphalt, bricks, etc. The real ground feature map is shown in Figure 6b,
with 42,776 pixels marked in total. During trials, as in work [20], we randomly select 10%,
10%, and 70% of the whole labeled samples as training, validation, and testing sets for the
datasets. The dataset feature types, along with the training and test set sample information
are shown in Table 1.
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Figure 6. Pavia University dataset, (a) original image, (b) mark map of real ground objects.

Table 1. Training validation and testing sample numbers for the Pavia University dataset.

Number Class Training Validation Test Total Samples

1 Asphalt 663 663 5305 6631
2 Meadows 1864 1864 14,921 18,649
3 Gravel 209 209 1681 2099
4 Trees 306 306 2452 3064
5 Sheets 134 134 1077 1345
6 Bare Soil 502 502 4025 5029
7 Bitumen 133 133 1064 1330
8 Bricks 368 368 2946 3682
9 Shadows 94 94 759 947

Total 4273 4273 34,230 42,776
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3.1.2. KSC Dataset

The KSC dataset is a hyperspectral imagery collection obtained from the Kennedy
Space Center. An example is shown in Figure 7a. The spectral information has a total of
176 effective bands, the spatial image size is 614 × 512 pixels, and the wavelength range
is 400~2450 nm, including scrub, oak hammock, slash pine, and 13 other class categories.
The ground truth feature map is shown in Figure 7b, where a total of 5211 pixels are labeled.
During trials, as in work [20], we randomly select 20%, 10%, and 70% of the whole labeled
samples as training, validation, and testing sets for the datasets. The dataset feature types,
along with the training and test set sample quantity information are shown in Table 2.
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Figure 7. KSC dataset, (a) original image, (b) mark map of real ground objects.

Table 2. Training validation and testing sample numbers in KSC.

Number Class Training Validation Test Total Samples

1 Scrub 152 76 533 761
2 Willow swamp 48 24 171 243
3 Cabbage palm 50 25 181 256
4 Cabbage oak 50 25 177 252
5 Slash pine 32 16 113 161
6 Oak hammock 46 23 160 229
7 Hardwood swamp 20 10 75 105
8 Graminoid marsh 86 43 302 431
9 Spartina marsh 104 52 364 520
10 Cattail marsh 80 40 284 404
11 Salt marsh 84 42 293 419
12 Mud flats 100 50 353 503
13 Water 186 93 648 927

Total 1038 519 3654 5211

3.1.3. Indian Pines Dataset

The Indian Pines dataset (IN) was collected in Indiana, USA. An example of that
dataset is shown in Figure 8a. The spectral information has a total of 200 effective bands,
the spatial image size is 145 × 145 pixels, the wavelength range is 400~2500nm, and the
spatial resolution is 20 m. This dataset includes 16 feature categories such as alfalfa, corn,
oats, etc. The ground truth feature map is shown in Figure 8b, with 10,249 pixels labeled.
Similarly, to the previous datasets, during our experiments, as in work [20], we randomly
select 20%,10%, and 70% of the whole labeled samples as training, validation, and testing
sets for the datasets. Table 3 shows the types of object classes in the dataset, the number of
samples in the training set, and the test set.
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Figure 8. Indian Pines dataset, (a) original image, (b) mark map of real ground objects.

Table 3. Training validation and testing sample numbers in Indian Pines.

Number Class Training Validation Test Total Samples

1 Alfalfa 8 4 34 46
2 Corn—no till 284 142 1002 1428
3 Corn—min till 166 83 581 830
4 Corn 46 23 168 237
5 Grass/pasture 146 73 511 730
6 Grass/tress 96 48 339 483
7 Grass/pasture—mowed 6 3 19 28
8 Hay—windrowed 94 47 337 478
9 Soybeans—no till 194 97 681 972

10 Soybeans—min till 490 245 1720 2455
11 Soybeans—clean till 118 59 416 593
12 Wheat 40 20 145 205
13 Woods 252 126 887 1265
14 Buildings–grass–trees 76 38 272 386
15 Stone–steel towers 18 9 66 93
16 Oats 4 2 14 20

Total 2038 1019 7192 10,249

3.2. Analysis of Experimental Results

During trials, we challenge our proposed deep network architecture against PCA [7],
SVM [5], two-dimensional convolutional neural network (2D-CNN) [14], three-dimensional
convolutional neural network (3D-CNN) [18], three-dimensional residual convolution
structure (RES-3D-CNN) [36], and the space–spectrum joint deep network (SSRN) [20].

3.2.1. Parameter Setting

In this section, we analyze the interplay between the parameter setup and the classifi-
cation performance of the proposed model. The tuned parameters include learning rate,
batch_size, and training sample ratio. Regarding learning rate, it controls the speed of the
gradient descent during the training process, with the appropriate learning rate parameters
effectively controlling the convergence ability and speed of the model. We evaluate our
network by using six learning rates with different sizes, i.e., 0.00005, 0.0001, 0.0003, 0.0005,
0.001, and 0.005. The test results are shown in Figure 9, from which we observe that when
the learning rate is 0.0003, the classification performance on the three datasets is better.
Additionally, tuning the learning rate parameter has less impact on the accuracy of the
Pavia University dataset and a greater impact on the Indian Pines dataset.
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Figure 9. Overall accuracy (OA, %) of the proposed network with different learning rates in Indian
Pines (IN), Pavia University (UP), and KSC dataset.

The next trial investigates how the batch size affects the overall accuracy of our
method. The batch size refers to the number of samples selected during training. Choosing
a suitable batch_size can effectively improve the memory utilization and improve the
convergence accuracy of the model. We challenge the performance on batch_size of 16, 32,
64, and 128, with the corresponding results presented in Figure 10. Our trials demonstrate
that when the batch_size is 16, the classification attained on the three datasets is better.
However, in the case of fewer training samples, a smaller batch_size will perform better.
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Figure 10. OA (%) of the proposed network with different batch_size in IN, UP, and KSC dataset.

Our final trial considers utilizing 5%, 10%, 20%, 30%, and 40% of the sample data as
the training set. After our model being trained on the respective sample dataset, we test
our network, with the corresponding results presented in Figure 11. From the latter
figure, we conclude that as the training samples increase, the overall accuracy of our
model is increasing. To compare with other networks, we adopt the strategy of [20],
and we randomly select 20%, 10%, and 70% of the whole labeled samples as training,
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validation, and testing sets, respectively, for the Indian Pines and KSC datasets. For the
Pavia University dataset, we employ a 10%, 10%, and 80% strategy.
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3.2.2. Pavia University Dataset

Figure 12 shows the accuracy curve of each classification model in the Pavia University
dataset. It can be seen that our deep network model converges quickly, and the classification
accuracy is higher compared to the competitor techniques. The model is trained on the
Pavia University dataset in just 3 minutes and 31 seconds. Table 4 shows the classification
accuracy of each model for all nine object classes. From that table, we observe that our
classification network manages 99.67% OA, 99.21% AA, and the Kappa coefficient is 0.9971.
Compared to the competitor algorithms, our method attains higher classification results.
Specifically, the OA of the PCA algorithm is 87.23%, the AA is 88.15%, and the Kappa
coefficient is 0.85. Under the same conditions, the overall classification accuracy of the
SVM algorithm compared to PCA is increased by 3.3%, and the average classification
accuracy is increased by 2.1%, but still inferior to our method. The OA of 2D-CNN is
93.33%, AA is 94.17%, and the Kappa coefficient is 0.92, while the OA of the 3D-CNN
is 94.68%, AA is 95.37%, and the Kappa coefficient is 0.94. Compared to the traditional
algorithms, the classification accuracy of both CNN methods is greatly improved reflecting
the superiority of deep learning in the hyperspectral classification problem. Compared
with 3D-CNN, the overall classification accuracy of the 3D residual network is increased by
3.1%, and the average classification accuracy is increased by 2.8%. SSRN network presents
an appealing classification performance attaining 98.17% OA, 98.64% AA, and a Kappa
coefficient of 0.98. We bolded the data with the highest accuracy of feature classification.
The experimental results show that the overall performance of our proposed network
model is better than other models.

Figure 13 depicts some classification examples per method. It can be seen that the
PCA and SVM classification algorithms have poor accuracy and present more misclassi-
fications. The 2D-CNN classification results are slightly improved but still contain many
misclassifications. The 3D-CNN, RES-3D, and SSRN models attain improved classification
accuracy. However, the classification results of the suggested deep network architecture
show an even more accurate classification, as they do not contain salt and pepper noise,
and the boundaries are smooth and fit.
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Table 4. Classification results of different models in Pavia University.

Class PCA SVM 2D-CNN 3D-CNN RES-3D SSRN My_Net

Asphalt 76.65 85.57 93.80 0.97.15 96.18 98.84 98.74
Meadows 88.86 86.56 89.43 93.43 98.10 97.23 100.00

Gravel 92.24 89.43 92.27 94.48 97.21 99.82 99.56
Trees 90.38 92.17 94.13 92.39 95.31 98.15 100.00
Metal 87.56 85.68 90.51 94.37 99.64 99.43 98.83
Soil 85.52 94.79 92.34 96.68 97.72 96.17 100.00

Bitumen 88.67 90.65 94.72 93.48 96.31 96.56 99.32
Bricks 91.73 92.43 95.78 97.76 98.48 100.00 100.00

Shadows 89.86 92.79 91.56 94.34 100.00 98.34 99.67
OA (%) 87.23 90.53 93.33 94.68 97.78 98.17 99.82
AA (%) 88.15 90.25 94.17 95.37 98.17 98.64 99.59

Kappa×100 85.23 89.24 92.48 94.46 97.25 98.76 99.71

3.2.3. KSC Dataset

The accuracy curve of each classification model for the KSC dataset are presented
in Figure 14. It can be seen that as the epoch increases, the classification accuracy rate
is increasing. The model is trained on the KSC dataset in just 1 minute and 43 seconds.
Table 5 shows the precise classification indicators of each method, where the proposed
technique attains the highest metrics compared to the competitor methods, i.e., 99.81% OA,
99.74% AA, and 0.9952 Kappa metric. Additionally, from this table we observe that the
overall accuracy of PCA, SVM, 2D-CNN, 3D-CNN, RES-3D, and SSRN has improved by
17.72%, 11.05%, 9.56%, 6.29%, 2.34%, and 1.65%, respectively, in the KSC dataset examined
here compared to the Pavia University dataset evaluated in Section 3.2.2. Accordingly,
the average accuracy has increased by 18.18%, 10.57%, 8.42%, 5.54%, 2.49%, 1.61%. This trial
shows that RES-3D and the suggested network manage a better classification and highlights
that our method is more suitable for a real landmark map. Classification examples per
method are shown in Figure 15. Our network has started to converge in the 4th Epoch,
and its performance is better than that of other models. Our network model shows better
performance on the problem of hyperspectral image classification.
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Table 5. Classification results of different models in KSC.

Class PCA SVM 2D-CNN 3D-CNN RES-3D SSRN My_Net

Scrub 66.75 90.28 84.42 97.19 97.96 98.46 99.37
Willow swamp 93.51 81.96 79.61 82.38 96.27 96.17 99.82
Cabbage palm 74.43 75.65 89.34 94.24 94.17 98.42 99.86
Cabbage oak 92.38 81.35 94.91 90.18 96.76 99.49 100.00

Slash pine 83.63 92.83 66.48 70.64 98.32 96.34 99.58
Oak hammock 69.43 74.51 73.34 70.37 94.51 100.00 100.00

Hardwood swamp 77.28 79.62 69.64 74.15 99.34 99.37 100.00
Graminoid marsh 76.72 95.83 81.72 90.46 98.94 99.82 99.57

Spartina marsh 82.79 91.92 90.16 95.37 97.85 97.71 100.00
Cattail marsh 81.56 88.14 91.87 98.48 100.00 99.42 100.00

Salt marsh 73.92 91.42 93.16 99.16 98.42 99.45 100.00
Mud flats 69.34 84.48 88.64 98.49 100.00 97.18 99.75

Water 85.16 86.94 95.54 100.00 100.00 100.00 100.00
OA (%) 82.09 88.76 90.25 93.52 97.47 98.16 99.81
AA (%) 81.56 89.17 91.32 94.20 97.25 98.13 99.74

Kappa×100 81.72 88.56 91.92 94.77 97.25 98.64 99.52Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 19 
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3.2.4. Indian Pines Dataset

Figure 16 shows the accuracy curve of each classification model in the Indian Pines
dataset. Overall, the proposed deep classification network has the fastest convergence
and the highest accuracy, and its classification performance is better compared to the
competitor models. The model is trained on the Indian Pines dataset in just 1 minute and
37 seconds. Table 6 shows the precise classification index of each model for 13 classes
of ground objects. From the latter table, we observe that the overall accuracy value of
the proposed network is 24.05%, 18.81%, 13.22%, 5.09%, 1.79%, and 1.10% compared to
PCA, SVM, 2D-CNN, 3D-CNN, RES-3D, and SSRN, respectively. Accordingly, the average
accuracy attained by our model is higher by 24.02%, 18.02%, 14.22%, 5.48%, 2.09%, 1.17%,
respectively, reaching a classification of 99.45% average accuracy and a Kappa coefficient of
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0.9961. The classification results of each model are shown in Figure 17. It can be seen that
the classification effect of PCA, SVM, and 2D-CNN models is poor, with more noise and
speckles. 3D-CNN and RES-3D model classification results are less noisy, which improves
the classification accuracy of these models. SSRN and the suggested network both attain
an appealing classification accuracy. It can be seen from Table 6 that the classifier shows
that the classification accuracy of Corn—min till is slightly lower, while the classification
accuracy of the other classes is higher. In addition, it can be seen from Figure 16 that our
network converges extremely fast and achieved good classification accuracy in the 6th
Epoch, which is also due to other models.
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Figure 16. Overall accuracy curve of different models in Indian Pines dataset.

Table 6. Classification results of different models in Indian Pines.

Class PCA SVM 2D-CNN 3D-CNN RES-3D SSRN My_Net

Alfalfa 72.46 78.53 74.37 91.62 97.38 97.48 100.00
Corn—no till 69.35 82.61 86.61 89.33 95.37 100.00 100.00

Corn—min till 71.58 74.84 91.49 93.97 98.64 99.46 99.25
Corn 81.62 79.71 90.82 95.94 97.92 96.56 100.00

Grass—pasture 67.34 72.67 73.58 82.34 97.97 97.76 100.00
Grass—tress 81.29 85.42 82.65 96.72 99.48 99.48 98.56

Grass—pasture 75.52 81.19 79.37 81.61 95.19 100.00 100.00
Hay—windrowed 77.43 83.51 87.51 79.37 99.41 99.56 100.00

Oats 86.96 83.37 90.43 93.19 97.76 99.12 100.00
Soybeans—no till 80.84 88.28 93.16 97.64 98.84 100.00 99.17

Soybeans—min till 82.61 74.76 95.19 93.28 97.19 99.14 100.00
Soybeans—clean till 76.39 86.51 94.72 98.76 100.00 98.08 100.00

Wheat 85.64 82.43 92.49 99.24 96.15 97.58 100.00
Woods 77.52 75.97 90.84 94.49 98.76 100.00 99.38

Buildings–grass
–trees 84.48 88.91 87.37 89.19 96.14 99.67 98.89

Stone–steel towers 73.47 71.58 86.64 94.64 99.39 98.84 99.38
OA (%) 75.32 80.56 86.15 94.28 97.58 98.27 99.37
AA (%) 75.43 81.43 85.23 93.97 97.36 98.28 99.45

Kappa×100 75.87 80.26 85.64 94.15 97.44 98.52 99.61
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4. Conclusions

This paper studies the application of deep learning for hyperspectral image classifica-
tion. Aiming at the characteristics of a wide range of hyperspectral images, high spectral
resolution, and a large amount of redundant information, a multi-scale residual convo-
lution with ECA-NET is designed. The neural network model extracts image feature
information. The model uses ECA-Net, improved residual network, and other structures
to extract hyperspectral image information multiple times from different scales, can fully
fuse and extract the space–spectrum characteristics of the image and effectively solve the
problems of gradient dispersion and sample information redundancy. We challenge our
suggested classification model against six current classification models, i.e., PCA, SVM, 2D-
CNN,3D-CNN, RES-CNN, SSRN, on the Pavia University, KSC, and Indian Pines datasets,
and demonstrate that our algorithm can effectively classify various object classes and has
certain advantages in dealing with hyperspectral classification problems. Our proposed
method successfully attains 99.82%, 99.81%, and 99.37% overall accuracy, respectively,
on the three different free datasets. All trials demonstrate the superiority of our method
against the competitor ones attaining a high classification accuracy. Future work shall focus
on studying spatial and spectral feature fusion methods to enhance the feature extraction
process, improve the network structure and parameters, accelerate the model convergence,
and reduce network training time.
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