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Abstract: With the rapid development of unmanned aerial vehicle (UAV) and sensor technology,
UAVs that can simultaneously carry different sensors have been increasingly used to monitor nitrogen
status in crops due to their flexibility and adaptability. This study aimed to explore how to use
the image information combined from two different sensors mounted on an UAV to evaluate leaf
nitrogen content (LNC) in corn. Field experiments with corn were conducted using different nitrogen
rates and cultivars at the National Precision Agriculture Research and Demonstration Base in China
in 2017. Digital RGB and multispectral images were obtained synchronously by UAV in the V12, R1,
and R3 growth stages of corn, respectively. A novel family of modified vegetation indices, named
coverage adjusted spectral indices (CASIs (CASI = VI/(1 + FVcover), where VI denotes the reference
vegetation index and FVcover refers to the fraction of vegetation coverage), has been introduced to
estimate LNC in corn. Thereby, typical VIs were extracted from multispectral images, which have
the advantage of relatively higher spectral resolution, and FVcover was calculated by RGB images
that feature higher spatial resolution. Then, the PLS (partial least squares) method was employed to
investigate the relationships between LNC and the optimal set of CASIs or VIs selected by the RFA
(random frog algorithm) in different corn growth stages. The analysis results indicated that whether
removing soil noise or not, CASIs guaranteed a better estimation of LNC than VIs for all of the three
growth stages of corn, and the usage of CASIs in the R1 stage yielded the best R2 value of 0.59, with a
RMSE (root mean square error) of 22.02% and NRMSE (normalized root mean square error) of 8.37%.
It was concluded that CASIs, based on the fusion of information acquired synchronously from both
lower resolution multispectral and higher resolution RGB images, have a good potential for crop
nitrogen monitoring by UAV. Furthermore, they could also serve as a useful way for assessing other
physical and chemical parameters in further applications for crops.

Keywords: RGB; multispectral; coverage adjusted spectral index; vegetation index; vegetation
coverage; random frog algorithm

1. Introduction

Nitrogen is a critical nutrient element for crop growth. The proper application of
nitrogen fertilizer has a significant influence on final crop yield and quality. Leaf nitrogen
in crop canopies is an important indicator that characterizes the nitrogen nutrition status
in crops. Accurate and dynamic estimation of crop leaf nitrogen is of significance for
rationally managing nitrogen fertilization [1,2].

Conventional methods for detecting crop nitrogen usually involve outdoor sampling
and indoor testing, which is not only time-consuming and laborious but also destructive
and lagging. With the development of spectral detection technology, non-destructive

Remote Sens. 2021, 13, 340. https://doi.org/10.3390/rs13030340 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9878-3274
https://doi.org/10.3390/rs13030340
https://doi.org/10.3390/rs13030340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13030340
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/3/340?type=check_update&version=2


Remote Sens. 2021, 13, 340 2 of 17

remote sensing has become an attractive tool for crop nitrogen assessment. For regional-
scale monitoring of crop nitrogen, satellite-based optical remote-sensing technology is
widely used, but at a field scale it is often hindered by cloud cover and high cost [3].
In recent years, family farms have gradually become an important mode of operation
in Chinese agriculture, and there is a great demand for new technologies. As a rapidly
developing technology, with the advantages of high efficiency, low cost, and convenience of
use [4–6], UAVs (unmanned aerial vehicle) have begun to play an active role in agricultural
field management [7–9]. The spatial resolution of UAV images can reach centimeter or
even millimeter scales, which has unparalleled advantages on the field scale for diagnosing
crop nitrogen nutrition in family farms. Recently, there have been many reports on crop
nitrogen assessment using UAVs. Some vegetation indices (VI) and spectral bands from
UAV-based multispectral imagery have been used with machine learning methods to
effectively predict leaf nitrogen content (LNC) in maize [10], and have also been employed
to evaluate the nitrogen accumulation in corn canopies, and map the spatial nitrogen
variation in corn fields [11]. UAV-based hyperspectral data with plenty of shallow bands
had a good performance for evaluating LNC in the different growth stages of wheat [12].
The combined features of vegetation coverage and VIs extracted from UAV-based RGB
images could show some potential for estimating LNC in maize [13]. In addition, UAV-
based images from RGB, multispectral, and thermal sensors have been used to acquire
vegetation and temperature parameters for assessing nitrogen use efficiency in crops [14].

It is noted that UAV images have a higher spatial resolution compared with conven-
tional satellite images, and the problem of soil background affecting crop canopy spectra
is more prominent. Knowing how to decrease the influence of soil noise as much as
possible is vital to the accurate estimation of crop nitrogen by remote sensing [15]. A
few vegetation indices (VIs) have been developed to eliminate or minimize the effects
of soil background. Huete et al. [15] proposed the soil adjusted vegetation index (SAVI)
to describe soil–vegetation systems, and lessen the sensitivity of vegetation indices (VIs)
to soil background. Rondeaux et al. [16] recommended the optimized SAVI (OSAVI) to
increase the response to vegetation, while decreasing the variability from the soil. Due
to changes of soil humidity and solar incidence angle, Major et al. [17] suggested three
modified SAVIs (SAVI2, SAVI3, and SAVI4) to alleviate the influence of soil background. In
the above studies, these VIs were designed to generally decrease soil noise by adding an ad-
justing factor into the combination of both red and near-infrared reflectance bands, usually
suitable for remote sensing images with relatively low spatial resolution or more mixed
pixels. Liu et al. [18] used three threshold methods with RGB digital images from UAV
to separate wheat from soil, and then evaluate nitrogen status in wheat with RGB-based
VIs. Yao et al. [19] developed a coverage adjustment spectral index (CASI), into which
fractional vegetation cover (FVcover) was introduced to monitor LNC in winter wheat with
ground hyperspectral measurements under different soil backgrounds, and obtained a
better accuracy of LNC estimation. In the existing reports on crop nitrogen assessment, the
selected VIs are usually calculated only using the UAV images from a single sensor, even if
there are multi-sensor images acquired synchronously from an aerial platform, and it is
seldom considered that, in terms of the complementary advantages of different sensors
in spatial and spectral resolution, the multiple-sensor images could be simultaneously
applied to extract some VIs for crop nitrogen evaluation. Possibly, VIs using a fusion of
information will have a better performance in assessing nitrogen status in crops.

The above mentioned CASI (CASI = VI/(1 + FVcover)) could decrease the influence
of soil noise, and has been proved to be effective in estimating LNC in wheat, but both
the VI and FVcover in CASI were calculated by ground canopy spectral measurements and
digital pictures, respectively, not using UAV remote sensing images [19]. Hence, it is worth
discussing whether CASI is also adaptable to estimate LNC in corn when using UAV-based
multi-sensor images, and at present little research on this has been conducted. In this study,
CASI was tested to evaluate LNC in corn using UAV multi-sensor images. Digital RGB
and multispectral images were acquired synchronously from UAV sensors at three growth
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stages of corn. Considering that multispectral images have the advantage of relatively
higher spectral resolution, and RGB images are characterized by higher spatial resolution,
the two inputs, VI and FVcover, into CASI were extracted from multispectral and RGB
images, respectively. Thereby, CASI could make use of the complementary advantages of
different sensors in spatial and spectral resolution, and integrated the useful information
from two sensors. This might be helpful to effectively assess nitrogen status in crops.

This study focuses on the potential applications of both UAV multi-sensor images and
the modified vegetation index, CASI, for LNC assessment. The objectives of this study
were: (i) to evaluate the potential performance of CASI for LNC estimates using UAV-based
data; (ii) to compare the ability of the selected existing VI and the corresponding CASI
to reduce the influence of soil noise; (iii) to provide a new concept and method reference
using UAV multi-sensor images to monitor nitrogen status in crops.

2. Materials and Methods
2.1. UAV System

In this present study, an eight-rotor electric UAV carrying digital RGB and multispec-
tral cameras was used to collect images in the study area. A DJI-S1000+ (DJI, Guangdong,
China) was chosen as the UAV flight platform, which weighs 4.4 kg, and has an automated
flight control system allowing for user-defined waypoint operations and custom mission
planning, a maximum flight time of 20 min, and a LiPo battery (6S, 10,000~20,000 mAh).
The digital RGB imager carried by the UAV was equipped with a high-definition Cyber-
shot DSC-QX100 camera (Sony, Minato, Tokyo, Japan) that weighs 179 g and uses an Exmor
R CMOS sensor with an effective 20 megapixels. A Parrot Sequoia (Parrot, USA) multispec-
tral camera which consists of four single-band photoreceptors with 1.2 megapixels was
also mounted on the UAV; the Sequoia camera weighs 107 g and has built-in 64 GB storage
and SD expansion slots. More details about the parameters of the sensors are in Table 1.

Table 1. Main parameters of the sensors mounted on the UAV in this study.

Sensor Name Sensor Type Spectral Band
(nm)

Resolution
(pixels) FOV (H◦ × V◦) Shutter Type Weight (g)

Parrot Sequoia MS 550, 660, 735, 790 * 1280 × 960 62.2 × 48.7 Global 107

Cyber-shot
DSC-QX100 RGB N/A 5472×3648 82.0 × 64.5 Global 179

MS: multispectral, FOV: field of view, H: horizonal, V: vertical. * for convenience, the 550 nm band is denoted by GRE, 660 nm RED, 735 nm
REG, and 790 nm NIR in the subsequent analyses.

2.2. Data Collection and Acquisition
2.2.1. Study Site and Experimental Design

The experiment was conducted at the National Precision Agriculture Research Demon-
stration Base in 2017. The base is located in the northeast of Xiaotangshan Town, Changping
District, Beijing (40◦00′–40◦21′N, 116◦34′–117◦00′E, 36 m). There is a temperate conti-
nental monsoon climate in this area, and the soil is a moist and heavy loam, with a ni-
trate N (NO3-N) content of 3.2–14.8 mg/kg, an ammonium nitrogen (NH4-N) content of
10.2–12.3 mg·kg−1, an available phosphorus content of 3.1–21.2 mg·kg−1, an effective potas-
sium content of 86.8–120.6 mg·kg−1, and an organic matter content of 15.8–20.2 g·kg−1.

The experiment involved 48 plots, among which 24 plots concerned different cultivars
(P) in the north and the other 24 were linked with nitrogen (N) rates in the south, each plot
was 6× 10 m, with a 1 m isolation zone (Figure 1). Eight cultivars were selected for sowing,
with three repetitions for each cultivar in the northern experiment field, and among the
eight cultivars: four (JK9681, JK528, JK9689, and JK665) belong to the JingKe (JK) corn
family in China; two (NK718 and JNK728) are widely cultivated in Northeast China and
the northern regions of North China, and have some differences in disease resistance and
maturity; and another two (JD58 and XY335) are high-yielding and early-maturing varieties
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in North China. For 24 plots in the north of the experiment field, N fertilizer treatment was
the conventional N rate (N2): 193 kg·ha−1. In the southern half of experiment field, the
24 plots were treated with the following N rates: no nitrogen application (N0), 97 kg·ha−1

(N1), 193 kg·ha−1 (N2), and 289 kg·ha−1 (N3), each N treatment was repeated six times,
and the two cultivars (JK968 and ZD958) that are the most widely cultivated in North
China were selected to sow in the 12 plots (Figure 1). Management procedures, such as
pest management, weed control, and phosphate and potassium application in all plots
were carried out according to local practical standards.
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2.2.2. Determination of Leaf Nitrogen Concentration

This experiment covered the three important growth stages, the V12, R1, and R3 stages
of summer corn. V12 is a critical stage during corn vegetative growth, the twelfth leaf
of the corn plant is fully unfolded, and the female ear begins floret differentiation in the
V12 stage. R1 belongs to the transition period from vegetative growth to reproductive
growth, and in this stage the filament of the female ear emerges from the bract. R3 is an
important stage during corn reproductive growth, and the corn seeds turn yellow in the
R3 stage [20]. In the three stages, the differences of corn canopy structure are relatively
obvious and representative, which can result in different influences of the soil background
on canopy spectra.

The collections of ground samples were conducted on 7 and 18 August, and 1 Septem-
ber in 2017. Three representative corn plants were selected in each of the forty-eight plots,
and the aboveground corn plants were collected for subsequent analysis. In laboratory
conditions, the green leaves of the three corn plants from each plot were separated from
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stems and de-enzymed at 105 ◦C for 30 min, and then dried at 80 ◦C to constant weight
for chemical analysis. LNCs (g 100 g−1, %) for the dried leaf samples were determined
by a Kjeldahl meter (Buchi B–339, FOSS, Sweden). Table 2 shows the statistics for the
measured LNC.

Table 2. Descriptive statistics for measured corn leaf nitrogen content (LNC) from three growth stages.

Growth Stage Sample Number Max Min Mean SD CV

V12 48 3.17 1.42 2.38 0.43 0.18
R1 48 3.49 1.17 2.63 0.35 0.13
R3 48 3.36 1.37 2.36 0.45 0.19

SD: standard deviation, CV: coefficient of variation.

2.3. Methods and Principles
2.3.1. Image Acquisition

UAV surveys with two camera sensors collecting digital RGB and multispectral im-
agery were conducted under clear and cloudless weather conditions from 10:00 a.m. to
14:00 p.m. on 7 and 18 August, and 1 September in 2017. The UAV missions investigat-
ing the 48 plots were performed at a flight height of 60 m and a flight speed of 6 m·s−1,
with a tilt angle of 0◦ for the two cameras, and a shortest interval of 2 s between imagery
acquisitions. Both the front overlap and the side overlap of UAV flights were set to 80%.

2.3.2. Image Processing

It has been proven that high-definition digital images can be transformed into new
color spaces by HSV (hue saturation value), and it is very easy to distinguish soil from
vegetation in the HSV-based images [21,22]. In this study, the colors (red, green, blue) of
digital RGB images from the UAV were converted into hue, saturation, and value by HSV,
and then threshold segmentation was used to differentiate between vegetation and soil in
the images. Figure 2 shows the spatial color transformation distribution of the study area.
It can be seen that after the original RGB images have been transformed by HSV two times,
the soil is able to be clearly distinguished from crop vegetation in the HSV2 images.

Some existing studies have demonstrated that random forest classification (RFC)
can be well adopted for medical disease classification, habitat identification in ecological
environments, and land cover classification based on multispectral images [23–25]. For the
UAV multispectral images in this study, RFC was implemented to differentiate between
vegetation and soil, and then created a vector including corn vegetation and soil.

2.3.3. Vegetation Coverage

Fractional vegetation coverage (FVcover), which refers to the percentage of vertical
projection area of vegetation per ground surface area, is a critical parameter for assessing
crop density and soil factor. Ground-based RGB images have been used to effectively extract
vegetation coverage by methods of color transformation and threshold segmentation [26,27].
By comparison, UAV-based RGB images have the distinct advantages of monitoring a large-
scale area, as well as high spatial resolution, which facilitate the acquisition of vegetation
coverage and the evaluation of crop growth in fields. In the present study, RGB images
derived from UAV were converted into new image data via two HSV transformations, so
as to identify background soil and corn canopy area more easily [21]. Identified corn pixels
in each plot were then divided by the total number of pixels in the same plot to acquire
FVcover. Vegetation coverage is calculated as follows:

FVcover =
Aveg

Atotal
(1)

where FVcover is the coverage of vegetation, Aveg is the number of corn pixels in each plot,
and Atotal is the total number of pixels in the same plot.
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Yao et al. [19] proposed the novel index, CASI, to quantitatively correct for the effect
of changing vegetation density and soil cover on wheat LNC estimates, on the basis of
understanding the L parameters of SAVI previous studied. Namely, FVcover factor was
added to VIs as follows: CASI = VI/(1 + FVcover). However, the two inputs of CASI in the
study of Yao et al., VI and FVcover, were calculated by ground-based canopy spectra and
digital RGB pictures in wheat fields, respectively. In the present study, the extraction of
CASI was performed by using UAV-based images in the following framework (Figure 3).
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2.3.4. Spectral Variables

Reflectance bands (green, red, red-edge, and near-infrared) from multispectral images
derived from UAV were used as canopy spectral features, which were variably linked with
plant activity, canopy structure, and nutrient situation [28–30]. Vegetation indices that can
indicate crop nutrition and growth status have been widely used in agricultural fields. In
this study, multispectral images were utilized to extract a set of VIs and the corresponding
CASIs for LNC estimation. Table 3 lists the selected VIs that are related to the nitrogen
status in crops.

2.3.5. Random Frog Algorithm

The random frog algorithm (RFA) is an effective tool for variable selection on the basis
of the reversible jump Markov chain Monte Carlo method [44]. Generally, the RFA works in
three steps: (1) randomly give an initial subset V0 with Q variables; (2) propose a candidate
subset V* containing Q* variables based on V0, take V* with a certain probability as V1,
and then replace V0 with V1. Loop this step until N iterations; (3) calculate a selection
probability of each variable, which will be used as a measure of variable importance and a
criterion of variable selection [44–46]. In the present study, RFA was used to select the better
variables among both four bands and a set of VIs or CASIs from UAV-based images for
LNC estimation. First, all spectral variables were ranked in descending order, according to
the selection probabilities computed by RFA, and then the top five variables were selected
as the optimal features for evaluating N status in corn.
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Table 3. Vegetation indices from UAV-based multispectral images in the study.

VIs Name Formula Reference

DVI Difference Vegetation Index DVI = RNIR − RRED [31]
GNDVI Green NDVI GNDVI = (RNIR − RGRE)/(RNIR + RGRE) [32]

MNLI Modified Non-linear
Vegetation Index MNLI = 1.5

(
RNIR

2 − RRED
)
/
(

RNIR
2 + RRED + 0.5

)
[33]

MSAVI Modified SAVI MSAVI =
(

2RNIR + 1−
√
(2RNIR + 1)2 − 8(RNIR − RRED)

)
/2 [34]

MSR Modified Simple Ratio MSR = (RNIR/RNIR − 1)/
√

RNIR/RNIR + 1 [35]

MTVI2 Modified Triangular
Vegetation Index 2

MTVI2 =
1.5(1.2(RNIR−RGRE)−2.5(RRED−RGRE))√

(2RNIR+1)2−(6RNIR−5
√

RRED)−0.5
[36]

NDVI Normalized Difference
Vegetation Index NDVI = (RNIR − RRED)/(RNIR + RRED) [37]

NLI Non-linear Vegetation Index NLI =
(

RNIR
2 − RRED

)
/
(

RNIR
2 + RRED

)
[38]

OSAVI Optimization of Soil-Adjusted
Vegetation Index OSAVI = 1.16(RNIR − RRED)/(RNIR + RRED + 0.16) [16]

R_M Red Model R_M = RNIR/RREG − 1 [39]

RDVI Renormalized Difference
Vegetation Index RDVI = (RNIR − RRED)/

√
RNIR + RRED [40]

RVI Ratio Vegetation Index RVI = RNIR/RRED [41]
RVIgreen Green Ratio Vegetation Index RVIgreen = RNIR/RGRE [42]

TVI Triangular Vegetation Index TVI = 0.5(120(RNIR − RGRE)− 200(RRED − RGRE)) [43]

Note: RGRE denotes green band reflectance, RRED red band reflectance, RREG red-edge band reflectance, and RNIR near-infrared reflectance.

2.3.6. Partial Least Squares Regression

Partial least squares regression (PLSR) is a widely used technique for studying the
relationships between multiple dependent variables and multiple independent variables.
PLSR integrates the merits of principal component analysis (PCA), canonical analysis
(CCA), and linear regression analysis, and can efficiently obtain the dominant factors with
the strongest explanatory power for dependent variables. Especially, it is very useful for
solving problems such as with obvious multicollinearity between variables, or when the
number of variables is greater than the number of samples [47].

2.3.7. Data Evaluation

In this study VIs were extracted from UAV-based multispectral images before and
after removing soil noise, and their correlations with LNC were analyzed, as well as the
corresponding CASIs. The coefficient of determination (R2), root mean square error (RMSE),
and normalized RMSE (NRMSE, %) were used to explain and quantify the relationship
with LNC, and the three metrics can be expressed as follows:

R2 = 1− Σn
i=1(xi − yi)

2/Σn
i=1(xi − x)2 (2)

RMSE =
√

Σn
i=1(xi − yi)

2/n (3)

NRMSE =
RMSE

x
∗ 100 (4)

where xi and yi are the measured and predicted LNC in corn, x is the mean of measured
LNC, and n is the total number of samples.

3. Results
3.1. Relationship between VIs, CASIs, and LNC

Table 4 shows the correlation coefficients between LNC in corn, VIs, and CASIs from
the UAV images before and after removing background soil. Correspondingly, both larger
fractions and darker colors of the pie charts within the red rectangle area indicate stronger
correlations between LNC, Vis, and CASIs in Figure 4.
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Table 4. Correlations between LNC, VIs, and CASIs in the three growth stages.

Indices
Growth Stages/VIs vs CASIs Growth Stages (Removing Soil Noise)/VIs vs CASIs

V12 R1 R3 V12 R1 R3

GRE −0.377 ** −0.416 ** −0.690 ** −0.695 ** −0.454 ** −0.525 ** −0.262 −0.297 −0.036 −0.12 −0.607 ** −0.606 **
RED −0.449 ** −0.510 ** −0.667 ** −0.662 ** −0.614 ** −0.628 ** −0.26 −0.295 0.158 0.072 −0.586 ** −0.590 **
REG −0.494 ** −0.686 ** −0.672 ** −0.728 ** −0.436 ** −0.594 ** −0.304 −0.343 0.107 −0.017 −0.610 ** −0.610 **
NIR 0.152 −0.119 0.064 −0.394 ** 0.450 ** −0.032 −0.211 −0.276 0.317 0.186 −0.580 ** −0.583 **
DVI 0.393 ** 0.26 0.592 ** 0.598 ** 0.611 ** 0.613 ** 0.317 0.293 0.391 ** 0.379 ** 0.589 ** 0.589 **

GNDVI 0.502 ** 0.343 0.656 ** 0.658 ** 0.541 ** 0.503 ** 0.314 0.294 0.664 ** 0.669 ** 0.622 ** 0.625 **
MNLI 0.540 ** 0.577 ** 0.677 ** 0.676 ** 0.527 ** 0.550 ** 0.462 ** 0.460 ** 0.677 ** 0.705 ** 0.175 0.237

MSAVI 0.466 ** 0.33 0.592 ** 0.676 ** 0.616 ** 0.619 ** 0.319 0.296 0.406 ** 0.395 ** 0.592 ** 0.594 **
MSR 0.462 ** 0.387 ** 0.569 ** 0.571 ** 0.589 ** 0.588 ** 0.34 0.321 0.424 ** 0.417 ** 0.578 ** 0.579 **

MTVI2 0.351 0.242 0.22 0.131 0.473 ** 0.450 ** 0.309 0.284 −0.149 −0.233 0.488 ** 0.473 **
NDVI 0.480 ** 0.281 0.593 ** 0.597 ** 0.616 ** 0.618 ** 0.302 0.278 0.416 ** 0.406 ** 0.594 ** 0.597 **

NLI 0.474 ** 0.465 ** 0.527 ** 0.525 ** 0.586 ** 0.597 ** 0.382 ** 0.365 0.692 ** 0.717 ** 0.333 0.408 **
OSAVI 0.483 ** 0.293 0.596 ** 0.600 ** 0.616 ** 0.619 ** 0.307 0.283 0.412 ** 0.401 ** 0.592 ** 0.594 **

R_M 0.584 ** 0.509 ** 0.707 ** 0.709 ** 0.641 ** 0.655 ** 0.506 ** 0.494 ** 0.712 ** 0.721 ** 0.545 ** 0.571 **
RDVI 0.477 ** 0.307 0.595 ** 0.601 ** 0.614 ** 0.616 ** 0.311 0.287 0.406 ** 0.395 ** 0.592 ** 0.593 **
RVI 0.445 ** 0.375 ** 0.548 ** 0.540 ** 0.566 ** 0.546 ** 0.366 0.335 0.643 ** 0.613 ** 0.605 ** 0.589 **

RVIgreen 0.481 ** 0.429 ** 0.641 ** 0.638 ** 0.541 ** 0.475 ** 0.356 0.324 0.426 ** 0.387 ** 0.563 ** 0.548 **
TVI 0.323 0.192 0.333 0.285 0.516 ** 0.495 ** 0.306 0.28 −0.066 −0.145 0.521 ** 0.509 **

** Denotes significant at 0.01 level, for the two columns in each growth stage, the 1st column means the correlations between VIs and LNC, the 2nd column for those between CASIs and LNC.
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It can be seen from Table 4 that whether eliminating soil noise or not, the four bands
(GRE, RED, REG, and NIR) in the R3 stage are more stably and strongly correlated with
LNC in comparison with the V12 and R1 stages. On the other hand, most of the VIs in the
V12 stage show worse relationships with LNC, while some VIs in the R1 and R3 stages
have significant correlations with LNC, especially GNDVI, R_M, and RVI. As a matter of
fact, due to the relatively low vegetation cover in the corn fields in the V12 stage, the soil
background had a great influence on the crop canopy reflectance, which directly impacts
the sensitivity of spectral vegetation indices to nitrogen status to a greater or lesser extent.
However, on account of increasing vegetation cover in the R1 and R3 stages, vegetation
indices usually displayed a closer relationship with LNC.

From Figure 4, it can be noticed that CASIs have a similar behavior to VIs. Namely,
CASIs in the V12 stage generally show a relatively weak correlation with LNC, and in the
R1 and R3 stages the CASIs have closer relationships with LNC. Nevertheless, most of
CASIs into which the factor of FVcover was added have a slightly better correlation than
the corresponding Vis, whether removing soil noise or not in the latter two stages. This
indicates that CASI with the vegetation adjusting factor might have a better performance
than VI under high cover conditions. From Table 4 and Figure 4, it can also be seen that in
the V12 stage CASIs show no better correlations with LNC in comparison with VIs before
removing the soil background, but the CASI’s relationships with LNC are similar to VI’s
after eliminating soil noise.

3.2. Selection of Vegetation Features by RFA

To estimate LNC in corn, first the random frog algorithm (RFA) was used to search for
optimal features among the selected VIs and CASIs, and then a PLSR analysis was carried
out by using the five optimal features in each of the three growth stages. Table 5 lists the
features selected by RFA under different soil removal conditions in the three growth stages
of corn. It can be observed from Table 5 that the features selected by RFA from VIs or CASIs
show stability, and have no changes after removing soil for the same growth stage, and
that the selected features from CASIs also exhibit a greater consistency than those from VIs
in the three stages of corn; for instance there are the same features in the V12 and R3 stages.
In addition, Table 5 also shows that most of the optimal five features selected by RFA from
VIs and CASIs are the same for the same growth stage, and only one or two features are
different, which will make it comparable to estimate LNC with optimal VIs and CASIs in
this way.
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Table 5. Features selected by random frog algorithm (RFA) under different soil-removing conditions
in the three stages.

Types Conditions Stages Features

VIs

Not removing soil
V12 REG, NLI, DVI, MNLI, R_M
R1 NLI, NIR, NDVI, RDVI, OSAVI
R3 GNDVI, NIR, GRE, DVI, MNLI

Soil removal
V12 REG, NLI, DVI, MNLI, R_M
R1 NLI, NIR, NDVI, RDVI, OSAVI
R3 GNDVI, NIR, GRE, DVI, MNLI

CASIs

Not removing soil
V12 REG, NIR, GRE, DVI, MNLI
R1 REG, NIR, NDVI, RDVI, OSAVI
R3 REG, NIR, GRE, DVI, MNLI

Soil removal
V12 REG, NIR, GRE, DVI, MNLI
R1 REG, NIR, NDVI, RDVI, OSAVI
R3 REG, NIR, GRE, DVI, MNLI

It was also noticed that the red-edge (REG) and near infrared (NIR) band features
are significantly selected for LNC estimates under different soil-removing conditions in
the three stages. As a matter of fact, the famous red edge feature has been widely used to
assess vegetational parameters, such as nitrogen and chlorophyll content [39,48–50], while
the near infrared band is also the key component of most VIs [16,31–43].

3.3. Estimation of LNC in Corn Using CASIs and VIs

Based on the above optimal features selected by RFA in each growth stage, PLSR was
used to estimate LNC in corn. Figure 5 shows the relationships between the predicted and
measured LNC using VIs without and with removing soil noise in the different stages. It
can be seen that the estimations of LNC with removal of soil noise are generally better than
those without eliminating soil noise, which indicates it is necessary for assessing nitrogen
status to take soil influence into account.
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Unlike VIs using only multispectral images from UAV, CASIs which were constructed
by adding the factor, FVcover, to VIs were extracted to estimate LNC in corn using UAV
RGB and multispectral images in this study. Figure 5 shows that the CASIs had a better
performance after soil elimination than before soil removal, with the best R2 of 0.59, RMSE
of 22.02%, and NRMSE of 8.37% in the R1 stage. What is more, it can be seen from Table 6
that the CASIs generally exhibited the better capability for estimating LNC than the Vis,
whether removing background soil or not.

Table 6. Comparison using optimal CASIs and VIs to evaluate LNC in different growth stages, with
different processing for the soil background.

Conditions Stages
CASI VI

R2 RMSE NRMSE R2 RMSE NRMSE

No removal
of soil

V12 0.41 32.72% 13.77% 0.49 30.61% 12.88%
R1 0.50 24.39% 9.27% 0.42 26.29% 10.00%
R3 0.41 34.22% 14.50% 0.40 34.59% 14.66%

Soil removal
V12 0.50 30.22% 12.71% 0.50 30.32% 12.76%
R1 0.59 22.02% 8.37% 0.50 24.35% 9.26%
R3 0.45 33.06% 14.01% 0.40 34.39% 14.57%

3.4. Mapping LNC Based on UAV Images at Plot Scale

VIs at different growth stages of corn were extracted from UAV multispectral images
covering the 48 plots. The best five were selected by RFA from VIs to establish the PLSR
model for LNC estimates, and then the LNC distributions at plot scale were mapped for
each stage (Figure 6). The mapping analysis results show that although there was the same
nitrogen treatment (N2) at the 24 plots in the northern study area, LNC in the three stages
still ranges from 2.00% to 3.14% due to trait differences among cultivars, and this situation
is similar whether soil noise is removed or not. In addition, it can also be noticed that the
LNC at the same cultivar plots shows an obvious consistency in the R1 stage, which also
happens in this stage after soil elimination. This may be because corn in the R1 stage is the
most vigorous, vegetation coverage is also the largest, and soil has the least influence on
the corn canopies.

At the 24 plots in the southern study area, the different nitrogen application rates resulted
in distinct differences in corn growth. LNC ranged greatly from 1.71% to 2.75% in the V12
and R3 stage, and only from 2.00% to 2.75% in R1 stage. It can be seen from Figure 6 that after
eliminating soil background, LNC changes at plot scale were more consistent with nitrogen
treatments in comparison with no soil removal.

The five sensitive CASIs using UAV RGB and multispectral images were selected by
RFA to construct the models for estimating LNC based on PLSR, and LNC distributions
for each stage were mapped at plot scale (Figure 7). Like VI-based LNC distributions,
LNC using CASI at the northern 24 plots in the three stages ranged greatly from 1.69% to
3.22% due to cultivar differences, even if there was the same nitrogen treatment; this was
particularly evident in the V12 and R3 stages, and only in the R1 stage LNC shows some
consistency at the same cultivar plots. Comparing with no soil removal, LNC with soil
elimination at the northern plots slightly increased.

In the southern plots, corn growth in the three stages was closely related to nitrogen
treatment. High nitrogen application rates (N2 and N3) indicated better growth with high
LNC for corn, no nitrogen treatment (N0) showed the worst growth. From Figure 7, it can
be seen that LNC changed at plot scale, consistent with nitrogen treatments generally, and
it was more distinct in the R1 stage after soil removal. In addition, corn growth in the R1
stage was the most vigorous among the three stages, which was well reflected by the LNC
distribution in the R1 stage.
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shown in the red dotted box, and those with soil removal are in the blue dotted box.
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4. Discussion
4.1. Partial Soil or Shadow Removal on UAV Images

Compared with satellite remote-sensing images, the low-altitude UAV images have a
higher spatial resolution, and the vegetation textures in images are also more prominent,
however, there is also much more soil or shadow background in UAV-based images. Low-
altitude UAV remote-sensing images are strongly affected by planting density, row distance,
canopy structure, and other factors, but these factors are usually linked with the soil [16,51].
For instance, lower crop planting density will lead to lower vegetation coverage, and the
soil background and shadow will certainly increase in images. Hence, the problem of how
to alleviate the influence from soil or shadow noise must inevitably be considered in UAV
applications. In previous studies, RGB images have been usually converted into HSV color
space for soil and shadow detection [52–54]. In this study, HSV color transformation was
applied for the elimination of soil and shadow background from UAV RGB images, and
this indicates that it is very effective to remove soil or shadow by HSV. Particularly, HSV
was consecutively used two times in this study, and the soil and shadow could be clearly
identified in the HSV2 images (Figure 2), which may have a certain significance for the
other related studies.

4.2. Vegetation Features for LNC Evaluates

Vegetation indices (VIs) derived from the combination of characteristic bands in
multispectral data can highlight the properties of vegetation, and be widely used for
estimating crop parameters, such as nitrogen and chlorophyll content [48,49,55]. However,
VIs are usually affected by many factors, and exhibit different traits. Some have great
potential for suppressing soil noise [16,34], and others are good at anti-saturation for
vegetation spectra [36,41]. Therefore, effectively selecting sensitive features from VIs to
assess nitrogen status should be considered [10,56,57]. In the present study, the random
frog algorithm (RFA) was implemented to select a set of the sensitive features from UAV
images to estimate LNC in the V12, R1, and R3 stages of corn. Among the sets of sensitive
features for the three stages, the red-edge (REG) and near infrared (NIR) band features
were significantly selected for LNC estimates; the two features had also been used to
predict maize LNC in an existing report [10]. In practice, REG is one of the most widely
used spectral features for evaluating crop parameters [39,55–59] and NIR is also the key
component for most typical VIs [16,31–43].

CASI is actually a kind of VI, just adding the parameter of vegetation cover, FVcover,
to the conventional VI. Compared with VIs, CASIs had generally better correlations with
LNC in this study, which is in line with a previous study [19]. The existing research has
demonstrated that soil background can greatly influence the relationships between canopy
spectra and N status [19,60–62]. The Addition of FVcover to the basis of VI should be a good
method for eliminating the influence of soil, which should make CASI more sensitive to
nitrogen status in crops. In addition, it should be noted that in this study the elimination
of soil noise was applied only for UAV multispectral images with relatively low spatial
resolution. Despite soil removal from multispectral images by threshold segmentation,
there were still mixed pixels with soil and vegetation cover derived from UAV RGB images
with higher spatial resolution; CASIs integrating VI with FVcover should be able to further
eliminate some noise after removing soil noise.

4.3. Advantages and Disadvantages of UAV Data Applications

There have been some reports where UAV images from multiple sensors were simul-
taneously implemented to estimate crop parameters, and in these studies the images from
different sensors were often used to individually extract a variety of spectral variables,
then the variables were directly input into various models for evaluating crop growth
status, while little attention has been paid to the application of a fusion of information from
images of different sensors [10,14,63]. In this study, high-definition RGB images were used
to efficiently extract vegetation coverage (FVcover) in plots, and multispectral images for the
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calculation of typical vegetation indices (VIs), then CASIs that integrate VIs with FVcover
were acquired to estimate LNC in corn. CASIs can make good use of the complementary
advantages from two types of UAV images, and are a simple and effective method of
information fusion. In fact, it is a developing trend to use a fusion of information for crop
growth assessment [64].

However, there are still some deficiencies that need to be improved further. Due to
the influence of the shooting angles and solar-irradiance angles on low-altitude UAV, some
soil and shadow could not be completely removed. The training models constructed in this
study only used data in three stages of one year. Thus, further validation will be needed
using data from many years or different areas in the future.

5. Conclusions

This study explored how to use digital RGB and multispectral images from two
sensors mounted simultaneously on a low-altitude UAV to assess nitrogen status in three
growth stages of corn. CASIs that connect VIs with vegetation cover (FVcover) used the
UAV images from two sensors to estimate LNC in corn based on the PLS with RFA methods.
The results proved that CASIs exhibited the better estimation of LNC in comparison with
VIs in all of the three growth stages of corn, regardless of soil removal. It is concluded that
CASIs fusing useful information from both digital RGB and multispectral images acquired
synchronously by UAV appear very promising, and have potential for remotely monitoring
leaf nitrogen content in crops. The preliminary research of using CASIs can also provide
new ideas and referential methods for UAV monitoring of other biochemical parameters.
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