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Abstract: Theoretical nominal GPS orbits are parallel and share six ascending nodes of orbital planes.
However, due to the perturbations and continuous modernization of the system, this state does
not occur. The configuration of satellite orbits is continuously monitored by the control segment
and presented regularly in the form of a GPS almanac. Almanacs, however, do not contain a
parameter defining the convergence of orbits. This work presents a novel method of assessment
of the configuration of orbit ascending nodes compared with the nominal constellation state. The
method is a tool for space segment monitoring and detection of anomalies. The source data were
7035 System Effectiveness Model almanacs published from the 847th to 2123rd GPS weeks (March
1996–September 2020). The algorithm uses the procedure of assigning satellites to orbital planes
and both the robust estimation and the least-squares methods to determine the estimates of the
angular separation of orbit ascending nodes. A long-term analysis of the symmetry and trend of
changes in the position of the ascending nodes was conducted. The study showed the occurrence of
significant anomalies. The research provides information on the trend of satellite orbit separations
and deviations of orbital planes from the initial hexagonal GPS symmetry.

Keywords: ascending node; symmetry; longitude of ascending node; SEM almanac; robust estima-
tion

1. Introduction

Studies on the space segments of global navigation satellite systems (GNSS) in most
cases are focused on the accuracy of satellite orbit determination. Researchers have consid-
ered satellites in low Earth orbit (LEO), medium Earth orbit (MEO), and geostationary orbit
(GEO) systems. Montenbruck et al. [1] showed the accuracy of determining orbits in the
Multi-GNSS Experiment (MGEX). A study regarding the Galileo system was conducted by
Steigenberger and Montenbruck [2]. Gunning et al. [3] published the results of analogous
research on the GLONASS system. Ouyang et al. [4] analyzed the Beidou system broadcast
navigation messages. Kim and Kim [5] conducted a long-term analysis of satellite orbits
based on Standard Product 3 (SP3). A similar study was carried out by Wang et al. [6].
Montenbruck et al. [7] described broadcast and precise GPS ephemerides from a historical
perspective. Some papers presented the results of research on the constellations of satellites.
Sarkar and Bose [8] presented a comparison of the GLONASS system constellation satellite
parameters. Gunning et al. [9] analyzed the Multi-GNSS constellation for the detection of
anomalies using SP3 orbits. Dai et al. [10] developed a method for determining the yaw
attitude of Beidou satellites. Several authors conducted research based on almanacs. The
accuracy of GPS almanacs relative to precise SP3 orbits was studied by Ma and Zhou [11].
Almanac analysis was also performed by Reid et al. [12].

This work presents the spatial relationships of the GPS orbits, with emphasis on the
symmetry of the ascending nodes. The study complements the current knowledge in the
field of satellite geodesy with a broader perspective on the GPS constellation. In a previous
study, Specht and Dabrowski [13] discussed the separation from the orbital plane D of the
orbit of the Satellite Vehicle Number 46 (SVN46) transmitting the Pseudo-Random Noise
11 (PRN11) code. The authors indicated a systematic separation of the satellite orbit from
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the orbital plane. This long-term process resulted in an anomalous position relative to
the GPS satellite constellation. Due to the limitations of the previous analysis, the present
work was extended to all orbital planes and all almanacs available online. Excluding
almanacs published before the 847th GPS week, the source data consisted of 7035 System
Effectiveness Model (SEM) almanac files. The SEM almanacs contain Keplerian elements
and other GPS satellites’ orbital parameters determined for a given epoch. The initial
GPS constellation consisted of concept validation block I satellites launched into three
63◦ inclined orbital planes [14]. Hence, the comparative analysis based on the current
constellation of six orbital planes with a 55◦ inclination used only satellites of block II and
later. In the nominal form of the GPS space segment, the orbital planes are distributed
symmetrically and separated by about 60◦ on the equator [15].

The satellite orbit parameters achieved for each launch are never perfect and deviate
from nominal values within certain limits. For instance, SPS [16] informs that the achieved
orbit inclination for any specific GPS satellite can be anywhere within 3◦ of the nominal
inclination of 55◦. The time derivative of the longitude of the ascending node (Ω) is a
function of the achieved orbit inclination and orbit semi-major axis. As the GPS control
segment does not remain passive due to changes in the constellation of satellites, some
constellation tolerances and management practices need to be indicated. From time to time,
orbit adjustments (thrusts) are performed to manage the constellation. Orbit maneuvers
require a pause in the satellite mission as they cause discontinuities in the satellite track.
The scheduled satellite outage times are provided by the control segment in the form of
the Forecast Delta-V (FCSTDV) messages. The USCG [17] informs that, according to the
maintenance procedure, the user may be required to download a new almanac. Further,
FCSTDVs are not likely directly used to change the Ω of a given satellite. However, there
may be some small unintentional change to Ω since other parameters such as the orbit’s
semi-major axis may be slightly adjusted. The orbit separation of each satellite is presented
at regular near-current epochs by the USCG [17] in the form of a slant chart. However,
the diagram presents only temporary separation values and does not present a long-term
process trend for both the satellites and the orbital planes.

This work was motivated by the presentation of the symmetry of the position of the
ascending nodes of the six GPS orbital planes. In the first phase, the developed algorithm
selected and assigned the satellites to individual orbital planes (OPs) based on the SEM
almanac. The satellite longitude of the ascending node (Ω) parameter, due to perturbations
and other external factors, took different values in the OP subsets. Determining the position
of the ascending nodes of OPs required the use of estimation methods that take into account
the presence of anomalies. In this, the position of the ascending nodes was determined
using a robust estimation method [17,18] with the use of the Huber weight function [19].
In the next step, the algorithm compared the determined values of the six ascending nodes
with the nominal symmetric distribution of nodes around the equator. The least-squares
method was used to derive the estimators indicating the theoretical reference position of
the OP ascending nodes. The use of the algorithm on the set of all 7035 almanacs resulted
in the creation of datasets enabling the assessment of the ascending node (AN) separation
trend. The limitation of the study is the use of broadcast almanac data rather than processed
code and phase observations from worldwide stations. However, taking into account the
mean several hundred-meter accuracy of the almanac parameters referred to precisely as
Standard Product 3 data and the GPS orbit mean radius of 26,500 km, the impact of the
error on Ω values is smaller than 0.003◦.

The work is organized in the following sections: The second section presents the
research methodology with a data processing algorithm. The third section contains the AN
symmetry analysis results and general trend values for satellites in six OPs. The work ends
with a summary containing the main conclusions of the study.
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2. Materials and Methods

According to the ICD-GPS-240 interface [20], the GPS almanac is available in two for-
mats: YUMA and System Effectiveness Model (SEM). The format name YUMA comes from
the Yuma Proving Ground in Arizona (USA), where numerous tests on the GPS accuracy
were performed. Apart from the differences in units and the number of parameters, the
YUMA format is distinguished by the content of text descriptions. The SEM format has a
tabular structure with greater variables precision than YUMA. For this reason, the SEM
format was used in this work. The almanac files since 1997 are available on the United
States Coast Guard website [21]. Previous almanacs (since 1991) can be obtained from The
Center for Space Standards & Innovation website [22]. Due to the different initial orbit
configurations, the analysis omitted the almanacs containing the parameters of the block
I satellites. In the almanac generated in the 846th week and the 32,768th s of GPS time,
SVN10 (PRN12) appears for the last time. The first almanac used in this study represents
the epochs of the 847th week and the 61,440th s of GPS time on 24 March 1996. In total,
7035 SEM almanacs were used in this study. A total of 39 files were downloaded from
the CSSI (years: 1996–1997) and 6996 files were downloaded from the USCG (years: 1997–
2020). Until the year 2000, the GPS control segment published almanac files with a weekly
frequency with several periods of longer breaks, e.g., in 1999. Currently, the almanacs are
updated daily.

Two parameters in the GPS almanac parameters were used in the research: Ω and the
rate of the longitude of the ascending node (dot(Ω)). The position of GPS orbit ANs in
the almanac model is referenced to the Greenwich meridian at the beginning of the GPS
week [23]. Therefore, in the description of the trajectory of satellites, Ω is used instead
of the classic Keplerian right ascension of the ascending node related to the First Point
of Aries. In astronomy, the position of stars and other celestial objects is defined in the
equatorial coordinate system using angular coordinates. The coordinates are not fixed to
the Earth but determined on the celestial sphere. The reference direction in the celestial
equator plane is the First Point of Aries, also called the Vernal (March) Equinox. The GPS
inertial system, based on the Greenwich meridian, defines the orientation of the coordinate
axes with respect to the Earth, not the celestial sphere. To ensure the recurrence of Earth-
centered Earth-fixed (ECEF) tracks of the GPS satellites, an additional force is applied to
the satellites in the process of placing the satellite in the orbit. Its direction and magnitude
compensate for the rotation of the Earth and result in the delay of the ANs’ drift. That
additional angular velocity of the GPS satellites is expressed in the almanac by the dot(Ω)
parameter. As the angular degrees were the unit used in the calculations, the conversion of
the SEM almanacs’ semicircles was introduced.

To achieve the aim of the study, the algorithm with seven modules was developed
(Figure 1). The first module selected the Ω and dot(Ω) values from the SEM almanacs. The
second module of the algorithm assigned the satellites to the six GPS orbital planes. The
third module used a robust estimation method to determine the position of the ascending
nodes of the orbital planes based on the Ω parameter. The fourth module of the algorithm
performed a least-squares method adjustment and determined the reference estimators
satisfying the condition of the hexagonal symmetry of the ascending nodes of the orbital
planes. The fifth module compared the positions of the ascending nodes of the individual
satellites with the reference values of the orbital planes. After all the SEM almanacs had
been processed, the last two steps of the calculation were run. The sixth module determined
the satellite AN separation trend in relation to the OP based on the calculated values of
deviations dΩ. The last, i.e., seventh, module of the algorithm determined the symmetry
parameters of the adjusted OP ANs relative to the reference values.

The module 2 allocation procedure was applied using the position of the satellite
orbit ANs indicated by the Ω parameter. Assuming the theoretical symmetrical 60-degree
distribution of the GPS OPs in the equator plane, six satellite subsets, A, B, C, D, E, and
F, with similar Ω parameter values were extracted. As an example, according to the last
processed almanac from the 2123rd (75th in the current third cycle) GPS week and the
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319,488th s (16 September 2020 16:44:48 UTC), the state of the constellation OPs was as
follows: 4 (A), 5 (B), 5 (C), 6 (D), 6 (E), and 5 (F) satellite vehicles (SVs). In the set of all 31
almanacs’ Ω values, six subsets with the size of 4, 5, 5, 6, 6, and 5 elements were created
with the GPS OPs’ satellites. In the 24-year-long research timeframe, the cardinality and
elements of the OP subsets were changing due to space segment modernization. The six
Ω-dependent subsets of satellites provided information on the spatial distribution of the
orbit ANs in the equatorial plane.

Remote Sens. 2021, 13, 387 4 of 19 
 

 

Figure 1. The workflow of the research algorithm. 

The module 2 allocation procedure was applied using the position of the satellite 

orbit ANs indicated by the Ω parameter. Assuming the theoretical symmetrical 60-degree 

distribution of the GPS OPs in the equator plane, six satellite subsets, A, B, C, D, E, and F, 

with similar Ω parameter values were extracted. As an example, according to the last pro-

cessed almanac from the 2123rd (75th in the current third cycle) GPS week and the 

319,488th s (16 September 2020 16:44:48 UTC), the state of the constellation OPs was as 

follows: 4 (A), 5 (B), 5 (C), 6 (D), 6 (E), and 5 (F) satellite vehicles (SVs). In the set of all 31 

almanacs’ Ω values, six subsets with the size of 4, 5, 5, 6, 6, and 5 elements were created 

with the GPS OPs' satellites. In the 24-year-long research timeframe, the cardinality and 

elements of the OP subsets were changing due to space segment modernization. The six 

Ω-dependent subsets of satellites provided information on the spatial distribution of the 

orbit ANs in the equatorial plane.  

As the almanacs do not contain information on the satellite OP designation, a method 

to assign the six subsets with OP alphabetical indicators was developed. Based on the 

Current Operational Advisories published on the USCG website, it was established that 

the SVN46 (PRN11) satellite has been carrying out its space mission continuously since 

2000 and belongs to OP D. According to the prograde movement direction of the GPS 

satellites, the other OP subsets were assigned as A, B, C, E, and F for the almanacs gener-

ated between 2000 and 2019. For the remaining almanacs from 1996 to 2000, an analogous 

procedure was used based on the SVN18 (PRN18) satellite from orbital plane F. The ap-

plication of algorithm module 2 resulted in the creation of six GPS OP subsets containing 

the parameters of the satellites for each SEM almanac file. The sample result of the appli-

cation of module 2 of the algorithm is presented in Table 1. 

Table 1. The assignment of satellites to orbital planes on the example of the GPS time third cycle 

almanac from epoch 75.319488. 

OP Ω [°] (SVN) Mean Ω [°] StDev Ω [°] 

A 
241.4338 (48), 237.1903 (65), 242.6358 (64),  

242.3521 (52) 
240.9030 2.1891 

B 
304.9308 (58), 306.0106 (56), 300.9003 (62),  

298.7580 (71), 306.2207 (44) 
303.3641 2.9968 

C 
359.9438 (72), 4.1978 (53), 6.8009 (59),  

0.8136 (66), 4.8822 (57) 
3.3277 2.5694 

D 
61.2960 (63), 56.7924 (61), 60.8234 (67),  

33.6900 (46), 62.1870 (75), 56.8857 (45) 
55.2791 9.8795 

E 
120.8952 (69), 118.9797 (50), 120.7238 (73),  

113.012 (51), 115.7114 (47), 119.4557 (76) 
118.1296 2.8547 

F 
182.7315 (74), 179.9369 (68), 188.2194 (43),  

174.6445 (55), 180.4468 (70) 
181.1958 4.3990 

Figure 1. The workflow of the research algorithm.

As the almanacs do not contain information on the satellite OP designation, a method
to assign the six subsets with OP alphabetical indicators was developed. Based on the
Current Operational Advisories published on the USCG website, it was established that the
SVN46 (PRN11) satellite has been carrying out its space mission continuously since 2000
and belongs to OP D. According to the prograde movement direction of the GPS satellites,
the other OP subsets were assigned as A, B, C, E, and F for the almanacs generated between
2000 and 2019. For the remaining almanacs from 1996 to 2000, an analogous procedure
was used based on the SVN18 (PRN18) satellite from orbital plane F. The application of
algorithm module 2 resulted in the creation of six GPS OP subsets containing the parameters
of the satellites for each SEM almanac file. The sample result of the application of module 2
of the algorithm is presented in Table 1.

Table 1. The assignment of satellites to orbital planes on the example of the GPS time third cycle
almanac from epoch 75.319488.

OP Ω [◦] (SVN) Mean Ω [◦] StDev Ω [◦]

A 241.4338 (48), 237.1903 (65), 242.6358 (64),
242.3521 (52) 240.9030 2.1891

B 304.9308 (58), 306.0106 (56), 300.9003 (62),
298.7580 (71), 306.2207 (44) 303.3641 2.9968

C 359.9438 (72), 4.1978 (53), 6.8009 (59),
0.8136 (66), 4.8822 (57) 3.3277 2.5694

D 61.2960 (63), 56.7924 (61), 60.8234 (67),
33.6900 (46), 62.1870 (75), 56.8857 (45) 55.2791 9.8795

E 120.8952 (69), 118.9797 (50), 120.7238 (73),
113.012 (51), 115.7114 (47), 119.4557 (76) 118.1296 2.8547

F 182.7315 (74), 179.9369 (68), 188.2194 (43),
174.6445 (55), 180.4468 (70) 181.1958 4.3990
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The values of the Ω parameter in six subsets indicate the position of the satellite ANs
at the almanac epoch. The subsets have a different degree of convergence of the satellite Ω
parameter. Specht and Dabrowski [13] indicated the existence of a significant deviation
in the position of the SVN46 (PRN11) satellite ascending node in relation to other OP D
satellites (Figure 2).
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12:41:54 UTC.

The Earth-centered inertial (ECI) frame is a non-accelerating, non-rotating frame
aligned with the Earth-centered Earth-fixed (ECEF) frame at a specific instant of time [24].
The presence of the indicated and potentially other outliers in OPs required applying
a method that minimizes their impact on the estimators of the position of orbital plane
ascending nodes. In this study, the robust estimation method [18] with the Huber damping
function [19] was used. According to the M-estimation theory, it is a generalization of the
maximum likelihood method consisting of the determination of M-estimators minimizing
the objective function ϕ [25]:

φ(y; X) =
n

∑
i=1

ρ(yi; X) =
n

∑
i=1

ρ(vi) (1)

where y = [y1, . . . , yn]
T ∈ Rn is an observation vector, X ∈ Rr is a vector of the determined

parameters, ρ(yi; X) is a function not necessarily resulting from the probabilistic properties
of the variables, and v = [v1, . . . , vn]

T ∈ Rn is a vector of theoretical observational cor-
rections. Assuming that the function ρ(yi; X) is differentiable, the optimization criterion
∑n

i=1 ρ(vi) = min is solved by the equation:

∂φ(y; X)

∂X
= 0 (2)

Determining the gradient of the objective Function (1)

g(y; X) =
[

∂φ(y;X)
∂X

]T
=

[
∂

∂X

n
∑

i=1
ρ(vi)

]T
=

[
n
∑

i=1

∂ρ(vi)
∂vi

∂vi
∂X

]T
=

=

[
n
∑

i=1
ψ(vi)

∂vi
∂X

]T
= AT [ψ(v1, . . . , vn)]

T = ATψ(v)
(3)

it can be written that the M-estimators are X̂ values that satisfy the following system of
equations:

ATψ(v) = 0 (4)

Expressions ψ(vi) in formulas (3) and (4) can be equated as a proportional function to
the influence function IF(yi; X) described by Hampel [26]. Due to the existing proportion-
ality of the IF(yi; X) function and ψ(vi), the ψ(vi) function is referred to as the influence
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function [17]. Based on the influence function, a specific form of the weight function is
determined which plays a particularly important role in the robust estimation context:

w(vi) =
∂ρ(vi)

∂v2
i

=
ψ(vi)

2vi
(5)

In this least-squares method, with the objective function φLS(y; X) = ∑n
i=1 piv2

i , the

weight function takes the form wLS = pi, where P = diag[p1, . . . , pn] = diag
[
σ−2

y1
, . . . , σ−2

yn

]
is the matrix of weights created based on the assumed errors of the mean observations. In
the study, an iterative calculation method was used, where the weight function in each
repetition defined the modification of the original weights of observations yi. At each
iteration step, a new observation weight was determined in relation to the absolute value
of the estimator v̂i using the Huber weight function that eliminates the influence of gross
errors on the estimation results [27]:

w(vi) =

{
pi f or |vi| ≤ t

t
|vi |

pi f or |vi| > t (6)

The variable t is interpreted as a control parameter with a significant impact on the
length and efficiency of the iterative process. In the weight Function (6), the parameter t
defines the acceptable range ∆vi = < −t; t > for standardized observational corrections
vi = v̂i/σ. If the standardized correction vi is outside the range of acceptable values
of measurement errors, then in the subsequent iteration steps, the weight of the i-th
observation pi will be reduced to the value that eliminates the influence of the observation
yi the final estimation results. The value of the parameter t is generally taken as 1.5, 2, 2.5,
or 3.

Using the general form of the weight Function (6), Equation (4) can be written as

ATw(v)v = 0 (7)

where w(v)v is the diagonal matrix of the weight function. The solution to Equation (2) is
the M-estimator of the parameter vector X with the following form:

Xj =
[
ATw

(
vj−1

)
A
]−1

ATw
(

vj−1
)

y (8)

where j = 1, . . . , c is the number of iterative steps in the process of determining the
M-estimator.

Formula (6) shows that the weight function values are modifications of the original
observation weights from the least-squares method algorithm. Determined weight values
were used as values initiating the iterative process of the robust M-estimators calculation.
Moreover, the weight function of the i-th observation in the robust M-estimate can also
be written using the damping function w(vi) = pit(vi) = pi, where pi is the equivalent
weight of the i-th observation in a given iteration step. Then, in the iterative process (8),
there is an equivalent matrix of weights:

P =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

 (9)

which is a modification of the weight function w(v) = P resulting from the application of
the damping function of the Huber method:
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w(vi) =

{
1 f or |vi| ≤ t
t
|vi |

f or |vi| > t (10)

The iterative process of determining the M-estimator (8) can be considered completed
when in the c-th iteration step, the obtained M-estimator X̂ satisfies Equation (7) and the
damping matrix is the identity matrix:

t(v) =


t(v1) 0 · · · 0

0 t(v2) · · · 0
...

...
. . .

...
0 0 · · · t(vn)

 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (11)

In practice, the standard deviation σ is unknown and is generally replaced by the
error of the mean of the measured quantity. For this reason, also the standardization of
corrections is carried out based on the determined errors of the mean corrections vi = v̂i/σv̂i .

The covariance matrix of the vector
^
v has the following form [17]:

Cv̂ = m2
0[P
−1 −A[ATPA]

−1
AT ] (12)

where the diagonal elements of the matrix are the squares of the mean errors and m2
0 =

vTPv/(n−m) is the estimator of the variance coefficient. The difference (n−m) is the
number of redundant observations calculated from the number of observation equations n
and the number of parameters m.

The results of the robust estimation for the OP D subset are shown in Figure 3. The
arithmetic mean of the satellites Ω is not a valid position estimate of OP ANs and is
marked in black. This is due to a significant anomalous separation of the SVN46 orbit
from the remaining OP D satellites. A significantly greater value of the correction vSVN46
in iteration (8) resulted in a reduction in the observation weight pSVN46 by the Huber
damping Function (6) to the value minimizing the impact of observations on the final value
of the OP D AN position estimator.
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Figure 3. Comparison of the determination of the orbital plane (OP) D ascending node (AN) using the arithmetic mean and
the robust estimation method with the weight values of the observations.

Due to the perturbations in the movement of GPS satellites and the modernization of
the space segment occurring in the 24-year research timeframe, the position of six OP ANs
did not meet the theoretical division of the full angle into six equal parts. The assessment
of hexagonal symmetry required the calculation of reference values that met the condition
of the angular separation between successive nodes amounting to 60◦. The adjustment
procedure is abbreviated here as hex-LS. Based on the robust estimators of the position of
OP ANs determined in module 3 of the algorithm, observational equations of the angles
between the ANs were created and then adjusted using the least-squares method. The
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design matrix A defining the theoretical hexagonal geometry and the vector of intercepts y
took the following forms:

A =



−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
1 0 0 0 0 −1
1 1 1 1 1 1


(13)

y =



δAB − 60◦

δBC − 60◦

δCD − 60◦

δDE − 60◦

δEF − 60◦

δFA − 60◦

δAB + δBC + δCD + δDE + δEF + δFA − 360◦


(14)

where δAB, δBC, δCD, δDE, δEF, δFA are the angles between the values of robust estimators
determined in module 3 of the algorithm, e.g., δAB = LANOPB − LANOPA. The weights
of individual observations were set as equal due to the earlier application of the Huber
function that minimized the impact of outliers. The weight matrix was a unit matrix,
P = diag[1, 1, 1, 1, 1, 1, 1]. The vector of corrections to the parameters was determined by
adopting the optimization criterion of the least-squares method:

dX = −
(

ATPA
)−1

ATPy (15)

Estimators obtained from the hex-LS adjustment were the reference quantities for a
given epoch of the SEM almanacs. Based on them, the dΩ deviations of the position of the
satellite ANs relative to the OP were determined in algorithm module 5. Comparing the es-
timators of the robust method and the hex-LS method in module 7, the angular separations
of OPs relative to the theoretical geometric conditions of the GPS were determined. The
sample results of the estimation procedures from modules 3 and 4 are shown in Figure 4.
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Figure 4. Position estimators of OP ANs determined by the robust estimation method and hex-LS on 13 September 2020 in
top (a), and perspective view (b).

The figure shows the position of the OP ANs obtained at the consecutive stages of
calculations. The arithmetic mean of the OPs’ Ω parameter is marked in black. The result
of the robust method is shown in green. The final reference position of the OP ANs meeting
the condition of hexagonal symmetry is marked in red. The ascending nodes of the orbits
of individual GPS satellites are shown in gray with pink highlighting the anomalous
orbit of the SVN46 satellite. The orthogonal view with a longitude of 90◦ N allows for a
preliminary assessment of the correctness of the algorithm result on the example of the
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most characteristic OP, D. The perspective view shows fragments of the ECI orbits located
near the ascending nodes.

Module 6 of the algorithm determined the trend of separation of the GPS satellite AN
from the OP. The parameters of the regression lines were calculated using the least-squares
method presented in Montgomery et al. [28]:

a =
n ∑(T·dLAN)−∑ T ∑ dLAN

n ∑ T2 − (∑ T)2 (16)

b =
∑ dLAN − a ∑ T

n
(17)

where a is the regression line slope, b is the regression line y-intercept, n is the subset
cardinality, dLAN is the satellite AN separation from the reference position of the OP, and
T is the almanac epoch converted from GPS time to years. Determined regression lines
eliminated the impact of step changes in the dΩ parameter values caused, e.g., by GPS
space segment modernization, resulting in a change in the number of satellites in OPs.
The number of almanacs used provided large dΩ and dot(Ω) statistical sample datasets
consisting of hundreds and thousands of elements. The cardinality of the samples allowed
a reliable comparative analysis of orbit ANs of both active and inactive satellites operating
between 1996 and 2020.

3. Results

The research algorithm consists of two basic levels. The first one processes data from a
single SEM almanac and determines the epoch-specific descriptive parameters. To calculate
the instantaneous angular separation dΩ of a particular GPS satellite, it is necessary to
indicate a reference quantity. In the present study, a robust estimation method and the
least-squares method with geometric conditions for the adjusted observations were used.
The obtained results were saved to separate files grouped with respect to OPs and identified
by the SVN and PRN identifiers of the satellites. Based on the time-tagged parameters
of the satellites, the algorithm implemented second-level procedures using data from the
research timeframe.

Due to the large amount of data processed, here are presented the results on one OP
(D) standing out from the constellation. The interested reader will find detailed information
on the other five OPs in the Appendix A. General conclusions about the GPS constellation
are presented in the second part of this section. The analysis describes the satellite Ω
parameter values and the OP ANs’ symmetry as a function of time. To improve the dΩ
separation data interpretation, the angular unit used in the study is degrees converted from
the SEM almanacs’ semicircles, and years converted from the GPS time notation are the
time unit. The week was selected as the time unit for dot(Ω).

The results of the algorithm application are presented in Figure 5. The upper panel of
the figure shows the values of dΩ separations from the two-stage estimated position of the
OP D AN over the period 1996–2020. The lower panel shows the synchronous values of
the dot(Ω) parameter of the satellites.

An anomaly in orbital motion in the set of GPS satellites was detected. The SVN46
satellite was launched in October 1999 and is still an active part of the space segment.
The position of SVN46 AN is delayed relative to the remaining OP D satellites and is
systematically closing to OP C (Figure 2). Additional confirmation of the unique separation
trend of the SVN46 satellite orbit was found in a significantly smaller value of dot(Ω),
which resulted in a slower shift of the orbit AN. While the remaining OP D satellites
showed dΩ separation not exceeding several degrees in most cases, SVN46 obtained a
change of 26.2◦ from an initial value of −1.2◦ in 2000 to −27.4◦ in 2020. The first and
second week number rollovers’ vertical markers represent the midnights of 21–22 August
1999, and 6–7 April 2019, respectively. At the beginning of every 1024th GPS week, the
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week number in the navigation message is set to zero since only 10 bits are reserved for the
week number [29].
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Based on the time-tagged values of the dΩ parameter, the satellite AN separation
trend from the OP was determined (Table 2). Each satellite in the list is described according
to the current activity in the GPS space segment (SVA), satellite orbit AN separation rate
from the OP (a), space mission duration (MD), number of SEM almanacs analyzed (n), and
current dΩ value. The graphical interpretation of the dΩ trend in the research timeframe is
shown in Figure 6.

Table 2. Descriptive parameters of the OP D satellites.

SVN PRN OP SVA a
[◦/Year]

MD
[Year] n dΩ [◦]

15 15 D NO 0.18 10.64 2029 -
17 17 D NO 0.29 8.91 1427 -
24 24 D NO 0.06 15.6 3720 -
34 04, 18 D NO −0.25 23.53 5845 -
45 21 D YES −0.45 17.44 6059 −4.3
46 11 D YES −1.34 20.69 6648 −27.65
61 2 D YES −0.3 15.84 5668 −4.34
63 1 D YES 0.2 9.15 3320 0.4
67 6 D YES 0.2 6.32 2299 −0.07
75 18 D YES 0.4 0.51 187 1.12

The results of the analysis indicate that the magnitude of the satellite AN separation
from the OP does not exceed, in seven out of ten cases, the absolute value of 0.3◦/year.
The remaining three satellites obtained values of −0.45◦ (SVN45), 0.40◦ (SVN75), and
−1.34◦/year (SVN46). Among the three largest trend values is the satellite of block IIIA
(SVN75, PRN18), launched on 22 August 2019. Two obtained separation values represented
only 29.9% (SVN75) and 33.6% (SVN45) of the absolute value of the AN separation rate
compared to the third anomalous SVN46.
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Figure 6. The trend of separation of satellite ANs from OP D.

The comparison of the separation rate of all analyzed satellites is shown in Figure 7.
The plot has two vertical scales. The scale on the left shows the rate of separation (SR) of
the AN from the OP and refers to the left bars of the presented GPS satellites. Red and
green bars represent inactive and active satellites, respectively. The blue bars on the right
indicate the duration of the space mission (MD) described by the vertical scale on the right
side of the plot. An additional element of the figure is information about the generations of
individual GPS satellites expressed by circles in different colors placed above the SR and
MD bars for different blocks.
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A detailed interpretation of the chart is divided into three aspects presented in
Tables 3–5. The first analysis shows the division of active and inactive satellites according
to the absolute value of the satellite AN separation trend from the OP.
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Table 3. Absolute values of the GPS satellite separation trends.

|a|
[◦/Year] Active SVs Inactive SVs SVs

<0.1 5 16.1% 5 15.6% 10 15.9%
0.1–0.2 7 22.6% 10 31.3% 17 27.0%
0.2–0.3 10 32.3% 9 28.1% 19 30.2%
0.3–0.4 3 9.7% 3 9.4% 6 9.5%
0.4–0.5 4 12.9% 4 12.5% 8 12.7%

>0.5 2 6.5% 1 3.1% 3 4.8%

Total: 31 32 63

Table 4. Mission duration (MD) and absolute value of the separation trend.

MD [years] Active SVs Inactive SVs SVs
|a| [◦/Year]

Mean StDev

<5 5 16.1% 6 18.8% 11 17.5% 0.14 0.10
5–10 9 29.0% 6 18.8% 15 23.8% 0.24 0.11

10–15 8 25.8% 6 18.8% 14 22.2% 0.22 0.09
15–20 5 16.1% 13 40.6% 18 28.6% 0.27 0.17
>20 4 12.9% 1 3.1% 5 7.9% 0.54 0.41

Total: 31 32 63

Table 5. Absolute value of the separation trend and mission duration (MD) of GPS satellites in OPs.

OP Active SVs Inactive SVs SVs
|a| [◦/Year] MD [Years]

Mean StDev Mean StDev

A 4 12.9% 5 15.6% 9 14.3% 0.22 0.11 12.46 4.48
B 5 16.1% 6 18.8% 11 17.5% 0.26 0.10 10.59 6.32
C 5 16.1% 5 15.6% 10 15.9% 0.25 0.15 11.55 5.38
D 6 19.4% 4 12.5% 10 15.9% 0.37 0.34 12.86 6.65
E 6 19.4% 6 18.8% 12 19.0% 0.22 0.18 10.85 6.98
F 5 16.1% 6 18.8% 11 17.5% 0.19 0.12 11.78 6.81

Total: 31 32 63

The number of active and inactive satellites in the applied ranges is similar. About
65% of the analyzed satellites achieved |a| values less than 0.3◦/year with approximately
50% within the range of 0.1◦–0.3◦/year. The highest values exceeding 0.5◦/year represent
ca. 5% of the total population of satellites. The relationship between the duration of the
satellite mission and the trend of separation is presented in Table 4.

The statistical sample was divided according to the duration of the satellite space
mission. The difference in the percentages of the active and inactive GPS satellites is
noticeable. Increases of 9.8% and 7.0% in the number of active satellites compared to the
inactive in the 5–10 years and 10–15 years MD groups, respectively, occurred. A significant
decrease in the number of active satellites amounting to 24.5% occurred in the range of
15–20 years. In the current GPS constellation, four out of all five satellites operate with a
mission duration longer than 20 years. The corresponding mean absolute value of the OP
AN separation trend equals 0.54◦/year. However, in that case, a significant value of the
standard deviation should be noted, caused by the anomalous and several times greater
separation trend of the SVN46 satellite. The results show a general upward trend of |a|
while the duration of the satellite space mission increases. However, this relationship is not
close to linear, as the correlation coefficient of both parameters is 0.36. The third analysis of
the separation trend based on the data in Figure 7 is shown in Table 5.
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Excluding the block I satellites from the analyzed population, slightly larger numbers
of satellites located on OPs B, E, and F than in the cases of the A, C, and D orbital planes are
noticeable. Similarly to the previous analysis in Table 4, a significant impact of the PRN46
satellite with OP D on the mean value of |a| was noted. The highest absolute value of
the separation of the AN from the OP is obtained in OP D and equals 0.37◦/year. At the
same time, the corresponding value of the standard deviation indicates the presence of
smaller values of the remaining satellites from OP D. The other OPs’ |a| values range from
0.19◦ (OP F) to 0.26◦/year (OP B). The values of their standard deviations indicate a similar
separation rate of the remaining OP satellites. The average satellite mission durations
range from 10.59 to 12.86 years. The longest mean MD was recorded for OP A and OP D.

The study showed a stepwise but systematic increase in the standard deviation of dΩ
separations in the case of all six OPs (Figure 8). OP D stands out with a 5-fold increase in
the last 24 years from a value not exceeding 2◦ in 1996 to 10◦ in 2020. The impact of the
anomalous position of SVN46’s orbit is apparent. The A, B, E, and F OPs’ dΩ standard
deviations ranged from 2◦ to 3◦. An approximately 1◦ higher value occurred in OP C at
the end of the analysis in 2020. A major decrease in the OP C dΩ standard deviation was
observed in 2015 when the SVN33 and SVN36 satellites ended their mission. The satellites’
dΩ values at the end of their activity equaled −10.37◦ and −5.09◦, respectively. Signifi-
cantly larger separations of their ANs resulted in high values of the standard deviation of
OPs.
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Figure 8. Standard deviations of the OPs’ dΩ parameter.

The step changes in the standard deviations were caused by the modernization of
the GPS space segment and the change in the number of active satellites. Confirmation of
this relationship is indicated by the last chart’s parameter presenting the number of active
OP D satellites. Comparing the epochs of the change in the number of satellites (black)
with the corresponding dΩ standard deviation (green), a coincidence is visible. In general,
the step changes did not change the upward trend of the standard deviations of the GPS
satellites’ AN separations from the OP.

The last point of the study was the analysis of the adjusted OP Ω values. Figure 9
shows the derived estimators of the OP ANs’ symmetry. In the left part of the figure,
the red vertical arrows indicate the hexagonal symmetry between the six OPs of the GPS
space segment. The orbital planes A, B, C, D, E, and F are presented from bottom to top
in the figure. The horizontal red lines refer to the reference values of the research, i.e.,
hex-LS adjustment results providing the initial GPS geometry with the hexagonal division
of the equatorial plane by OPs. Using the hex-LS estimators, the robust adjustment Ω
deviations (green color) were calculated. The last elements of the figure are marked in
black: deviations of the OPs arithmetic mean Ω values from the hex-LS reference. The
colors of the parameters correspond to Figures 3 and 4.
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The dΩ OP D deviation values took the smallest and the largest values in the dataset
from −7◦ to 3.5◦. In the case of the remaining OPs, the deviations mostly range from −2◦

to 2◦. The differences in the course of the polylines representing the arithmetic mean (black)
and the robust estimation (green) method indicate minimization of the impact of outliers
on the determined OP AN position robust estimator. The results are visible, e.g., in the case
of OP D, where almost from the beginning of the SVN46 mission in 2000, the weights of
its anomalous orbit were systematically minimized. In the research timeframe, for all OPs
except for OP D, similar values of approximately 2◦ of the AN position error with respect
to the hex-LS estimators were obtained. This OP AN deviation doubled in OP D in 2012
and has tripled since 2018. In the last two years, the OP AN deviations remained relatively
constant in five out of six OPs. The exception is OP F, where a reverse trend of the OP AN
closing to the initial symmetry was noted.

4. Conclusions

This work presents a novel method of assessing the symmetry of the ascending nodes
of the GPS orbital planes. Previous space segment studies focused mainly on the accuracy
of determining the position of satellites. This study provides a more general perspective
and is an extension of the conclusions drawn from the previous authors’ research on the
anomalous orbit of one of the GPS satellites. The research material consisted of 7035 SEM
almanacs containing crucial Keplerian orbital parameters and published between 1996
and 2020. Based on the longitude of the ascending node (Ω) and rate of the longitude of
the ascending node (dot(Ω)) parameters, the symmetry properties of the satellite orbits’
ascending nodes were determined.
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The research algorithm included robust estimation and least-squares adjustment
methods. The reference values estimated for each almanac epoch met the requirement of
the initial GPS hexagonal symmetry of orbital plane ascending nodes in the equatorial
plane. The estimators were determined in two stages. In the first stage, the Huber weight
function eliminated the influence of outliers in the ascending node Ω datasets. The second
stage introduced the condition of hexagonal symmetry in the least-squares method. The
reference Ω values of the orbital plane ascending nodes were used to determine the dΩ
deviations and the separation trend values of the ascending nodes of individual GPS
satellites. The symmetry of the GPS orbital planes was also analyzed.

The study showed that for five out of six orbital planes, the hexagonal ascending
nodes symmetry error value did not exceed 2◦. An exception was orbital plane D, where
three times higher values of deviations were recorded. In this case, the robust estimation
method was of particular importance as it minimized the impact of the anomalous SVN46
satellite orbit on the adjustment results. The analysis showed an average trend of separation
of satellite ascending nodes from the orbital planes of 0.25◦/year with an average space
mission duration of 11.7 years. The highest value of the separation trend was obtained for
orbital plane D with the anomalous SVN46. The study also assessed the impact of the space
mission duration on the ascending node separation trends. With a correlation coefficient of
0.36, the highest mean trend value of 0.54◦/year occurred in the case of satellites operating
for over 20 years. Satellites with less than 5 years of mission duration achieved four times
lower values.

The developed method for assessing the symmetry of the position of the orbital
plane ascending nodes is a novel solution to obtaining information about the current and
past states of the satellite constellation. Adaptation of thousands of GPS almanacs to a
statistical sample increased the reliability of the analysis. The trend of satellite ascending
node separation from orbital planes determined in the 24-year-long research timeframe
additionally enables the prediction of the future constellation state and can significantly
support the actions of the GPS control segment.
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Appendix A

Table A1. Descriptive parameters of the OP A satellites.

SVN PRN OP SVA a
[◦/Year]

MD
[Year] n dΩ [◦]

19 19 A NO −0.44 5.45 598 -
25 25 A NO −0.3 13.72 3114 -
27 27 A NO −0.15 16.52 4026 -
38 8 A NO 0.26 17.36 4788 -
39 9 A NO −0.06 18.14 4735 -
48 7 A YES 0.11 12.49 4532 0.84
52 31 A YES 0.17 13.95 5053 1.64
64 30 A YES −0.23 6.56 2386 1.97
65 24 A YES −0.26 7.94 2886 −3.43

https://www.navcen.uscg.gov
https://celestrak.com
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Table A3. Descriptive parameters of the OP C satellites.

SVN PRN OP SVA a
[◦/Year]

MD
[Year] n dΩ [◦]

28 28 C NO 0.15 1.38 123 -
31 31 C NO −0.29 9.57 1644 -
33 3 C NO −0.57 18.32 4810 -
36 6 C NO −0.4 17.9 4649 -
37 7 C NO −0.29 11.73 2421 -
53 17 C YES 0.19 14.96 5416 2.82
57 29 C YES 0.24 12.72 4613 3.59
59 19 C YES 0.13 16.47 5829 5.34
66 27 C YES 0.2 7.33 2663 −0.12
72 8 C YES −0.02 5.16 1880 −1.08
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