Corn Nitrogen Status Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom Sensing System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Proximal Sensor Collection
2.3. Plant Sampling and Analysis
2.4. Data Analysis
2.5. Corn N Status Diagnosis
3. Results
3.1. Corn N Status Indicator Variability
3.2. Crop Circle Phenom Sensor Inter-Parameter Correlation
3.3. Simple Regression Analysis
3.4. Machine Learning Modeling Using eXtreme Gradient Boosted (XGB) Regression
3.5. Relative Importance of Input Variables
3.6. Diagnosis of In-Season N Status Using NNI
4. Discussion
4.1. Crop Circle Phenom Comparison to Similar Proximal Active Canopy Sensors
4.2. Modelling Strategies for In-Season Corn N Status Prediction and Diagnosis
4.3. Implications for On-Farm Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebbers, R.; Adamchuk, V. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Subedi, K.D.; Ma, B.L. Assessment of Some Major Yield-Limiting Factors on Maize Production in a Humid Temperate Environment. Field Crops Res. 2009, 110, 21–26. [Google Scholar] [CrossRef]
- Andraski, T.W.; Bundy, L.G.; Brye, K.R. Crop Management and Corn Nitrogen Rate Effects on Nitrate Leaching. J. Environ. Qual. 2000, 29, 1095–1103. [Google Scholar] [CrossRef]
- Ma, B.L.; Wu, T.Y.; Tremblay, N.; Deen, W.; McLaughlin, N.B.; Morrison, M.J.; Stewart, G. On-Farm Assessment of the Amount and Timing of Nitrogen Fertilizer on Ammonia Volatilization. Agron. J. 2010, 102, 134–144. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to Ghg Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision Nitrogen Management of Wheat. A Review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Liu, B.; Liu, Y.; Li, F.; Khosla, R.; Mulla, D.J.; Zhang, F. Improving Nitrogen Use Efficiency with Minimal Environmental Risks Using an Active Canopy Sensor in a Wheat-Maize Cropping System. Field Crops Res. 2017, 214, 365–372. [Google Scholar] [CrossRef]
- Cassman, K.; Dobermann, A.; Walters, D. Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management. Biogeochemistry 2006, 79, 132–140. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the Nitrogen Nutrition Index Using Spectral Canopy Reflectance Measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Silva, J.; Uchida, R. Essential Nutrients for Plant Growth. In Plant Nutrient Management in Hawaii’s Soils: Approaches for Tropical and Subtropical Agriculture; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Manaoa, HI, USA, 2000; pp. 31–55. [Google Scholar]
- Plénet, D.; Lemaire, G. Relationships between Dynamics of Nitrogen Uptake and Dry Matter Accumulation in Maize Crops. Determination of Critical N Concentration. Plant Soil 1999, 216, 65–82. [Google Scholar] [CrossRef]
- Cilia, C.; Panigada, C.; Rossini, M.; Meroni, M.; Busetto, L.; Amaducci, S.; Boschetti, M.; Picchi, V.; Colombo, R. Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery. Remote Sens. 2014, 6, 6549–6565. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active Optical Sensing of Spring Maize for In-Season Diagnosis of Nitrogen Status Based on Nitrogen Nutrition Index. Remote Sens. 2016, 8, 605. [Google Scholar] [CrossRef] [Green Version]
- Ziadi, N.; Brassard, M.; Bélanger, G.; Claessens, A.; Tremblay, N.; Cambouris, A.N.; Nolin, M.C.; Parent, L.É. Chlorophyll Measurements and Nitrogen Nutrition Index for the Evaluation of Corn Nitrogen Status. Agron. J. 2008, 100, 1264–1273. [Google Scholar] [CrossRef]
- Zhao, B.; Duan, A.; Ata-Ul-Karim, S.T.; Liu, Z.; Chen, Z.; Gong, Z.; Zhang, J.; Xiao, J.; Liu, Z.; Qin, A.; et al. Exploring New Spectral Bands and Vegetation Indices for Estimating Nitrogen Nutrition Index of Summer Maize. Eur. J. Agron. 2018, 93, 113–125. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Grace, P.R.; Cafiero, G.; Sartori, L.; Pisante, M.; Landi, G.; de Franchi, S.; Basso, F. Criteria for Selecting Optimal Nitrogen Fertilizer Rates for Precision Agriculture. Ital. J. Agron. 2009, 4, 147–158. [Google Scholar] [CrossRef]
- Miao, Y.; Mulla, D.J.; Randall, G.W.; Vetsch, J.A.; Vintila, R. Combining Chlorophyll Meter Readings and High Spatial Resolution Remote Sensing Images for In-Season Site-Specific Nitrogen Management of Corn. Precis. Agric. 2009. [Google Scholar] [CrossRef]
- Paiao, G.D.; Fernández, F.F.; Spackman, J.A.; Kaiser, D.E.; Weisberg, S. Ground-Based Optical Canopy Sensing Technologies for Corn–Nitrogen Management in the Upper Midwest. Agron. J. 2020, 112, 2998–3011. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite—1 Symposium; Held by Goddard Space Flight Center at Washington, DC on 10–14 December 1973: Prepared at Goddard Space Flight Center; Scientific and Technical Information Office, National Aeronautics and Space Administration: Washington, DC, USA, 1974; Volume 351, pp. 309–317. [Google Scholar]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Madison, WI, USA, 16–19 July 2000; Robert, P.C., Rust, R.H., Larson, W.E., Eds.; American Society of Agronomy (CD-ROM): Madison, WI, USA, 2000. [Google Scholar]
- Serrano, L.; Filella, I.; Peñuelas, J. Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies. Crop Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Alzaben, H.; Fraser, R.; Swanton, C. An Inverse Correlation between Corn Temperature and Nitrogen Stress: A Field Case Study. Agron. J. 2019, 111, 3207–3219. [Google Scholar] [CrossRef]
- Fernández, F.G.; Fabrizzi, K.P.; Naeve, S.L. Corn and Soybean’s Season-Long in-Situ Nitrogen Mineralization in Drained and Undrained Soils. Nutr. Cycl. Agroecosyst. 2017, 107, 33–47. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Active Proximal Sensing: Review of Waveband Selection, Vegetation Indices, Scientific Trump Cards, Etc. In Proceedings of the ASA CSSA SSSA 2011 International Annual Meetings, San Antonio, TX, USA, 16–19 October 2011. [Google Scholar]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: New York, NY, USA, 2010; ISBN 9780199207794. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Long, D.S.; Eitel, J.U.H.; Huggins, D.R. Assessing Nitrogen Status of Dryland Wheat Using the Canopy Chlorophyll Content Index. Crop Manag. 2009, 8, 1–8. [Google Scholar] [CrossRef]
- Holland Scientific. Crop Circle Phenom User’s Guide; Holland Scientific: Lincoln, NE, USA, 2016. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of total nitrogen in plant tissue. In Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998; pp. 75–84. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System Tianqi. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Schratz, P.; Muenchow, J.; Iturritxa, E.; Richter, J.; Brenning, A. Hyperparameter Tuning and Performance Assessment of Statistical and Machine-Learning Algorithms Using Spatial Data. Ecol. Model. 2019, 406, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.; Rascher, U.; et al. Satellite Remote Sensing-Based in-Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Yuan, F. Evaluating Different Approaches to Non-Destructive Nitrogen Status Diagnosis of Rice Using Portable RapidSCAN Active Canopy Sensor. Sci. Rep. 2017. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [Green Version]
- Freeman, K.W.; Girma, K.; Arnall, D.B.; Mullen, R.W.; Martin, K.L.; Teal, R.K.; Raun, W.R. By-Plant Prediction of Corn Forage Biomass and Nitrogen Uptake at Various Growth Stages Using Remote Sensing and Plant Height. Agron. J. 2007, 99, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Miao, Y.; Guan, Y.; Xia, T.; Lu, J.; Mulla, D.J. An evaluation of two active sensor systems for non-destructive estimation of spring maize biomass. In Proceedings of the Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2016), Tianjin, China, 18–20 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy Temperature as a Crop Water Stress Indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- DeJonge, K.C.; Taghvaeian, S.; Trout, T.J.; Comas, L.H. Comparison of Canopy Temperature-Based Water Stress Indices for Maize. Agric. Water Manag. 2015, 156, 51–62. [Google Scholar] [CrossRef]
- Yan, C.; Ding, Y.; Wang, Q.; Liu, Z.; Li, G.; Muhammad, I.; Wang, S. The Impact of Relative Humidity, Genotypes and Fertilizer Application Rates on Panicle, Leaf Temperature, Fertility and Seed Setting of Rice. J. Agric. Sci. 2010, 148, 329–339. [Google Scholar] [CrossRef]
- Jensen, H.E.; Svendsen, H.; Jensen, S.E.; Mogensen, V.O. Canopy-Air Temperature of Crops Grown under Different Irrigation Regimes in a Temperate Humid Climate. Irrig. Sci. 1990, 11, 181–188. [Google Scholar] [CrossRef]
- Cammarano, D.; Fitzgerald, G.; Basso, B.; O’Leary, G.; Chen, D.; Grace, P.; Fiorentino, C. Use of the Canopy Chlorophyl Content Index (CCCI) for Remote Estimation of Wheat Nitrogen Content in Rainfed Environments. Agron. J. 2011, 103, 1597–1603. [Google Scholar] [CrossRef]
- Perry, E.M.; Fitzgerald, G.J.; Nuttall, J.G.; O’Leary, G.J.; Schulthess, U.; Whitlock, A. Rapid Estimation of Canopy Nitrogen of Cereal Crops at Paddock Scale Using a Canopy Chlorophyll Content Index. Field Crops Res. 2012, 134, 158–164. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving Estimation of Summer Maize Nitrogen Status with Red Edge-Based Spectral Vegetation Indices. Field Crops Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Clarke, T.R.; Moran, M.S.; Barnes, E.M.; Pinter, P.J.; Qi, J. Planar Domain Indices: A Method for Measuring a Quality of a Single Component in Two-Component Pixels. Int. Geosci. Remote Sens. Symp. 2001, 3, 1279–1281. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and Predicting Canopy Nitrogen Nutrition in Wheat Using a Spectral Index-The Canopy Chlorophyll Content Index (CCCI). Field Crops Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Bushong, J.T.; Mullock, J.L.; Miller, E.C.; Raun, W.R.; Brian Arnall, D. Evaluation of Mid-Season Sensor Based Nitrogen Fertilizer Recommendations for Winter Wheat Using Different Estimates of Yield Potential. Precis. Agric. 2016, 17, 470–487. [Google Scholar] [CrossRef]
- Bean, G.M.; Kitchen, N.R.; Camberato, J.J.; Ferguson, R.B.; Fernandez, F.G.; Franzen, D.W.; Laboski, C.A.M.; Nafziger, E.D.; Sawyer, J.E.; Scharf, P.C.; et al. Improving an Active-Optical Reflectance Sensor Algorithm Using Soil and Weather Information. Agron. J. 2018, 110, 2541–2551. [Google Scholar] [CrossRef] [Green Version]
- Ransom, C.J.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B. Statistical and Machine Learning Methods Evaluated for Incorporating Soil and Weather into Corn Nitrogen Recommendations. Comput. Electron. Agric. 2019, 164, 104872. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Huang, Y.; Shang, G.; Zhou, C.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sens. 2015, 7, 14939–14966. [Google Scholar] [CrossRef] [Green Version]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Zheng, H.; Li, W.; Jiang, J.; Liu, Y.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; Zhang, Y.; Yao, X. A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 2026. [Google Scholar] [CrossRef] [Green Version]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W. Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef] [Green Version]
Vegetation Index | Abbreviation | Formula | Reference |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | [19] | |
Normalized Difference Red Edge | NDRE | [20] | |
Estimated Canopy Chlorophyll Content | eCCC | where a, b, c, d are scaling constants | [24] |
Estimated Leaf Area Index | eLAI | where k is a scaling constant | [25] |
Ratio Vegetation Index | RVI | [26] | |
Canopy Chlorophyll Content Index | CCCI | [27] | |
Delta Temperature | Canopy Temp (C)—Air Temp (C) | [28] | |
Fractional Photosynthetically Active Radiation | fPAR | [28] |
Training Set (n = 208) | Testing Set (n = 67) | |||||||
---|---|---|---|---|---|---|---|---|
Max | Min | Mean | CV(%) | Max | Min | Mean | CV(%) | |
AGB (Mg ha−1) | 3.27 | 0.59 | 2.03 | 26.89 | 2.95 | 0.85 | 1.88 | 25.96 |
PNC (g kg−1) | 3.86 | 0.95 | 2.48 | 26.54 | 3.68 | 1.14 | 2.45 | 27.04 |
PNU (kg ha−1) | 101.68 | 3.95 | 51.79 | 39.27 | 86.98 | 7.79 | 46.82 | 40.11 |
NNI | 1.38 | 0.28 | 0.95 | 29.34 | 1.40 | 0.34 | 0.91 | 30.22 |
Parameter | Regression Model | Training | Testing | ||||
---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | ||
Aboveground Biomass (AGB) | |||||||
NDVI | 0.46 | 0.31 | 0.40 | 0.66 | 0.23 | 0.28 | |
NDRE | 0.45 | 0.30 | 0.40 | 0.60 | 0.24 | 0.31 | |
eLAI | 0.45 | 0.30 | 0.40 | 0.58 | 0.25 | 0.32 | |
eCCC | 0.45 | 0.30 | 0.40 | 0.58 | 0.25 | 0.31 | |
RVI | 0.45 | 0.31 | 0.40 | 0.65 | 0.24 | 0.29 | |
CCCI | 0.34 | 0.33 | 0.44 | 0.36 | 0.31 | 0.39 | |
fPAR | 0.15 | 0.40 | 0.50 | 0.16 | 0.34 | 0.44 | |
Temp | 0.25 | 0.37 | 0.47 | 0.26 | 0.32 | 0.42 | |
Plant Nitrogen Concentration (PNC) | |||||||
NDRE | 0.16 | 0.49 | 0.60 | 0.23 | 0.48 | 0.58 | |
eLAI | 0.21 | 0.48 | 0.58 | 0.27 | 0.47 | 0.56 | |
eCCC | 0.23 | 0.47 | 0.58 | 0.29 | 0.47 | 0.55 | |
CCCI | 0.27 | 0.45 | 0.56 | 0.41 | 0.41 | 0.50 | |
Plant Nitrogen Uptake (PNU) | |||||||
NDVI | 0.26 | 14.42 | 17.46 | 0.26 | 13.85 | 16.09 | |
NDRE | 0.38 | 12.48 | 15.95 | 0.48 | 11.51 | 13.48 | |
eLAI | 0.38 | 12.44 | 15.99 | 0.49 | 11.21 | 13.29 | |
eCCC | 0.39 | 12.36 | 15.91 | 0.50 | 11.12 | 13.22 | |
RVI | 0.24 | 14.69 | 17.68 | 0.23 | 14.24 | 16.35 | |
CCCI | 0.38 | 12.30 | 16.01 | 0.46 | 11.25 | 13.76 | |
Nitrogen Nutrition Index (NNI) | |||||||
NDVI | 0.12 | 0.22 | 0.26 | 0.10 | 0.22 | 0.26 | |
NDRE | 0.30 | 0.19 | 0.23 | 0.41 | 0.18 | 0.21 | |
eLAI | 0.25 | 0.20 | 0.24 | 0.34 | 0.19 | 0.22 | |
eCCC | 0.27 | 0.20 | 0.24 | 0.37 | 0.19 | 0.22 | |
RVI | 0.10 | 0.23 | 0.26 | 0.08 | 0.23 | 0.26 | |
CCCI | 0.38 | 0.18 | 0.22 | 0.53 | 0.16 | 0.19 | |
fPAR | 0.10 | 0.22 | 0.26 | 0.08 | 0.23 | 0.26 |
Plant Variables | Input Variables | Training | Testing | ||||
---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | ||
Aboveground Biomass(Mg ha−1) | NDRE + NDVI | 0.61 | 0.26 | 0.34 | 0.54 | 0.26 | 0.33 |
All Phenom Sensor Metrics | 0.83 | 0.17 | 0.23 | 0.50 | 0.28 | 0.34 | |
Phenom Metrics + Management | 0.70 | 0.23 | 0.30 | 0.60 | 0.24 | 0.30 | |
Plant N Concentration | NDRE + NDVI | 0.64 | 0.32 | 0.40 | 0.59 | 0.33 | 0.42 |
All Phenom Sensor Metrics | 0.82 | 0.21 | 0.28 | 0.50 | 0.38 | 0.46 | |
Phenom Metrics + Management | 0.88 | 0.18 | 0.23 | 0.66 | 0.27 | 0.38 | |
Plant N Uptake | NDRE + NDVI | 0.51 | 11.13 | 14.18 | 0.43 | 11.80 | 14.10 |
All Phenom Sensor Metrics | 0.61 | 9.76 | 12.59 | 0.35 | 12.18 | 15.01 | |
Phenom Metrics + Management | 0.80 | 7.08 | 9.05 | 0.44 | 10.83 | 14.00 | |
N Nutrition Index | NDRE + NDVI | 0.65 | 0.13 | 0.16 | 0.55 | 0.15 | 0.18 |
All Phenom Sensor Metrics | 0.85 | 0.08 | 0.11 | 0.52 | 0.15 | 0.19 | |
Phenom Metrics + Management | 0.96 | 0.04 | 0.06 | 0.65 | 0.13 | 0.16 |
Plant Variables | Input Variables | Hyperparameter Parameters | ||
---|---|---|---|---|
Max Depth | Min Child Weight | Learning Rate | ||
Aboveground Biomass | NDRE + NDVI | 2 | 5 | 0.10 |
Phenom Sensor Metrics | 4 | 5 | 0.05 | |
Sensor Metrics + Management | 4 | 2 | 0.05 | |
Plant N Concentration | NDRE + NDVI | 3 | 1 | 0.10 |
All Phenom Sensor Metrics | 2 | 4 | 0.15 | |
All Sensor Metrics + Management | 3 | 3 | 0.05 | |
Plant N Uptake | NDRE + NDVI | 2 | 3 | 0.05 |
All Phenom Sensor Metrics | 2 | 3 | 0.05 | |
All Sensor Metrics + Management | 2 | 3 | 0.10 | |
N Nutrition Index | NDRE + NDVI | 4 | 1 | 0.05 |
All Phenom Sensor Metrics | 4 | 5 | 0.05 | |
All Sensor Metrics + Management | 3 | 3 | 0.15 |
Areal Agreement (%) | Kappa Statistics | ||||
---|---|---|---|---|---|
Deficient (n = 37) | Optimum (n = 4) | Surplus (n = 26) | Overall (n = 67) | ||
NDRE | 70 | 25 | 23 | 49 | 0.22 |
CCCI | 62 | 50 | 42 | 54 | 0.26 |
XGB NDVI+NDRE | 70 | 0 | 50 | 58 | 0.31 |
XGB All Phenom Metrics | 68 | 25 | 46 | 57 | 0.29 |
XGB Phenom + Management | 68 | 50 | 81 | 72 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cummings, C.; Miao, Y.; Paiao, G.D.; Kang, S.; Fernández, F.G. Corn Nitrogen Status Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom Sensing System. Remote Sens. 2021, 13, 401. https://doi.org/10.3390/rs13030401
Cummings C, Miao Y, Paiao GD, Kang S, Fernández FG. Corn Nitrogen Status Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom Sensing System. Remote Sensing. 2021; 13(3):401. https://doi.org/10.3390/rs13030401
Chicago/Turabian StyleCummings, Cadan, Yuxin Miao, Gabriel Dias Paiao, Shujiang Kang, and Fabián G. Fernández. 2021. "Corn Nitrogen Status Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom Sensing System" Remote Sensing 13, no. 3: 401. https://doi.org/10.3390/rs13030401
APA StyleCummings, C., Miao, Y., Paiao, G. D., Kang, S., & Fernández, F. G. (2021). Corn Nitrogen Status Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom Sensing System. Remote Sensing, 13(3), 401. https://doi.org/10.3390/rs13030401