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Abstract: Estimates of crop canopy chlorophyll content (CCC) can be used to monitor vegetation
productivity, manage crop resources, and control disease and pests. However, making these estimates
using conventional ground-based methods is time-consuming and resource-intensive when deployed
over large areas. Although vegetation indices (VIs), derived from satellite sensor data, have been
used to estimate CCC, they suffer from problems related to spectral saturation, soil background, and
canopy structure. A new method was, therefore, proposed for combining the Medium Resolution
Imaging Spectrometer (MERIS) terrestrial chlorophyll index (MTCI) and LAl-related vegetation
indices (LAI-VIs) to increase the accuracy of CCC estimates for wheat and soybeans. The PROSAIL-D
canopy reflectance model was used to simulate canopy spectra that were resampled to match the
spectral response functions of the MERIS carried on the ENVISAT satellite. Combinations of the
MTCI and LAI-VIs were then used to estimate CCC via univariate linear regression, binary linear
regression and random forest regression. The accuracy using the field spectra and MERIS data was
determined based on field CCC measurements. All the MTCI and LAI-VI combinations for the
selected regression techniques resulted in more accurate estimates of CCC than the use of the MTCI
alone (field spectra data for soybeans and wheat: R? = 0.62 and RMSE = 77.10 ug cm~2; MERIS
satellite data for soybeans: R? = 0.24 and RMSE = 136.54 ug cm~2). The random forest regression
resulted in better accuracy than the other two linear regression models. The combination resulting
in the best accuracy was the MTCI and MTVI2 and random forest regression, with R?% = 0.65 and
RMSE = 37.76 ug cm 2 (field spectra data) and R? = 0.78 and RMSE = 47.96 g cm~2 (MERIS satellite
data). Combining the MTCI and a LAI-VI represents a further step towards improving the accuracy
of estimation CCC based on multispectral satellite sensor data.

Keywords: crop chlorophyll; PROSAIL-D; MTCI; LAI-related vegetation indices; random forest regression

1. Introduction

Chlorophyll is the main photosynthetic leaf pigment, playing a critical role by con-
verting solar radiation into stored chemical energy [1]. Canopy chlorophyll content (CCC)
is calculated based on the leaf area index (LAI) and leaf chlorophyll content (LCC) and
expressed per unit leaf area. This measure is useful for monitoring the productivity and
growth status of vegetation [2,3]. Over the past few decades, extensive research has found
that CCC is the primary driving force for estimating gross primary productivity (GPP) [1,4],
so its accurate determination is extremely important for agricultural applications.

The methods currently used to determine CCC consist of two approaches: (1) A
laboratory-based approach, and (2) non-destructive remote sensing technology. The first is
highly accurate but also time consuming, resource intensive, and destructive, limiting its
large-scale application [5]. The development of remote-sensing technology has enabled the
estimation of CCC using satellite data with various temporal and spatial resolutions [6-8].
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The vegetation index (VI) approach is widely used to estimate CCC due to its simplicity,
convenience, and high computational efficiency [9-11]. Retrieving CCC requires a vegeta-
tion index that is sensitive to both LCC and the LAI, since both of these influence CCC. A
variety of VIs have been published that are based on field measurements and simulated
datasets obtained from the radiation transfer model [8,9,12]. The MERIS terrestrial chloro-
phyll index (MTCI) was developed by utilizing red and red-edge position bands and is
commonly used to estimate CCC based on both MERIS and other hyperspectral data [13].

Due to the structural characteristics of leaves, the canopy architecture and soil back-
ground can significantly affect the optical properties of leaves and canopies [14-17]. There-
fore, issues can arise when estimating CCC using VIs calculated based on canopy re-
flectance. Several studies have indicated that a strong correlation exists between the MTCI
and CCC, but this gradually weakens as the LAI increases [18,19]. The spectral saturation
associated with high LAI values has always been an issue when estimating canopy pop-
ulation parameters and when using VIs to retrieve CCC. Various studies have indicated
that vegetation spectra and VIs can become saturated when high LAI levels are observed
for different types of vegetation [20,21]. The vegetation indices sensitive to the LAI are
named LAl-related vegetation indices (LAI-VIs) and derived from spectral reflectance
at red and near-infrared bands. LAI-VIs also encounter saturation issues when used for
estimating LAIs. Some modified LAI-VIs have been developed to reduce the saturation
produced by high LAI values [16,22,23]. However, little is known about CCC retrieval
when in the presence of high LAI values. Additionally, the MTCI is observed to have a
weaker relationship with CCC at low coverage [24]; this is because the soil background
has a significant impact on the red-edge reflectance when the canopy is sparse or has
low coverage [25].

More information related to leaf chlorophyll and canopy structure can be obtained by
using a combination of multiple VIs rather than a single VI [26,27]. A combination of the
chlorophyll-related VI (CHL-VI) and LAI-VI has previously been used for estimating LCC
and is resistant to LAI variations [28-30]. The ratio of the transformed chlorophyll absorp-
tion in reflectance index (TCARI) to the optimized soil-adjusted vegetation index (OSAVI),
called the TCARI/OSAVI, has been used to accurately retrieve crop chlorophyll with hy-
perspectral airborne imagery [28]. Several other ratio-based VIs have been developed and
applied for the ground and satellite-based remote sensing of crop and forest LCC [29,30].
The combination of the CHL-VI and LAI-VI with multiple regression or cost functions is a
radiative transfer model inversion that has also improved LCC estimation [31]. However,
these VI combinations are insensitive to the vegetation population and not useful for CCC
retrieval. Most studies to date have used a combination of VIs for LCC estimation and
focused on eliminating the influence of the LAI on the CHL-VI. However, only a few have
proposed VI combinations for estimating CCC. One such study estimated grassland CCC
using a combined VI based on two single VIs calculated from Landsat data, but it did not
include a red-edge index such as the MTCI [32].

The most common statistics-based retrieval algorithm is linear regression (LR), which
reflects empirical relationships between CCC and VIs [33]. However, the empirical formulae
are occasionally incapable of representing nonlinear relationships in complex environmen-
tal conditions [34,35]. Machine learning has been widely applied to retrieve vegetation
parameters by training spectral reflectance data based on simulations or field measure-
ments, which has shown robustness and improved prediction accuracy [36,37]. In machine
learning, the random forest is a classifier containing multiple decision trees and is used for
classification and regression [38]. Past research has demonstrated that random forest regres-
sion (RFR) is a strong predictor for retrieving the biochemical components of vegetation.
The method is widely used due to its accuracy, ease of use, and favorable stability [39,40].
Shah et al. [41] used random forest regression training with several VIs for retrieving the
leaf chlorophyll content in wheat, showing good performance (RMSE = 3.62~3.91 pg cm~2).
RFR has significant advantages for estimating biochemical components, but it has seldom
been used to predict CCC.
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The purpose of this research was to introduce a VI combination approach for retrieving
the CCC in crops with fewer uncertainties relative to the use of single VIs. This study
combined the MTCI and LAI-VIs as a univariate variable, and two corresponding single VIs
were included as binary variables. LR and RFR were used to determine the relationships
between CCC and the two variables. The feasibility of the VI combination approach was
verified through simulations with the PROSAIL-D model, and its reliability was validated
using field canopy spectra and MERIS satellite data.

2. Materials and Methods
2.1. Study Sites

Figure 1 illustrates the spatial distribution of the two study sites. The first was lo-
cated at the National Station for Precision Agriculture, Xiaotangshan (XTS), Beijing, China
(40°10'48"N, 116°26/24"E). In 2002 and 2004, the biophysical parameters for winter wheat
were determined through field and laboratory measurements: in the 2002 campaign, 48 plots
324 m x 30 m in size were used, along with three winter wheat varieties, while in 2004, 42
plots 32.4 m x 30 m in size were used and 21 winter wheat varieties were planted [30,42].
The other two study areas (US-Ne2 and US-Ne3) were situated at the University of Nebraska-
Lincoln, NE, USA (41°9'54"N, 96°28'12""W; 41°10'47"N, 96°26/23""W). The US-Ne2 and
US-Ne3 sites covered an area of about 65 ha, and featured a soybean (even years) and maize
(odd years) crop rotation. The two sites had different levels of water stress that affected the
crops (more details about these sites can be found in [43]). The biophysical parameters for
the soybean crops were measured from June to September in 2002 and 2004 at the US-Ne2
site, and from June to September in 2002 at the US-Ne3 site. Table 1 provides additional
information for the three sites.
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Figure 1. Location of the winter wheat study sites in Beijing, China and the soybean study sites in Nebraska, USA.
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Table 1. Details of the study sites, including the sampling locations (Lat = latitude; Long = longitude), crop species, sample

periods and dates for the MERIS image acquisitions.

Sites

Country

Lat/Long (°) Crop Species Sampling Periods MERIS Periods

XTS

US-Ne2

US-Ne3

China

America

America

2 April, 10 April, 18 April, 6
May,
40.18/116.44 Wheat 17 May 2002 -
14 April, 19 May 2004

13 June-17 September 2002,
27 measurement campaigns 25 June-24
29 June—20 September 2004, September 2004
21 measurement campaigns
19 June-17 September 2002,

41.18/—-96.44 Soybean . -
18 measurement campaigns

41.165/—-96.47 Soybean

2.2. Field Measurements
2.2.1. Canopy Reflectance Measurements

The canopy reflectance at the XTS site was measured using an ASD FieldSpec Pro
spectrometer (Analytical Spectral Devices, Boulder, CO, USA) with a spectral range of 350-
2500 nm and spectral resolutions of 3 nm (350-1050 nm) and 10 nm (1050-2500 nm). The
measurements were obtained between 10:00 and 14:00 local time during clear and cloudless
conditions, at a height of 1.3 m above the wheat canopy, with a 25° field of view. The
average canopy reflectance for each plot was obtained via 20 individual measurements [30].
The canopy spectral reflectance at the US-Ne2 and US-Ne3 sites was obtained using two
inter-calibrated Ocean Optics USB2000 radiometers (Ocean Optics Inc., Dunedin, FL, USA)
ranging from 400 to 1100 nm in spectral range, with a spectral resolution of 1.5 nm [44].
One radiometer upwardly measures the upwelling radiance of the crop at a height of about
5.5 m above the canopy with a 25° field of view. The other downwardly measured the
incident irradiance with a hemispherical field of view. The measurements were taken
under clear sky conditions between 11:00 and 14:00 local time, and the reflectance was then
calculated using methods described by Gitelson [1].

2.2.2. Measurement of Canopy Chlorophyll Content

At the XTS site, fresh wheat leaf samples were taken from the top of the canopy in a
1 m? area for each plot [30], and rapidly placed in a plastic box containing ice for transport
to the laboratory. The chlorophyll concentration was determined using a spectrophotome-
ter [45]. The LAI of the sample leaves was measured using the dry-weight method [46].
At the US-Ne2 and US-Ne3 sites, fresh leaves from the soybean plants were collected in
six small plots (20 m x 20 m) within each site. The leaf pigment was extracted with 80%
acetone and LCC was obtained using a spectrophotometer [47]. The LAI of sample leaves
was measured using an area meter (Model LI-3100, Li-Cor Inc., Lincoln, NE, USA) [43].
LCC and LALI for six plots were then averaged as site-level values. The total chlorophyll
parameter for the CCC was calculated by multiplying the LAI by the LCC. The statistical
analyses of the measured wheat and soybean CCCs are shown in Table 2.
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Table 2. Summary statistics for the measured wheat and soybean CCCs (g cm™—2).

Sites Crop Year N Mean Min Max SD cv
Species

2002 227 13718 4542 23757 4839 0.35

XIS~ Wheat 554 44 14557 7377 23113 3813 0.26

2002 27 67.83 331 18633 4858 0.72

US-Ne2  Soybean 0, 21 11090 570 27436  78.64 0.71

US-Ne3 Soybean 2002 18 72.01 536 11987  40.12 0.56

N = number of samples; Mean = mean value; Min = minimum value; SD = standard deviation; CV = coeffi-
cient of variation.

2.3. ENVISAT MERIS Data

MERIS is an imaging spectrometer with a medium-spectral resolution onboard the EN-
VISAT platform of the European Space Agency (ESA). The instrument can sample surface
reflectance in fifteen spectral bands with a range of 415-900 nm and has a temporal revisit
time of 2-3 days. The data represent 15 spectral bands in the visible, near-infrared, and
shortwave infrared regions with a spatial resolution of 300 m. The detailed specifications
of the MERIS sensor are shown in Table 3. In this study, full-resolution surface reflectance
products (for 25 June-24 September 2004), were produced by seven-day temporal synthesis
from data collected at the original 2-3-day revisit frequency. The MERIS surface-reflectance
product provides 13 bands, with bands 11 and 15 removed.

Table 3. Specifications of MERIS onboard the ENVISAT satellite.

Band Band Center (nm) Band Width (nm)
Bl 4125 10
B2 442.5 10
B3 490 10
B4 510 10
B5 560 10
B6 620 10
B7 665 10
B8 681.25 7.5
B9 705 10

B10 753.75 7.5
B11 760.625 3.75
B12 775 15
B13 865 20
B14 885 10
B15 900 10

2.4. Vegetation Indices

Several LAI-VIs were selected to introduce LAI information into the MTCI. The normal-
ized difference vegetation index (NDVI) was used for comparison, which exhibits saturation
for different crops when the LAl is >2 [48-50]. Several researchers have modified the NDVI
to mitigate the effect of saturation when estimating the LAI A linearized NDVI (LNDVI)
was derived by introducing a linearity-adjustment factor, {3, into the NDVI equation. The
LNDVI is more sensitive to spectral angles (reflectances) and has denser isolines with an
increase in spectral angles (VI values) from the red to near infrared (NIR) space. Therefore,
it has improve linearity and maintains a higher sensitivity to the fraction of the vegetation
in densely vegetated areas [22]. Liu et al. [51] presented a stretched NDVI (5-NDVI) that
was constructed using a scaling transformation function to eliminate saturation when the
vegetation fraction became too large. In comparison with the NDVI, the S-NDVI did not
reach saturation for LAIs of 2.5-5.0. In addition to such modified NDVIs, other spectral
indices also maintain better relationships with the LAI for densely vegetated regions. The
renormalized difference vegetation index (RDVI) [52] was proposed to combine the advan-
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tages of the difference vegetation index (DVI) [53] for low LAls and those of the NDVI for
high LAIs. Tan et al. [54] compared 56 hyperspectral vegetation indices and concluded
that the RDVI had the greatest positive relationship with the LAI, and remained far from
saturation in the presence of large LAls. Haboudane et al. [16] designed a new triangular
vegetation index (MTVI2) that proved to be the best predictor of the LAIL. The MTVI2 was
found to be insensitive to changes in chlorophyll and did not exhibit saturation at high LAIs.
The vegetation indices used in this study are shown in Table 4.

Table 4. Vegetation indices based on MERIS band settings.

Index Name Formula Reference
MERIS terrestrial
MTCI chlorophyll index (B10 — B9)/(B9 — BS) [13]
NDVI Normalized difference (B10 — B8)/(B10 + BS) [55]
vegetation index
LNDVI Linearized NDVI 1.2 (B10 — B8)/(B10 + 5 B8) [22]
S-NDVI Stretched NDVI 4/[1 + (1.2/NDVI) 2] [51]
Renormalized difference
RDVI vegetation index (B10 — B8)/SQRT(B10 — BS) [52]
. . 1.5[1.2 (B10 — B5) — 2.5 (B8 — B5)]/
MTVI2 MOdlfef t“.ar;gul";r SQRT{(2B10+1)2 — [6 B10 — 5 [16]
vegetation index SQRT(BS)] — 0.5}

2.5. Simulation of Canopy Reflectance Using the PROSAIL-D Model

The PROSAIL-D model was derived by coupling the PROSPECT-D leaf optical proper-
ties model [56] with the 45AIL canopy bidirectional reflectance model [57]. The PROSAIL-D
model was used to simulate MERIS observations and model the CCC based on VIs. It
simulates upward and downward hemispherical radiation fluxes between 400 and 2500 nm
with seven input parameters, and outputs the leaf spectral reflectance and transmittance.
The 4SAIL model is used to simulate canopy reflectance with a series of input parameters.
The input parameters for the PROSAIL-D model are shown in Table 5.

Table 5. Configuration of the input parameters in the PROSAIL-D model.

Parameters Description Units Range
N Leaf structure index - 1.5
LCC Leaf chlorophyll content ug cm 2 10~80; interval, 10
Cm Leaf dry matter content gcm™2 0.004
Leaf G, Leaf brown pigment content - 0
Cw Equivalent water thickness cm 0.02
Car Leaf carotenoid content ug cm 2 25% LCC
Cant Leaf anthocyanin content ug cm™—2 2
LAI Leaf area index m? m~2 0.25,05,0.75,1,1,25,1.51.75,2,3,4,5,6,7,8
ol Soil reflectance - As in Figure 1
ALA Average leaf angle Degrees [1,0], [0, 1], [0, —1],[0,0] [-0.35, —0.15]
Canopy hotS Hot spot parameter mm~! 0.05
Fraction of diffuse incoming . .
skyl . - According to the solar zenith angle
solar radiation
Os Solar zenith angle Degrees 0, 10, 20, 30, 40, 50, 60
ov View zenith angle Degrees 0
@® Sun-sensor azimuth angle Degrees 0

[1, 0] = planophile; [0, 1] = extremophile; [0, —1] = plagiophile; [0, 0] = uniform; [—0.35, —0.15] = spherical.

As shown in Table 5, the LCC values were set between 10 and 80 ng cm™2, at
10 pg cm~2 intervals. The leaf carotenoid content was set to 25% of the LCC due to
its insensitivity to red and red-edge region reflectance. The LAI values ranged from 0.25 to
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8, representing different levels of vegetation coverage. Five different leaf inclinations and
five types of soil reflectance (Figure 2) were used to represent different canopy structures
and soil backgrounds, respectively. The five types of soil reflectance were determined using
the field-measured spectra of bare, dry soil multiplied by different brightness coefficients.
The fraction of diffuse incoming solar radiation (skyl) was calculated in the PROSAIL-D
model according to the solar zenith angle. The solar zenith angles were set between 0 and
60°, at 10° intervals. The remaining fixed parameters were set according to either field
measurements or the scientific literature [58].

0.7
—Soill Soil2 Soil3

0.6 Soil4 —Soil5
[} 0.5 B
2
S804
3
=03
[}
o2 |

0.1 f ;

O ;7‘7”;:”777,I,,7 7’:]7 —_* . I
0 500 1000 1500 2000 2500
Wavelength (nm)

Figure 2. Soil reflectance values used for simulation in the PROSAIL-D model.

A dataset with 19,600 simulations was generated by running the PROSAIL-D model
in Matlab (The Math Works, Natick, MA, USA). The simulated reflectance derived from
the PROSAIL-D model was converted into the corresponding band reflectance using the
MERIS spectral response function [59].

2.6. CCC Retrieval Model

Three distinct methods were used to estimate CCC to retrieve CCC using VIs based
on simulated canopy spectrum data from the PROSAIL-D model. Figure 3 summarizes the
steps in retrieving canopy chlorophyll. The published VIs calculated from the simulated
canopy reflectance were used based on the PROSAIL-D model presented in this study.
First, linear regression was used to assess the relationships between CCC and the VIs. A
random forest regression approach trained with VIs was then employed to estimate the
CCC. Finally, field measurements and MERIS satellite data were used to validate the three
types of constructed model.

l Leaf parameters ‘ l Canopy structure I | Background reflectance ‘ ‘ Sun-view geometry l
[ I

[

PROSAIL
Canopy reflectance

Vegetation indices

[mrct| [ MTCEX LALVIS |

MTCI & LAI-VIs

MTCI & LAI-VIs

Univariate Linear
Regression

Binary Linear
Regression

Random Forest
Regression

Validation

‘ Field spectra and MERIS satellite data

Figure 3. Flowchart of the VI combination approach for CCC retrieval.
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2.6.1. Linear Regression Analysis

The performance of the combined VIs was assessed using simple linear regression.
Firstly, univariate linear regression (ULR) was employed to model the relationship between
the CCC and MTIC, MTCI x NDVI, MTCI x LNDVI, MTCI x SNDVI, MTCI x RDVI, and
MTCI x MTVI2. Binary linear regression (BLR) models were then constructed in Matlab
based on the relationship between CCC and the MTCI and NDVI, MTCI and LNDVI,
MTCI and SNDVI, MTCI and RDVI, and MTCI and MTVI2. We used the coefficient of
determination (R?), root mean square error (RMSE), bias (Bias), and normalized RMSE
(NRMSE) to evaluate the fitness and predictive power of the models, respectively. They
were calculated as follows:

M

@

®)

NRMSE = ———— @)
Ymax — Ymin

where 7; is the predicted CCC, y; is the measured CCC, ¥ is the average measured CCC,

Ymayx 1S the maximum value of the CCC, y,,;,, is the minimum value of the CCC, and n is the

number of measurements used. While linear regression analysis is simple to implement,

particularly in uncomplicated variable spaces, complex vegetated areas are likely to require

more advanced methods for their analysis.

2.6.2. Implementing the Random Forest Regression Approach

Random forest is an ensemble learning method that combines multiple decision trees
for classification or regression [60]. It runs efficiently on large datasets with excellent
performance and accuracy [38,61]. In this study, recursive partitioning was employed to
divide the simulated dataset into 100 homogeneous subsets (100 trees), and the results of
all the trees were then averaged. A random forest regression (RFR) was implemented in
Matlab with the use of the MTCI and LAI-VIs as input features for estimating CCC. The
CCC models were validated using ground spectral measurements and MERIS satellite data.

3. Results
3.1. Sensitivities of Spectra and MTCI to LAI and CCC

Figure 4 shows that all of the MERIS bands reached saturation due to the increase in
LA, particularly in the visible region, with bands 7 and 8 being the most severe, but the
effect was slightly mitigated in the near-infrared region. The relationship plot for MTCI
and CCC suggests that the saturation during CCC retrieval was largely caused by the
LAI (Figure 5a). Figure 5a provides an overview of the saturation effect observed for the
MTCI when the LAl is >2 at different LCCs. In summary, these results suggest that higher
LAIs largely contributed to the abnormal saturation of the spectra and MTCI. The soil
background and average leaf angle also affected the retrieval of the CCC based on the MTCI.
Figure 5b suggests that the soil background had little impact on the MTCI and CCC esti-
mation, especially at high LAIs. This was because the canopy reflectance contained less
background reflectance due to the increase in vegetation coverage. By contrast, the effect of
the average leaf angle increased with the LAI during CCC estimation, which was due to the
influence of the complex canopy structure on the transmission of solar radiation (Figure 5c).
Figure 5b,c also show that the LAI was the main cause of saturation for the MTCI.
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Figure 4. Sensitivity of spectra to LAIL
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Figure 5. Sensitivity of MTCI to CCC. (a) ALA is spherical and the soil background is soil3. (b) LCC = 40 ug cm~2, ALA is
spherical. (c) LCC =40 pg cm 2, soil background is soil3.

3.2. CCC Estimation Using the Simulated Dataset

The univariate linear regressions between CCC and the models are shown in Figure 6.
The R? was selected to assess the ability of each model to prevent an ill-posed problem. By
comparing Figure 6b—f with Figure 6a, it can be observed that the scatter plots for MTCI x
LAI-VIs are more compact than for the MTCI, and the MTCI x LAI-VIs plots also feature
more linear trends. MTCI x MTVI2 showed the best performance, with an R? value (0.90)
higher than that for the MTCI (0.69).
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The binary linear regressions were employed in Matlab and the results were compared
in Table 6. The R? values were used to evaluate the predictive ability of each model and
demonstrated a strong correlation between MTCI and LAI-VIs, and CCC. The binary
regression models based on the MTCI and LAI-VIs were more representative than the
univariate regression model using the MTCI alone. MTCI and RDVI (R? = 0.82), and MTCI
and MTVI2 (R? = 0.80) had similar results, with excellent performance. However, the
overall results for the binary regression models (Table 6) indicate reduced performance
compared to the univariate regression models (Figure 6).

Table 6. Binary linear regression retrieval model.

Name Regression Equation R?

MTCI y =67.7x - 60.32 0.69
MTCI and NDVI y = 58.1088x; + 201.1010x, — 191.7325 0.74
MTCI and LNDVI y =53.5792x;1 + 171.5196x, — 145.0627 0.76
MTCI and SNDVI y =57.9619x1 + 98.1736x, — 151.1732 0.74
MTCI and RDVI y = 55.8884x1 + 209.7858x, — 145.4328 0.82
MTCI and MTVI2 y = 57.8158 x1 + 381.2731x, — 238.9448 0.80

x1 = MTCI; x, = LAI-VIs.

The random forest approach was also tested, using the MTCI and LAI-VIs as inputs,
for retrieving the CCC. The R? was selected to assess the predictive ability of each model,
as shown in Table 7, where it is apparent that the CCC exhibits strong correlations with
the MTCI and LAI-VIs with the RFR approach. The R? values are higher than for the two
types of linear regression.

Table 7. Model evaluation for random forest algorithm.

Predictor R? Predictor R?
MTCI 0.69 MTCI and SNDVI 0.96
MTCI and NDVI 0.95 MTCI and RDVI 0.98
MTCI and LNDVI 0.96 MTCI and MTVI2 0.99
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3.3. Validation of CCC Estimation Using Field Canopy Spectral Measurements

Each model was evaluated by computing the RMSE between the field measurements
and CCC values predicted based on the field canopy reflectance data. All of the selected
VIs were calculated from field canopy spectra data that was resampled according to MERIS
band settings. Figures 7-9 display the scatter plots for the predicted and true values
produced by the models. As shown in Figure 7, the accuracy for MTCI x LAI-VIs was
higher than that for the MTCI, and MTCI x MTVI2 showed the best performance (R? = 0.72,
RMSE = 51.68 ug cm 2, Bias = —51.57 pg cm~2, and NRMSE = 17.60%). The results for the
BLR model (Figure 8) suggest that the MTCI and LAI-VIs performed better than the MTCI
alone; however, the performance was not comparable to that of the combined VIs with
ULR. Both the ULR and BLR approaches universally overestimated the CCC, and this effect
was most prominent with BLR. Thus, these methods cannot compensate for ill-posed Vls.
Figure 9 indicates that the RFR approach performed the best with the scatter points much
closer to a 1:1 linear pattern, especially for the soybeans. A comparison of all the models
revealed that the random forest regression model trained using binary variables based
on MTCI and MTVI2 showed the best performance (R? = 0.65, RMSE = 37.76 ug cm~2,
Bias = —4.11 ug cm 2, and NRMSE = 12.89%). Therefore, the random forest regression
model trained with binary variables based on the MTCI and LAI-VIs could effectively
alleviate the influence of ill-posed VIs on the accuracy of CCC estimation.
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Figure 7. The CCC retrieval accuracy for soybeans and wheat when using the ULR method with field spectrum data:
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single MTCI in a linear regression model is displayed in (a) for comparison.
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3.4. Validation of CCC Estimation from MERIS Satellite Data

The MERIS satellite data obtained from the US-Ne?2 site in 2004 were used to validate
the reliability and accuracy of the built models. The measurements from the XTS site were
not used due to the lack of sufficient time-series data. Figure 10 shows Landsat NDVI time-
series data of different resolutions at the US-Ne2 site in 2004. The 30 m Landsat NDVIs are
consistent with the mean NDVIs derived from the 300 m-pixel MERIS data, which indicates
the uniform growth of the soybeans at the site. Therefore, we used the ground-measured
CCC to assess the usefulness of the MERIS spectral data for retrieving CCC. Table 8 shows
the CCC estimation results for the three approaches. The VI-combination methods were
found to be more accurate than using MTCI alone (R? = 0.24; RMSE = 136.54 ug cm~2).
However, there was a limited improvement in accuracy when using the ULR and BLR
approaches. These approaches showed reduced performance in alleviating the negative
influence of the VIs on CCC estimation. However, the RFR approach resulted in good
prediction accuracy. The relationship between the predicted and measured CCC for the
RER approach is shown in Figure 11. The validation results for the MTCI and LAI-VIs
were better than those for the MTCI alone, and the MTCI and MTVI2 showed the best
performance, achieving an accuracy of R? = 0.78, and RMSE = 47.96 pg cm~2. It should
be noted that the above analysis and conclusions were based on ground and satellite-
based measurements.

NDVI

02 ' ——30mNDVI ——300 mNDVI

0 1 1 1 1 1 1
160 180 200 220 240 260 280 300
DOY

Figure 10. Landsat NDVI data of different resolutions at the US-Ne2 site in 2004.

Table 8. Accuracy of CCC retrieval for soybean crops using three approaches with MERIS satel-
lite data.

Approaches ULR BLR RFR
Vis R? RMSE R? RMSE R? RMSE
MTCI 0.24 136.54 - - - -
MTCI and NDVI 0.65 96.71 0.52 111.33 0.45 58.96
MTCI and LNDVI 0.79 66.39 0.59 97.12 0.49 57.15
MTCI and SNDVI 0.72 86.14 0.52 110.78 0.45 59.03
MTCI and RDVI 0.58 132.50 0.59 110.76 0.78 93.72

MTCI and MTVI2 0.81 88.44 0.70 122.46 0.78 47.96
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Figure 11. Accuracy of CCC retrieval for soybean crops using RFR and MERIS imagery: (b) MTCI and NDVT; (¢) MTCI and
LNDVI (d) MTCI and SNDVT; (e) MTCI and RDVI; (f) MTCI and MTVI2. The performance of a single MTCI in a linear
regression model is displayed in (a) for comparison.

4. Discussion
4.1. Role and Form of VI Combinations in CCC Estimation Models

The CCC is related to the LAl and LCC, and the estimation of chlorophyll content with
remote sensing requires information on both variables [62]. The chlorophyll index mainly
uses red-edge bands that are sensitive to LCC [10,13], while LAI-VIs use near-infrared
bands that are sensitive to the LAI [16,52,55]. The MTCI and LAI-VIs were combined to
improve the remote sensing of CCC for crops, in this study. The results indicate that the
above VI combinations, with all three of the selected regression models, performed better in
estimating the CCC than the MTCI alone. This implies that the VI combinations effectively
fused the leaf area index and chlorophyll information.

The type of VI combination that is appropriate depends on whether the estimated
vegetation parameter is at the canopy or leaf level. A combined multiplicative VI was
used for the univariate regression model. Similarly to in this study, a SAR and optical
multiplication vegetation index (SOMVI) has been proposed to improve the estimation
of above ground biomass [63]. Several combined VIs based on CHL-VIs and LAI-VIs
have also been proposed for LCC estimation using a univariate regression model [28-30].
Canopy biomass is a canopy population parameter that is similar to CCC, while LCC is a
leaf-level chlorophyll parameter that is independent of the LAI The combined VIs that are
used for LCC estimation are often in the form of ratio indices such as TCARI/OSAVI [28],
which reduces the influence of the LAI on the VI. However, multiplicative forms, such as
the one used in this study, are not typically used.

The best VI combination can also differ according to the type of regression analysis
model. Multiple regression or advanced machine-learning techniques can be used with
more input variables to describe complex scenarios. For example, this study used a CHL-
VI and a LAI-VI as binary variables for binary regression and the random forest model
for CCC estimation. Multiple vegetation indices can also be used in the cost function to
estimate vegetation parameters based on the direct inversion of the vegetation model [31].
For estimating the LCC in crops, a simple LUT (look-up table) has been proposed that is
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indexed using a CHL-VI and LAI-VI [31]. This matrix-based VI combination is a special
form of physical model inversion, and has been proven to be better than linear regression
models that use a VI with a single ratio. Clevers [12] used MTCI to estimate the CCC of
soybeans based on linear regression and field spectra, achieving an RMSE of 86 pg cm 2,
similar to the result were obtained using the MTCI alone (RMSE = 77.10 ug cm~2). How-
ever, when using a combination of the MTCI and LAI-VI with three regression techniques,
our results were far better, and the best performance for three regression approaches were
RMSE = 51.68 ug cm 2 (ULR), RMSE = 63.47 pg cm~2 (BLR), and RMSE = 37.76 ug cm 2
(RFR). The results presented in this paper confirm that multiple regression models that
integrate CHL-VIs and LAI-VIs, especially the random training model, show better gener-
alization performance than the use of a single CHL-VL

4.2. Influence of LAI-VIs Selection of VI Combinations

The key to the success of the combined approach employed was the excellent perfor-
mance of the LAI-VIs in reducing the saturation associated with high LAls. The combina-
tion of the MTCI and LAI-VIs resulted in a greater sensitivity to CCC compared to the use
of a single MTCI. As shown in Figure 5, high LAIs are the main cause of saturation when
estimating CCC. The purpose of adding LAI-VIs is to increase the sensitivity of the MTCI
to a high CCC in the presence of a high LAI Therefore, we investigated the performance
of each VI combination in CCC estimation. The results in Sections 3.3 and 3.4 show that
the modified NDVIs, especially the LNDVI, performed better than the NDVI. The RDVI
and MTVI2, which also proved to be resistant to saturation, were used in the combined VIs
and performed better than the NDVI. The sensitivity of LAI-VIs to high LAls can affect
the performance of the training regression model. The relationships between LAI-VIs and
the LAI can also be affected by other factors such as canopy coverage, as demonstrated in
previous studies, and different LAI-VIs can have different capabilities for estimating the
LAI [28,64,65]. The MTVI2 is a modification of the triangular vegetation index (TVI) that
preserves the sensitivity at high LAIs and reduces the effects of soil contamination [16]. The
relationships between the LAI and LAI-VIs based on the simulated spectra, field spectra,
and MERIS satellite data are shown in Figure 12: the MTVI2 was more closely related to
the LAI than the other LAI-VIs were, in agreement with previous studies. This might be
why the combined VI that included the MTVI2 showed the best results.

NDVI s LNDVI ® SNDVI = RDVI s MTVI2

a3 % b -

w
T

The coefficient of determination (R?)
(5]

<R
T

Simulations Field spectrum MERIS satellite data
measurements

Figure 12. Coefficient of determination produced by the linear regression between the LAI and
LAI-VIs—including the NDVI, LNDVI, SNDVI, RDVI, and MTVI2—from the simulation dataset,
field spectra, and MERIS satellite data.

4.3. Comparing the Performance of the Proposed CCC Estimation Models for Satellite Data with
Variable LAls

It is important to examine the performance of models for CCC estimation when using
satellite data. Satellite data are affected by several factors such as noise and neighboring
effects. It is still challenging to apply retrieval models to satellite data [66]. The results from
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this study, which only used the MTCI, confirm the findings from previous studies showing
that low-LAI and high-LAI conditions can cause difficulties when using VIs to estimate
vegetation chlorophyll [19-21,24]. The results indicate that the RFR model using a VI combina-
tion showed the best improvement in CCC estimation, while the performance improvement
for MERIS satellite data varied for different LAI values (Figure 13b). The scatter points in
Figure 13b are closer to a 1:1 line when LAI > 2, indicating that the MTCI and MTVI2 combina-
tion (using random forest regression) could reduce the overestimation of CCC that occurred
when using the MTCI alone in the ULR model at high LAIs (Figure 13a). The proposed
RFR method improved the large overestimation of values. However, some overestimation
still occurred at low LAIs (LAI < 2) (Figure 13b). This is mainly because the chlorophyll VI
calculated based on red-edge reflectance was affected by the soil background more than the
NIR band when the canopy was sparse or at low coverage [25].
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Figure 13. Accuracy of CCC retrieval for soybean crops using MERIS data characterized by LAlIs.
(a) MTCI with the ULR approach. (b) MTCI and MTVI2 with the RFR approach.

4.4. Limitations of Model Simulations and Validation Data

This study was mainly aimed at enhancing the sensitivity of the MTCI to both leaf
chlorophyll information and the LAI for CCC estimation. Therefore, wide ranges for the
LCC, LAI, canopy structure, and soil background were used in the PROSAIL simulation to
analyze the performance of the LAI-VIs and MTCI combination approach. In this study,
the leaf parameters, such as the N, Cy,, and Cy,, were set to the defaults for wheat and
soybean crops (Table 5). The variations of other leaf parameters were of little significance for
evaluating the effects of the proposed methods for fusing LAI and chlorophyll information.
However, these parameters may affect the CCC estimation models for different crops
based on spectrum simulations. Previous studies have demonstrated that C,y has little
influence on the visible and red-edge bands commonly used for vegetation chlorophyll
estimation [67], while N and Cy, can affect chlorophyll estimation [27,68,69]. The leaf
parameters, such as N, should be adjusted according to the specific crop type if the proposed
VI combination approach is applied to other crops.

Although this study considered the variation in the solar zenith angle to represent
daily and seasonal changes, the simulations and test data used for the modeling and
validation were limited to nadir observations. The ground spectrum was obtained at the
nadir, and the seven-day 300 m surface-reflectance MERIS product lacked information on
the view zenith angle. Therefore, the simulation data in this study were also based on nadir
observations. However, remote sensing data, especially satellite imagery, widely vary in
the zenith angle. MERIS reflectance data may not be observed from a nadir or near-nadir
view [70], which increases the uncertainty of the validation results for the MERIS satellite
data. Although the view zenith angle was fixed as a nadir observation, the results from the
simulated field and MERIS data all show the effectiveness of the proposed VI combination
method for CCC estimation. The influence of the view zenith angle on different CCC
estimation models should be evaluated in the future.
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Although ENVISAT MERIS is no longer in work, it makes sense to use past data to
produce products with long time series. In addition, Sentinel-3 OLCI is the successor to
MERIS, and they have the same band settings and similar spectral response functions [58].
Therefore, the CCC retrieval methods developed for MERIS can generally be applied to
Sentinel-3 datasets. In the future, we hope to take the synchronous measurement for
Sentinel-3 and further test our algorithm.

5. Conclusions

This paper proposes a combination of the MTCI and LAI-VIs for univariate linear,
binary linear, and random forest regression that fuses leaf area index and chlorophyll infor-
mation to improve the retrieval of CCC based on the PROSAIL-D model. The validation
results based on both field spectra and MERIS satellite data reveal that the vegetation
index combinations for all three regression models effectively improved the accuracy,
although the VI combination can vary for different types of regression analysis models.
The combined multiplicative VI, MTCI x MTVI2, showed a better performance for the
univariate regression model (field spectra for soybeans and wheat: RMSE = 51.68 g cm™2;
MERIS satellite data for soybeans: RMSE = 88.44 jig cm~2) than the MTCI alone (field
spectra: RMSE =77.10 pg cm~2; MERIS satellite data: RMSE = 136.54 ug cm~2). Moreover,
combining the MTCI and LAI-VIs into the random forest regression models exhibited
greater potential for retrieving the CCC than the two linear regression models. The MTCI
and MTVI2 combination with random forest regression performed the best, achieving an
RMSE of 37.76 ug cm ™2 for the field spectra data, and an RMSE of 47.96 pg cm 2 for the
MERIS satellite data. This study indicates that random forest regression models with a
combination of the MTCI and LAI-VIs have an advantage in the fusion of LAI and leaf
chlorophyll information, and can produce accurate and robust estimates for CCC. Due to its
simplicity, the single combined multiplicative VI with an empirical regression model also
shows potential for estimating CCC. The vegetation index combination method proposed
in this paper can be applied to other chlorophyll-related vegetation indices to improve
their performance in CCC estimation. Since the simulation data used in this paper were
mainly related to wheat and soybean crops, the above-described model for CCC retrieval
based on simulated datasets must be adjusted according to vegetation type.
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