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Abstract: Building change detection using remote sensing images is essential for various applications
such as urban management and marketing planning. However, most change detection approaches
can only detect the intensity or type of change. The aim of this study is to dig for more change
information from time-series synthetic aperture radar (SAR) images, such as the change frequency
and the change moments. This paper proposes a novel multitemporal building change detection
framework that can generate change frequency map (CFM) and change moment maps (CMMs) from
multitemporal SAR images. We first give definitions of CFM and CMMs. Then we generate change
feature using four proposed generators. After that, a new cosegmentation method combining raw
images and change feature is proposed to divide time-series images into changed and unchanged
areas separately. Secondly, the proposed cosegmentation and the morphological building index
(MBI) are combined to extract changed building objects. Then, the logical conjunction between the
cosegmentation results and the binarized MBI is performed to recognize every moment of change.
In the post-processing step, we use fragment removal to increase accuracy. Finally, we propose
a novel accuracy assessment index for CFM. We call this index average change difference (ACD).
Compared to the traditional multitemporal change detection methods, our method outperforms
other approaches in terms of both qualitative results and quantitative indices of ACD using two
TerraSAR-X datasets. The experiments show that the proposed method is effective in generating
CFM and CMMs.

Keywords: cosegmentation; multitemporal change detection; object-based change detection (OBCD);
SAR image

1. Introduction

Change detection is a process of automatically analyzing and identifying the variation
of Earth’s surface objects based on multitemporal remote sensing images acquired in the
same region at different times [1,2]. As a significant application of remote sensing image,
change detection analysis provides an effective technological significance for land use
and land cover monitoring [3,4], urban planning and management [5,6], natural disaster
assessment and monitoring [7–9], etc.

Optical remote sensing systems require good sunlight and weather conditions to
acquire high-quality optical images. In contrast, synthetic aperture radar (SAR) can acquire
data all day without relying on a light source, which is suitable for some emergencies such
as natural disaster survey.

According to the number of images, change detection can be divided into binary-date
change detection and multi-temporal change detection. Meanwhile, change detection
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methods can be divided into deep learning (DL) methods and traditional methods de-
pending on whether deep neural networks (DNN) are utilized. Recently, deep learning
(DL) methods have made great breakthroughs in binary-date change detection. However,
in multi-temporal change detection, DL methods are infrequent due to the large difficulty
of acquiring high-quality labels. For example, Su et al. [10] and Yuan et al. [2] used tradi-
tional methods to classify change behavior into four types: step change, impulse change,
cycle change, and complex change. These labeling tasks are difficult for a human. In this
paper, we mainly focus on using traditional computer vision techniques to dig up more
information from time-series SAR images.

Beyond change analysis between two dates, multi-temporal change analysis (more
than two dates) mainly focuses on the long-term change information [10]. In general,
most existing methods for change detection in multitemporal SAR images can be grouped
into the following two types according to the different ways of using time-series images:
(i) simultaneous comparison; (ii) pairwise traversal comparison. These two approaches
extend binary-date change detection analysis from different points of view. The second
approach compares each pair of adjacent images, and the first approach, which we mainly
focus on, compares pixels at all times in the same position. Yuan et al. [2] applied the
density-based temporal clustering method to extract change classification. Su et al. [10]
presented a likelihood ratio test based method of change detection and classification for
SAR time series. Le et al. [11] used Kullback–Leibler divergence as a similarity measure to
generate a change criterion matrix (CCM). Likelihood ratio tests and information-theoretic
measures approach also play an important role in change detection. Conradsen et al. [12]
presented the likelihood ratio test statistic for the homogeneity of several complex variance-
covariance matrices that may be used in order to assess whether at least one change has
taken place in a time series of SAR data. Nascimento et al. [13] proposed a comparison
between a classical change detection method based on the likelihood ratio and three
statistical methods that depend on information-theoretic measures: the Kullback–Leibler
(KL) distance and two entropies. Mian et al. [14] proposed new robust statistics for time
series SAR change detection.

Furthermore, deformation monitoring, which is a subfield of the change detection
domain, has also made great progress in recent years. Cavalagli et al. [15] presented
an overview of the results of diagnostic and monitoring activities carried out in the last
years through satellite radar interferometry and in situ measurements in the historical city
of Gubbio, Italy. Soldato et al. [16] conducted analysis of remote-sensing SAR data and
landslide-induced damage coupling interferometric synthetic aperture radar (InSAR) and
field survey data.

The building is an ordinary man-made object and an essential factor of urbaniza-
tion. Some scholars have developed traditional methods of building change detection.
Xiao et al. [17] used optical images to conduct binary-date change detection based on
cosegmentation. Huang et al. [18] proposed a morphological building index (MBI) to
recognize building objects. Saha et al. [19] performed building change detection in very-
high-resolution (VHR) SAR images using a cycle-consistent generative adversarial network
and deep change vector analysis (DCVA) and fuzzy rules.

However, most multitemporal change detection approaches can only detect the change
dynamics [11] or change classification [2,10,19]. Change classification has been explained
above. Change dynamics in their paper is the probability of “changed” responses. The
typologies of changes in our study include constructions, demolition and major displace-
ments of buildings. Concretely, the constructions of buildings include analysis of the
evolution of urbanization, monitoring for illegal construction, etc. The demolition and
major displacements of buildings mainly involve urban redevelopments. In this paper,
we propose a multitemporal change detection method that can acquire change frequency
map and change moment maps. This proposed method is based on two hypotheses. (i) We
assume that all the images have sufficient registration accuracy. (less than 0.5 pixel) (ii) The
view angles of the sensors are almost the same. In other words, we do not consider changes
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caused by different view angles of the sensors. The details of our approach are as follows.
Firstly, the change feature is generated using the proposed index. Meanwhile, MBI is
calculated and binarized for each image. Secondly, the cosegmentation [17] is presented on
each image and generate segmentation results for each date. Finally, CFM and CMMs are
derived using cosegmentation results and binarized MBI.

For ease of expression, we first give explanations of CFM and CMMs.

1.1. Change Frequency Map (CFM)

An r × c matrix is said to be CFM if CFM ∈ {A ∈ Zr×c|aij ≥ 0} and the change
frequency CF in CFM illustrate the number of changes at the corresponding pixel. Where
Z is the set of integers and r× c is the size of input image. Let N be the number of input
images, and it is obvious that 0 ≤ CF ≤ N − 1.

1.2. Change Moment Maps (CMMs)

We first define the maximum number of changes:

K = max
i,j

CFij.

CMMs contain ∑K
k=1 k = K(K + 1)/2 maps. The element of a change moment map

shows the moment of change. For example, if some objects whose CF equals three, then
we have three change moment maps exhibiting the first, the second, and the third moment
of change, respectively.

The rest of this paper is organized as follows: in Section 2, the principle and algorithm
of the proposed method are explained in detail. Section 3 exhibits the experimental
results and discussion using realistic TerraSAR-X time-series images to demonstrate the
effectiveness of the proposed method. Finally, conclusions are drawn in Section 5.

2. Materials and Methods

In this section, we will introduce our novel building change detection framework in
detail. The input of our algorithm is N registered SAR images. The basic idea of our method
is to combine the changed area and the building area. In order to acquire the changed area,
we proposed the change feature generator. However, the change feature generator is a pixel-
level detector, which does not take into account neighborhood information. Accordingly,
we use cosegmentation method proposed in [17] to make use of both change feature and
neighborhood information. The cosegmentation method was firstly applied in binary-date
change detection based on optical images. We modify the cosegmentation method and
apply it in time-series SAR change detection. In the meanwhile, we extract building area
using the MBI method. We finally combine the changed area and building area using a
simple AND (logical conjunction) operation.

The workflow of our method is depicted in Figure 1.

2.1. Change Feature Generator

The change feature generator is used to generate difference map at pixel level. Change
feature IC represents the severity of the change at pixel level. Let x = [x1, x2, ..., xN ]
represent one pixel values of N times. Therefore, the generator is to find a suitable index
to measure the variation of x. In this paper, we give four indices, range R, variance σ2,
omnibus test Q [12] and max ratio L.
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Figure 1. The workflow of the proposed method.

The range of x is the difference between the largest and smallest values:

IC1 = R = max(x)−min(x). (1)
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For binary-date change detection, i.e., N = 2, R = |x2 − x1|, which is equivalent to
the classical difference detector.

The sample variance is a classic unbiased estimator to measure the variation of a set
of values. The sample standard variance is defined as follows:

IC2 = σ2 =
∑N

i=1(xi − x)
N − 1

. (2)

Q is derived from the omnibus test for equality of several complex covariance matri-
ces [12]. In this paper, our data is single-band data and the number of looks equals one.
In this case, Q is defined using the following equation:

Q = NN ∏N
i=1|xi|
|x|N

, (3)

where x = ∑N
i=1 xi. If all the elements of x are equal, then Q = 1. We use IC3 = 1−Q as

change feature generator in this paper.
Similar to R, L is a simple extension of the classic ratio detector:

IC4 = L =
max(x)
min(x)

− 1 (4)

Let T be the threshold of the change feature, and it can be calculated by expectation
maximization(EM) algorithm [20].

As we can see from Equation (1) to Equation (4), IC reaches a minimum of zero if
there is absolutely no change, then the normalization of IC equals to αIC (α is a constant).
Therefore, according to Equation (6), it does not matter whether IC is normalized because
if T is the threshold of IC, αT must be the threshold of αIC.

2.2. Cosegmentation

The workflow of cosegmentation strategy is depicted in Figure 2. The function of
cosegmentation method is to segment an image into two parts using change feature
based on graph theory. This segmentation result depends on change information and
neighborhood information. Cosegmentation contains three following steps.

2.2.1. Graph Establishment

Graph establishment depends on the number of pixels of multitemporal images.
For each image, we build a graph G = (V, E), as shown in Figure 3. The graph contains
three different kinds of nodes, which are source s, sink t, and normal nodes P, defined as
follows:

V = P ∪ {s, t}. (5)

Node s and t represent background and foreground respectively. Every node in P
represents a pixel of each image Ii. Every pixel node links with source s and sink t, which
is called t-link, and they link their neighborhood pixels simultaneously, which is called
n-link. An eight-neighborhood link is used in this experiment.
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Figure 2. The workflow of cosegmentation strategy.

Figure 3. The graph structure of cosegmentation (adapted from [21]).

2.2.2. Edge Weight Setting

The edge weight of the graph depends on a manually set parameter and the pixel value
of the change feature and raw image. In this paper, we adopt the weight setting method
in [17] according to the edge weight setting principle, as Table 1 shown. Coefficient λ, which
balances the relative importance between change feature information and neighborhood
information, is set manually. The principle of weight set consists of three items.

1. Edges that link s and pixels that are more likely to change should be given a lower
weight. Similarly, edges linking t and pixels that are more likely to change should be
given higher weight. The other pixels do the opposite.

2. For n-link, those edges linking similar pixels should be given higher weight. Edges
linking significantly different pixels should be given a lower weight.

3. For edges linking t and changed pixels, the weights should be significant enough to
permit the flow to pass.
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Table 1. Edge weight setting.

Edge Type Value Condition

n-link(p, q) (1− λ)Vpq (p, q) ∈ N

t-link(s, p) λD f

(
Ip
C

)
p ∈ P, Ip

C ≤ 2T

0 p ∈ P, Ip
C > 2T

t-link(p, t) λDb

(
Ip
C

)
p ∈ P, Ip

C ≤ 2T

W p ∈ P, Ip
C > 2T

In Table 1, Ip
C denotes the pixel value of IC. The larger Ip

C, the more likely this pixel is

to change. According to principle 1, we define D f

(
Ip
C

)
and Db

(
Ip
C

)
:

D f

(
Ip
C

)
= − ln

(
Ip
C

2T

)
,

Db

(
Ip
C

)
= − ln

(
1− Ip

C
2T

)
,

(6)

According to principle 2, we define Vpq.
Vpq = exp

(
− ‖Ip−Iq‖2

2σ2

)
· 1

d(p,q) ,

d(p, q) =
√(

rp − rq
)2

+
(
cp − cq

)2,
σ2 = E

[
‖Ip − Iq‖2] (7)

where Ip and Iq represent pixel values (panchromatic) or the spectral feature vectors
(multispectral) of pixel p and pixel q. rp and cp represent the row and column number of
pixel p. E[·] means the average value of all neighborhood pixel pairs over the whole image.
Finally, we can define W according to principle 3:

W = 1 + max
p∈P

∑
q∈N8(p)

Vpq (8)

where N8(p) is 8-neighbourhood of p.

2.2.3. Graph Cut

Graph cut aims to find a cut of this graph that serves:

min
C∈Ω

∑
e∈C

we. (9)

C is a cut of this graph, and e is an edge that belongs to C. Ω is the set of all cuts. we is
the weight of e. The energy minimization method [21] is adopted in this study to solve the
graph cut problem.

2.3. Morphological Building Index

In this subsection, we give a review of the MBI method. MBI can extract buildings
based on morphological processing, which was first used in optical images and achieved
good results [18]. The basic idea of MBI is to build the relationship between the spectral-
structural characteristics of buildings and the morphological operators. These spectral-
structural characteristics of buildings are represented using the opening by reconstruction
with a series of linear structural elements (SE). Let l and d, which are hyper-parameters
set by traversing different values, denote length(pixel) and direction(degree) of linear SE,
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respectively. The d is generally constant and the l depends on the resolution of the image.
The higher the resolution, the more pixels the building occupies, and l should be larger.

Buildings generally appear as high-brightness square objects in SAR images. The in-
tuitive idea is to enhance these high-brightness square objects and in SAR images and
suppress other parts of the image. Based on this idea, four characteristics are considered in
this research: brightness, local contrast, size and directionality.

MBI calculation can be implemented by the following steps:

1. Calculation of brightness of every pixel x.

β(x) = max
1≤b≤B

(bandb(x))

2. White top-hat by reconstruction (WTH):

WTH
(
di, lj

)
= β− γre

b
(
di, lj

)
where represents the opening-by-reconstruction [22] of the brightness image, and and
l and d are two series that indicate the length and direction of a linear structural
element, respectively. The parameters l and d in this research are displayed in Table 2.
We use di and lj to represent the ith(1 ≤ i ≤ im) and jth(1 ≤ j ≤ jm) number of d and
l. As shown in Table 2, im equals 5 and jm equals 4.

3. Morphological profiles (MP):

MPWTH
(
di, lj

)
= WTH

(
di, lj

)
4. Differential morphological profiles (DMP): The DMP of the white top-hat is defined as:

DMPWTH
(
di, lj

)
= |MPWTH

(
di, lj

)
−MPWTH

(
di, lj−1

)
|

We define MPWTH(di, l0) = β.
5. Finally, the morphological building index (MBI) is defined as the average of DMP:

MBI =
∑i,j DMPWTH

(
di, lj

)
im × jm

Table 2. Parameter setting.

Step Parameter Value

MBI calculation l [0, 50, 100, 150, 200]

d [0, 60, 120, 180]

cosegmentation λ 0.25

2.4. Extract Change Information

Cosegmentation can not detect when one object exists or disappears. Assume a
building existed on T1, demolished on T2, and rebuilt at the same place on T3. Under this
circumstance, the results of the cosegmentation method are almost the same on each time,
as shown in Figure 4g–i.

In order to solve this problem, we propose an extraction method, corresponding to
C.1 to C.5 in Figure 1.

Precisely, we first calculate the MBI map and binarize the MBI map using OTSU [23],
which are depicted in Figure 4d–f. Finally, we make logical conjunction between binMBI
and cosegmentation results. The logical conjunction results illustrate when the objects
exist or disappear, as shown in Figure 4j–l. With this logical conjunction results, we
can easily detect change frequency and change moments for each pixel using a discrete
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difference strategy. Furthermore, the post-processing is to remove small fragments that are
less than 100 m2.

(a) T1 Raw image data (b) T2 Raw image data (c) T3 Raw image data

(d) T1 binarized MBI map (e) T2 binarized MBI map (f) T3 binarized MBI map

(g) T1 Result of Cosegmentation (h) T2 Result of Cosegmentation (i) T3 Result of Cosegmentation

(j) T1 Result of logical conjunction (k) T2 Result of logical conjunction (l) T3 Result of logical conjunction

Figure 4. Synthetic data. For contrast, we test three regions, names A, B, and C. The building in region A did not change.
The building in region B was demolished on time 2, and a new building was constructed on time 3. The building in region
C was constructed on time 2 and did not change on time 3.
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In general, extraction consists of three steps. (1) Generating building objects using the
MBI index. (2) Intersecting binMBI and cosegmentation result to extract change building
objects each time. (3) Counting change moment for each building objects and recognize
when they change. The extraction procedure can be summarized in Algorithm 1.

Algorithm 1 Extracting change times map and change moments sequence map.

Input:

Raw Image Data, I = {I1, I2, ..., IN};
Cosegmentation Result, S = {S1, S2, ..., SN};

Output:

Change Frequency Map, CFM;

Change Moments Map CMM;

1: M = fMBI(I) M = {M1, M2, ..., MN};
2: Mb = fOSTU(M);

3: for i = 1 : N do

4: Si = Mi ∩ Si;

5: Close and open operation for Si;

6: end for

7: Di = Si+1 − Si i = 1, 2, ..., N − 1

8: Removing small fragments in Di

9: CFM = ∑N−1
i=1 Di

10: return CFM

11: Let k = max(CFM)

12: for i = 1 : K do

13: for j = 1 : i do

14: Recognizing the moment of jth change for each object that changed i times in total;

15: end for

16: end for

17: return CMM;

In step 5, We first adopt a morphological closing operation with a square structural
element of 3 × 3 pixels to fill gaps and then adopt a morphological opening operation with
the same structural element for smoothing.

In step 8, fragments remove procedure is removing small objects whose area is less
than 100 m2, which may be caused by noise.

The output of Algorithm 1 consists of a change times map CFM and K(K + 1)
2 change

moment maps CMM.

3. Experiment
3.1. Accuracy Assessment

In binary-date change detection, the image is divided into changed and unchanged
areas, which can be seen as a binary classification problem. However, in time-series
change detection, the change frequency classification is not equivalent to common multi-
classification problems. Assume that the real change frequency f = 5, and the outputs of
the two detectors equal 6 and 8 respectively. It is obvious that the first detector is superior,
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but the assessment index of the common classification problem cannot distinguish the
two detectors.

In order to quantitatively verify the performance and effectiveness of our method,
we propose a novel assessment index average change difference(ACD) for CFM accuracy
assessment. Let Y denote the real CFM and Ŷ denote the output CFM of the detector.
The ACD is defined as follows:

ACD =
1
rc

r

∑
i=1

c

∑
j=1
|Ŷij −Yij|. (10)

Furthermore, we could only consider changed areas, then we define a mask M that
denotes real changed areas: {

Mij = 1, Yij ≥ 1
Mij = 0, else

(11)

More generally, we define mask Mk that denotes areas where f ≥ k:{
Mk

ij = 1, Yij ≥ k
Mk

ij = 0, else
(12)

Then the mask ACD can be defined as follows:

ACDk =
∑r

i=1 ∑c
j=1 |Ŷij −Yij|Mk

ij

∑r
i=1 ∑c

j=1 Mk
ij

. (13)

The ACD denotes the expectation of the absolute error of a change detector. It is
obvious that the smaller ACD is, the better detector. ACD equals zero if and only if Ŷ = Y.

3.2. Dataset

In this paper, the study area is located in Tongzhou District of Beijing. Tongzhou has
been undergoing rapid changes over the past ten years. Two TerraSAR-X datasets with
0.9 m range resolution and 1.8 m azimuth resolution are used in our experiment. The first
dataset, obtained from Jan. 2012 to May 2013, contains eight images with 400× 500 size,
and the second dataset contains 16 images with 501× 451 size acquired from Jan. 2012 to
Mar. 2016. The construction and demolition of buildings in this area shown in data 1 are
conducive to validating the effectiveness of different change detection algorithms. In the
area shown in data 2, many small houses were gradually built from north to south from
2012 to 2016. This region is a typical example of the process of urbanization, which can be
clearly illustrated in CMM11 in Figure 7.

Raw data should be preprocessed before change detection. We first implement radio-
metric calibration and co-registration. Then we adopt MSAR-BM3D [24] for denoising.
MSAR-BM3D method obtains an excellent despeckling capability in the spatial dimension,
which is effective for dealing with multitemporal data. As shown in Figure A1 The sample
denoised images and the corresponding optical images are displayed in Figure 5.
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(a) Data 1: Terra-SAR image acquired in 23 October 2012.
After denoising

(b) Data 1: Optical image from Google Earth, acquired in 14
September 2012

(c) Data 2: Terra-SAR image acquired in 10 November 2014.
After denoising

(d) Data 2: Optical image from Google Earth, acquired in 12
November 2014

Figure 5. The two time-series dataset of TerraSAR-X remote sensing images in the Tongzhou District of Beijing. (a) The 7th
scene of the first dataset and the corresponding optical image is shown in (b). (c) The 10th scene of the second dataset and
the closest optical image in time is shown in (d).

3.3. Parameter Setting

To our knowledge, our framework is the first simultaneous comparison method to
generate CFM and CMMs. However, we can simply modify some other similar methods
to make a contrast experiment. The statistical features and temporal clustering (SFTC) [2]
and NORCAMA [10] are designed for change classification, which can be modified to
generate CFM and CMMs. In the experiments, our method was compared with these two
multitemporal change detection methods to demonstrate its superiority. There are two steps
requiring manual parameter setting, the MBI calculation step and cosegmentation step.
The parameter setting is shown in Table 2. In the cosegmentation step, λ is set by 0.25, which
is a great balance between changing feature information versus neighborhood information.
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3.4. Results

In this section, we present the accuracies for different methods using two datasets. We
neglect ACDk for k ≥ 3 because objects whose CF ≥ 3 play a small part (0.94% in data 1
and 5.7% in data 2) and we do not have to consider it in isolation. The ACD of the two
datasets is depicted in Figure 8.

The CFM and part of CMMs of the two datasets are illustrated in Figures 6 and 7.
For the sake of argument, we define the following symbol:

CMMij i ≥ j ≥ 1, (14)

where CMMij indicates the jth change moment for those objects whose CF = i. For ex-
ample, CMM11 means the first moment of change for objects whole change frequency
equals 1.

(a) T1 22 January 2012 (b) T6 20 September 2012 (c) T7 23 October 2012 (d) T8 20 March 2013

0 1 2 3 4 5 6 7

(e) CFM using the propoed method.
Range R is applied as the change fea-
ture generator

0 1 2 3 4 5 6 7

(f) CMM11

0 1 2 3 4 5 6 7

(g) CMM21

0 1 2 3 4 5 6 7

(h) CMM22

Figure 6. Four images of original data 1 (after denoising) are illustrated in the first line. The second line displays the change
frequency map (CFM) and change moment maps (CMMs) of data 1. To conserve space, we only illustrate CMMs of objects
whose CF ≤ 2 because very few objects change more than three times.
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(a) T1 22 January 2012 (b) T6 23 November 2013 (c) T11 6 February 2015 (d) T16 8 March 2016

0 5 10 15

(e) CFM using the propoed method.
Range R is applied as the change fea-
ture generator

0 5 10 15

(f) CMM11

0 5 10 15

(g) CMM21

0 5 10 15

(h) CMM22

Figure 7. Four images of original data 2 (after denoising) are illustrated in the first line. The second line displays the CFM
and CMMs of data 2. To conserve space, we only illustrate CMMs of objects whose CF ≤ 2 because very few objects change
more than three times.

Some sample images of the first dataset are shown in Figure 6. In Figure 6b, the ob-
jects in area 1 were constructed in T6, and were demolished in T8 so that the CF of these
objects equals 2. The CF of other objects in area 2, also equals to 2, but they were con-
structed in T7 and demolished in T8. These two types of objects were built at different
times but dismantled at the same time. Therefore, the CF and CMM22 of these two types
of objects are the same while the CMM21 is different. The experiment of dataset 1 demon-
strates the effectiveness of CMMs for detecting when the objects are built and when they
are demolished.

In the first line of Figure 7, we select four representative images from the second
dataset. From 2012 to 2016, these small bungalows began to be built gradually from north
to south, which is a typical change detection task. The CFM indicates the change frequency
of the area of interest. What we found from CFM is that most objects changed only once
and a small part of objects changed twice or more. CMM11 exhibits the construction
process of these bungalows in this area. In CMM11, the different change moments are
represented in different colors, where we can see that these bungalows are built from north
to south gradually.

The different values K generated by different methods are listed in Table 3.
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Table 3. The different values K generated by different methods.

Dataset 1 Dataset 2

NORCAMA 7 15

SFTC 4 4

Proposed-R 5 5

Proposed-σ2 5 8

Proposed-Q 5 6

Proposed-L 5 6

Ground truth 4 5

We only illustrate CMMs of objects whose CF ≤ 2 in Figures 6 and 7 because very
few objects change more than three times. The CMM31, CMM32 and CMM33 of these two
datasets are illustrated in the appendix, as shown in Figures A2 and A3. Experimental
results contain plenty of figures so that we put them in the appendix, which is also
available on https://github.com/txdtplus/zhang2020_appendix. This website includes
CFM, CMMs, and illustrations of two datasets.

4. Discussion
4.1. Data Applicability

This method is specially designed for single polarized SAR images. Changes in
vegetation are not evident in SAR images, which is very helpful for building change
detection. However, in optical images, we have to extract the building areas using NDVI
or other indices before detecting building changes. For multispectral optical images or
multi-polarization SAR images, we need to find new ways to generate change feature.

4.2. Accuracy

Compared to other methods, our framework is designed especially for multitemporal
building change detection and generating CFM and CMMs. The core of our framework is
the contact between MBI calculation and cosegmentation. As Figure 8 shows, the change
feature generator selection has little effect on accuracy. Figures 9 and 10 show different
CFMs generated by various methods, which illustrate qualitative results comparing with
other methods. The quantitative results of the various methods are list in Tables 4 and 5,
as well as in Figure 8.

The detection errors are mainly caused by building recognition step and despeckling
step. As shown in Figure A1, the boundaries of the adjacent small buildings become more
blurred after despeckling, which poses a greater challenge to building recognition.

https://github.com/txdtplus/zhang2020_appendix
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Figure 8. Average change difference (ACD) results of each dataset. The red font denotes the best method under this
assessment index.
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Figure 9. CFM of different methods using data 1.
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Figure 10. CFM of different methods using data 2.
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4.3. Algorithm Complexity

MBI calculation takes up most of the time of the algorithm. We implement experiments
on a computer with i5 CPU at 3.00 GHz (6 cores) and 16 GB RAM. The runtimes of the
three methods are listed in Tables 4 and 5.

Table 4. Numerical results of the various methods using data 1.

NORCAMA SFTC Proposed-R Proposed-σ2 Proposed-Q Proposed-L

ACD0 0.336 0.082 0.047 0.063 0.047 0.035

ACD1 1.394 0.708 0.188 0.186 0.177 0.195

ACD2 1.303 1.004 0.214 0.228 0.219 0.229

Calculating Time 44.02 s 2.32 s 6.91 s 6.37 s 6.69 s 6.33 s

Table 5. Numerical results of the various methods using data 2.

NORCAMA SFTC Proposed-R Proposed-σ2 Proposed-Q Proposed-L

ACD0 1.973 0.211 0.180 0.183 0.177 0.180

ACD1 4.375 0.969 0.694 0.699 0.758 0.771

ACD2 3.771 2.055 1.244 1.281 1.441 1.382

Calculating Time 57.54 s 3.84 s 16.31 s 15.06 s 15.89 s 16.83 s

5. Conclusions

We propose a novel multitemporal building change detection framework that can gen-
erate change frequency map(CFM) and change moment maps(CMMs) from multitemporal
SAR images. We first give definitions of CFM and CMMs, then a new cosegmentation
based on multitemporal images and change feature generator is proposed to divide time-
series images into changed and unchanged areas separately. The proposed cosegmentation
and the morphological building index(MBI) are combined to extract changed building
objects. The logical conjunction between the cosegmentation results and the binarized MBI
is performed to recognize every moment of change. In the post-processing step, we use
fragment removal to increase accuracy. Finally, we propose a novel accuracy assessment
index for CFM.

The proposed method can acquire both CFM and CMMs while most multitemporal
change detection approaches only capture the intensity of change. CFM and CMMs are of
great significance to the field of building change monitoring. The experiment of dataset 1
demonstrates the effectiveness of CMMs for detecting when the objects are built and when
they are demolished. The experiment on the second dataset illustrates that the CMMs can
clearly state the process of urban building expansion.

The accuracy of our method is superior to other methods under the ACD index. We
first introduce the cosegmentation method into an unsupervised multi-temporal SAR
image change detection field and acquire excellent results. Both synthetic data and real
TerraSAR-X data demonstrate the effectiveness of our method.
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Appendix A

Appendix A.1

The appendix contains CMM3j(j = 1, 2, 3) and CMM4j(j = 1, 2, 3, 4) of these two
datasets, as shown in Figures A2 and A3. The CMMij(i > 4) include so few objects that
we do not put them in this article. The whole experimental results is also available on
https://github.com/txdtplus/zhang2020_appendix. This website includes CFM, CMMs,
and illustrations of two datasets.

Appendix A.2. An Example of Denoising Using MSAR-BM3D

(a) One raw TerraSAR image (b) the noise-free image denoising using
MSAR-BM3D

Figure A1. An image before (a) and after (b) despeckling by MSAR-BM3D.

https://github.com/txdtplus/zhang2020_appendix
https://github.com/txdtplus/zhang2020_appendix
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Figure A2. CMMs (CF = 3).
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Figure A3. CMMs (CF = 4).
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