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Abstract: Reduced mobility and less anthropogenic activity under special case circumstances over
various parts of the world have pronounced effects on air quality. The objective of this study
is to investigate the impact of reduced anthropogenic activity on air quality in the mega city of
Shanghai, China. Observations from the highly sophisticated multi-axis differential optical absorption
spectroscope (MAX-DOAS) instrument were used for nitrogen dioxide (NO2) and formaldehyde
(HCHO) column densities. In situ measurements for NO2, ozone (O3), particulate matter (PM2.5) and
the air quality index (AQI) were also used. The concentration of trace gases in the atmosphere reduces
significantly during annual Spring Festival holidays, whereby mobility is reduced and anthropogenic
activities come to a halt. The COVID-19 lockdown during 2020 resulted in a considerable drop
in vertical column densities (VCDs) of HCHO and NO2 during lockdown Level-1, which refers
to strict lockdown, i.e., strict measures taken to reduce mobility (43% for NO2; 24% for HCHO),
and lockdown Level-2, which refers to relaxed lockdown, i.e., when the mobility restrictions were
relaxed somehow (20% for NO2; 22% for HCHO), compared with pre-lockdown days, as measured
by the MAX-DOAS instrument. However, for 2019, a reduction in VCDs was found only during
Level-1 (24% for NO2; 6.62% for HCHO), when the Spring Festival happened. The weekly cycle for
NO2 and HCHO depicts no significant effect of weekends on the lockdown. After the start of the
Spring Festival, the VCDs of NO2 and HCHO showed a decline for 2019 as well as 2020. Backward
trajectories calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
model indicated more air masses coming from the sea after the Spring Festival for 2019 and 2020,
implying that a low pollutant load was carried by them. No impact of anthropogenic activity was
found on O3 concentration. The results indicate that the ratio of HCHO to NO2 (RFN) fell in the
volatile organic compound (VOC)-limited regime.

Keywords: NO2; HCHO; MAX-DOAS; remote sensing; Spring Festival

1. Introduction

Nitrogen dioxide (NO2) and formaldehyde (HCHO) are two important trace gas
species in the atmosphere which play a key role in defining the atmospheric chemistry.
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Their concentration may vary depending on certain physical conditions and chemical or
photochemical processes. Meteorology is an important factor which plays a significant
role in determining the chemical composition of the atmosphere as it largely impacts the
residence time of trace gas species [1,2]. NO2 has detrimental impacts on air quality as
it holds a key role in defining tropospheric chemistry [3]. As a precursor for secondary
organic aerosols and a component of catalytic cycles that lead to the formation of tro-
pospheric ozone (O3), this gas is a crucial atmospheric pollutant [4,5]. Nitric acid is the
oxidation product of NO2 which can be deposited either in dry or precipitate form [6].
Biomass burning, fossil fuel combustion, soil emissions and natural lightening are some
of the sources of NO2 in the atmosphere [7]. For most urban settlements, NOx comes pre-
dominantly from anthropogenic sources including vehicle exhausts, industrial processes
and power generation. As NOx has a residence time of the order of a few hours in the
lower troposphere, it is usually found close to sources under calm meteorological condi-
tions [8]. Formaldehyde (HCHO) is a short-lived atmospheric species which comes from
the oxidation of volatile organic compounds (VOCs) in the atmosphere. The tropospheric
variability of HCHO largely depends on the oxidation of non-methane VOCs (NMVOCs)
of pyrogenic, biogenic and anthropogenic origins [1]. Direct emissions may result from
fossil fuel and biomass burning as well as from natural vegetation. HCHO is employed as
a tracer of VOCs owing to its short life span [9]. Both HCHO and NO2 play a significant
role in defining atmospheric composition and their ratio (RFN) is used as a proxy for
tropospheric O3 production [10,11].

Human footprints on the environment result in an upsurge in the level of pollutants
and deterioration in air quality. There have been various studies that relate human activities
to changes in atmospheric composition [12,13]. China is one of the most populous countries
in the world, with rapid strides in urbanization, industrialization and commercial growth.
These developments have strong impacts on air quality and most of the Chinese cities
are severely impacted. Studies over various cities in China showed that a clear decline in
pollutant concentration is observed when human activities are limited, especially during
the annual Spring Festival [14–17]. Several studies showed that controlled emissions and
reduction in anthropogenic activities during special case instances considerably improved
the air quality and tropospheric trace gas concentration. The instances reported in the
literature include the China Victory Day parade (2015), the Youth Olympic Games in
Nanjing (2014), the Asian Pacific Economic Cooperation Conference (APEC, 2014), the
Guangzhou Asian Games (2010) and the Beijing Olympics (2008) [18–22]. The end of 2019
marked the emergence of a novel coronavirus in the Chinese city of Wuhan, recognized as
SARS CoV-2, and the resulting disease was termed as COVID-19. Following the COVID-
19 pandemic, the Chinese government took substantial lockdown measures to reduce
mobility and activity in order to stop the spread of the virus. Studies over various parts of
the world to elucidate the influence of COVID-19 lockdowns on regional emissions and
atmospheric quality reported reductions in the levels of most important criteria pollutants
in the atmosphere [23–28].

The prime objective of the study is to outline the influence of restricted human ac-
tivity on two criteria pollutants (NO2 and HCHO) over Shanghai, China. The study also
takes into account the meteorological conditions and regional transport using the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in order to get a better
understanding of the events. The observations were made by the multi-axis differential
optical absorption spectroscope (MAX-DOAS) instrument which employs the powerful
differential optical absorption spectroscopy (DOAS) technique to provide valued data
for aerosols and trace gases in the atmosphere [29]. Owing to its simplicity and cost-
effectiveness, MAX-DOAS has extensively been used for atmospheric monitoring over the
past decades [30–33]. For the current study, off-axis measurements from the ground-based
observations from January to April 2019 and 2020 were analyzed over Shanghai using the
data from the MAX-DOAS instrument. The impact of Spring Festival holidays on regional
emissions and pollutant concentrations was analyzed by categorizing the study period into
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three distinct phases (pre-Spring Festival, Spring Festival and post-Spring Festival) while
taking into account the meteorological conditions over the study period for 2019 and 2020.
Further, the change in vertical column densities (VCDs) during the COVID-19 lockdown
was examined.

2. Materials and Methods
2.1. Observation Site

The MAX-DOAS instrument was fixed on the Environmental Science Building at
Fudan University Jiangwan Campus (31.34◦ N, 121.52◦ E) at an elevation of about 21 m
above sea level. It is located in Yangpu District in Shanghai which is one of the direct
administered metropolises of the People’s Republic of China. The city is located on the
Southern estuary of the Yangtze River. As of 2019, the population of Shanghai was about
24.28 million, which makes it the biggest city in China in terms of population and the
second largest in the world. The city is the epicenter for finance, manufacturing, research,
industry and technology. Shanghai has the world’s most active container port. Figure 1
shows the study site.
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Figure 1. Multi-axis differential optical absorption spectroscope (MAX-DOAS) observation site at Fudan University, Yangpu
District, Shanghai (Map Source: Google Map).

2.2. MAX-DOAS Instrument

The MAX-DOAS apparatus mainly consists of a scanning telescope controlled by a
stepping motor, a spectrometer (Ocean Optics, QE65 Pro) and a computer system [34,35].
The spectrometer, equipped with a charge-coupled device (CCD) detector (1044 horizontal
× 64 vertical, cooling to −15 ◦C), is used to measure spectra in the wavelength range from
296 to 480 nm with a spectral resolution of 0.5 nm full width half maximum (FWHM).
The telescope was pointed north. The scanning sequence of the telescope consists of
ten elevation viewing angles (EVA), i.e., 2◦, 3◦, 5◦, 7◦, 10◦, 15◦, 20◦, 30◦, 45◦ and 90◦,
which takes about 10 minutes for each cycle. The signal of the dark current was extracted
automatically from background measurements taken each night.



Remote Sens. 2021, 13, 488 4 of 18

2.3. DOAS Analysis

Accurate column measurements for the trace gases in the atmosphere are possible only
because the MAX-DOAS instrument can measure dispersed sunlight at several elevations
known as EVA. Zenith measurements were selected as the Fraunhofer reference spectrum
for each measurement sequence which was then subtracted from the off-zenith spectrum
to obtain differential slant column densities (DSCDs), thereby minimizing the stratospheric
interference to the tropospheric measurements [1]. QDOAS software v. 3.2 developed
by BIRA-IASB (http://uv-vis.aeronomie..be/software/QDOAS/) was used to analyze
the spectra [36]. Table 1 describes the settings for NO2 and HCHO retrieval from DOAS,
where “parameters” refers to the absorption cross-sections of interfering compounds and
“data source” refers to the source and temperature at which absorption cross-sections are
measured. A high-resolution solar spectrum was used to calibrate the wavelength [37].

Table 1. Detailed settings for NO2 and HCHO retrieval from differential optical absorption spec-
troscopy.

Parameters Data Source
Trace Gases

NO2 HCHO

Wavelength (nm) 337–370 325–350

HCHO 297 K, [38] X X

SO2 298 K, [39] X X

NO2 220 K, [39] X X

NO2 298 K, [39] X X

BrO 223 K, [40] X X

O3 223 K, [40] X X

O3 243 K, [41] X X

O4 293 K, [42] X X

Ring Calculated with QDOAS X X

Polynomial degree 5 5

Owing to the scattering processes in the atmosphere, the quality of data is likely to
be impacted. To avoid this, certain filters are applied to ensure quality. The data with a
root mean square (RMS) greater than 0.002 and a solar zenith angle greater than 75 were
filtered out for this study. The RMS represents the average error in spectral analysis for
MAX-DOAS. Figure 2 shows a typical fitting spectrum for DOAS at an elevation viewing
angle of 30◦ over Shanghai.

Differential air mass factors (DAMFs) were used for the calculation of tropospheric
vertical column density (VCDtrop) [43,44].

VCDtrop =
DSCDα

DAMFα
(1)

Here, α represents the angle at which consequent observations are made, whereas the
following equation gives the DAMF:

DAMFα = AMFα − AMF90◦ (2)

VCDtrop =
DSCDα

(AMFα −AMF90◦ )
(3)

http://uv-vis.aeronomie..be/software/QDOAS/
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The AMF is calculated using geometric approximation [45].

AMF =
1

sinα
(4)

Equation (3) now implies

VCDtrop =
DSCDα

1/ sinα−1
(5)

Despite the fact that this is used as a standard method, a few uncertainties related to it
exist, especially when elevation angles are lower [1].
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2.4. Ancillary Data

In situ measurements for the criteria pollutants including NO2, O3, AQI and PM2.5
were downloaded (available online: https://www.aqistudy.cn/, last accessed on 27 Septem-
ber 2020). The daily mean concentration of these measurements spanning from January
to April 2019 and 2020 was used in this study. ERA5 reanalysis data for meteorological
parameters over Shanghai were obtained from the Copernicus Data Hub (available online:
https://cds.climate.copernicus.eu, last accessed on 14 October 2020).

2.5. Backward Trajectory Modeling

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model used to
investigate the transportation of pollutants over Shanghai was developed by the National
Oceanic and Atmospheric Administration Air Resources Laboratory (NOAA ARL) [46]
(https://www.arl.noaa.gov/ hysplit/, last accessed: 15 December 2020). The trajectory
simulation used meteorological data from the Global Data Assimilation System (GDAS)
(24 vertical levels; spatial resolution of 0.5◦ × 0.5◦). Air masses arriving at the observation
site were used to compute backward trajectories. This part mainly aims to study the
effect of regional transport on pollutants. The transport in the lower atmosphere is easily
restricted by the underlying surface. The height of 500 m above ground level (AGL) for the
model run was selected to show well-mixed conditions in the atmospheric boundary layer
which are likely to affect the surface air quality.

https://www.aqistudy.cn/
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://www.arl.noaa.gov/
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3. Results
3.1. Overview of the Observations

The MAX-DOAS and in situ measurements for this study span from January to April
for 2019 and 2020. MAX-DOAS observations were conducted for NO2 and HCHO, while
in situ measurements were obtained for NO2, PM2.5, O3 and AQI. MAX-DOAS average
NO2 VCDs for the study period were 1.15 × 1017 and 1.13 × 1017 molecules/cm2, while
mean HCHO VCDs were 3.17 × 1016 and 2.57 × 1016 molecules/cm2 during 2019 and
2020, respectively. The time series of daily mean VCDs for NO2 and HCHO over the study
period are shown in Figure 3.
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Time series were also generated using daily mean in situ measurements for NO2,
PM2.5 and the air quality index (AQI). Based on the ambient pollutants, the AQI quantifies
the overall quality of the air over the monitored area. Equation (6) gives the formula by
which the AQI is calculated.

AQI = max{IAQI1, IAQI2, IAQI3, . . . , IAQIn} (6)

Here, AQI stands for air quality index; IAQI refers to the individual air quality index,
which includes the air pollutants; and n is the number of ambient air pollutants. The AQI
used in this study is calculated based on six ambient pollutants, nitrogen dioxide (NO2),
sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO), PM10 and PM2.5 [47]. Figure 4
shows the daily mean concentration of these atmospheric species for the study span.
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The aerosol and trace gas distribution along with the residence time and chemical
behavior is largely affected by the meteorological settings over the vicinity [1,2]. Tempera-
ture and wind speed are of pivotal significance in determining the trace gas concentrations.
Table 2 shows the average temperature, wind speed and pressure for the study period
during 2019 and 2020 along with the respective standard deviations over Shanghai. It is to
be noted here that these are the grid values and not the measurements and as Shanghai lies
near the coast, small standard deviations may be linked to the coarse resolution of ERA5.
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Table 2. Changes in meteorological parameters over Shanghai.

Parameter 2019
(Avg ± Std)

2020
(Avg ± Std)

Temperature/◦C 10.3 ± 5.2 10.9 ± 4.8

Wind Speed/m·s−1 3.5 ± 1.4 3.7 ± 1.6

Pressure/hPa 1021.3 ± 7.1 1021.8 ± 5.4

The box plot for the average temperature and windspeed over the study period is
shown in Figure 5. It is evident from the figure that there was no significant change in
meteorological parameters during 2020 compared to the previous year.
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3.2. Impact of COVID-19 Lockdown

During the lockdown, strict measures were adopted at Level-1 (first level of emergency
response), while somewhat relaxed measures were taken during Level-2 (second level of
emergency response). To understand the changes in air quality owing to the lockdown, the
study span was divided into four stages: pre-lockdown (1 January–23 January), Level-1
(24 January–26 February), Level-2 (27 February–31 March) and post-lockdown (1 April–30
April). In order to make comparisons, same days in 2019 were categorized similarly despite
the fact that no lockdown occurred during the previous year. Overall, the change in VCDs
during the lockdown periods is depicted in Table 3 in terms of percentage, where the
negative sign indicates a reduction. It is worth mentioning here that the change during
Level-1 and Level-2 is calculated by keeping pre-lockdown levels as the reference.

Table 3. Percentage change in mean VCDs of HCHO and NO2 for Level-1 and Level-2 of the
lockdown for 2020 and corresponding days in 2019.

Species Instrument Year Level-1 Level-2

NO2 MAX-DOAS 2019 −24% 1%
2020 −43% −20%

HCHO MAX-DOAS 2019 −6.62% +2%
2020 −24% −22%

It is evident from Table 3 that the mean VCDs during Level-1 and Level -2 were
considerably lower during 2020 as compared to 2019. The reduction in mean VCDs during
Level-1 for 2019 was observed under the no lockdown scenario which can be attributed
to annual Spring Festival holidays and is discussed in detail under Section 3.3. Figure 6
shows the box plot for NO2 and HCHO VCDs from the MAX-DOAS observations over the
locality.
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Weekly Cycle

As human activities are broadly categorized according to a weekly cycle, it is very im-
portant to check the effect of weekly cycles on anthropogenic emissions. Human activities
over the week are high during the working days, while they decline over the weekends [48].
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This is termed as the weekend effect. Figure 7 shows the weekly cycles of NO2 and HCHO
observed over Shanghai for normal days and the lockdown days.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 18 
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Figure 7. Weekly cycles of nitrogen dioxide (NO2) and formaldehyde (HCHO) vertical column
densities (VCDs) observed over Shanghai for normal days as compared to the lockdown period.

Figure 7 shows that the average daily mean VCDs were higher for normal days
compared to the lockdown days. It is also evident that the variation in daily mean VCDs
for different days of the week during the lockdown is very low, giving no definite weekend
effect compared to the normal days when a normal weekly cycle is observed.

3.3. Spring Festival and Regional Transport

To compare the impact of the Spring Festival on the atmospheric concentration of
NO2 and HCHO for 2019 and 2020, we categorized the observations into three phases each
equal to the number of the Spring Festival holidays: pre-Spring Festival, Spring Festival
and post-Spring Festival. The exact categorization and dates are mentioned in Table 4.

Table 4. Spring festival study period for 2019 and 2020.

Year Pre-Spring Festival Spring Festival Post-Spring Festival

2019 28 January–3 February 4 February–10 February 11 February–17 February
2020 18 January–24 January 25 January–31 January 1 February–7 February

Figure 8 shows the time series of NO2 and HCHO VCDs as measured by the obser-
vations from the MAX-DOAS during and around the annual Spring Festival for 2019 and
2020. The gray region in the figure specifies the Spring Festival period.
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Figure 8. Impact of Spring Festival holidays on the vertical column densities (VCDs) of (a) nitrogen dioxide (NO2) and (b)
formaldehyde (HCHO) over Shanghai.

Backward trajectories modeled for the study period are shown in Figure 9. The target
point for the trajectories was set at Fudan University, Shanghai, at a height of approximately
500 m. This part mainly aims to study the effect of regional transport on pollutants. The
transport in the lower atmosphere is easily restricted by the underlying surface. The height
of 500 m above ground level (AGL) for the model run was selected to show well-mixed
conditions in the atmospheric boundary layer which are likely to affect the surface air
quality.

Each line in the figure represents the air mass trajectory for the past 24 h with one
point representing one hour. The trajectories indicate a similar pattern for 2019 pre- and
post-Spring Festival holidays, while different air mass transportation was observed during
Spring Festival holidays. On the other hand, for 2020, the Spring Festival and post-Spring
Festival days indicate similar transportation conditions, while the pre-Spring Festival days
depict a different pattern. After the Spring Festival in 2019 and 2020, major air masses
appear to be coming from the sea which may carry a low concentration of pollutants. As
there are more air masses from inland before the Spring Festival, the high VCDs of HCHO
and NO2 in Shanghai may be affected by this transmission.
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3.4. Trends in Ozone (O3) Concentration

In situ measurements show that the O3 concentration remained unaffected by the lock-
down events and continued to grow steadily over the study period, as shown in Figure 10.
The formation of tropospheric O3 via photochemical reactions is largely impacted by VOCs
and oxides of nitrogen in the atmosphere [49]. Therefore, it is essentially important to
control the level of NOx and VOCs to limit O3 production. O3 production can either be
NOx-limited or VOC-limited depending on which species is in excess. As HCHO comes
as the oxidation product from a variety of VOCs, it is used as a proxy for the VOCs re-
activity [50]. To investigate the trend of O3 over the study period, the ratio of HCHO to
NO2 VCDs (RFN) was calculated over Shanghai. Three distinct regions were defined in
the literature to describe the linkage of RFN and O3 formation: when the RFN is lower
than 1, O3 production is VOC-limited; when the RFN is greater than 2, O3 production is
NOx-limited; and when the RFN lies between 1 and 2, O3 production lies in a transition
regime where both NOx and VOC may affect O3 production [51]. Here, the ratio of HCHO
to NO2 used to analyze O3 sensitivity falls in the VOC-limited regime and is depicted in
Figure 10 for the study period.
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4. Discussion

Meteorological conditions significantly impact the chemical behavior and residence
time of trace gas species in the lower atmosphere, thereby affecting the pollutant distribu-
tion over the locality. Substantial evidence exists concerning the significance of meteorolog-
ical factors on the distribution of aerosol and trace gases in the atmosphere [14,52]. To have
an improved understanding of the sources and sinks of atmospheric pollutants and their
dependence on certain meteorological parameters, it is pivotal to have a multidimensional
and dynamic picture of the atmosphere by looking at the overall tropospheric profile. Me-
teorological conditions for the study period remain the same on average for 2019 and 2020.
The meteorology results obtained from ERA5 are gridded values which might have caused
uncertainties in the analysis. Therefore, the impact of these conditions on the atmospheric
concentration of trace gases during the lockdown period is not pronounced. Similar results
were reported in the literature [53].
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The lockdown period to contain COVID-19 and the Spring Festival were taken into
account assuming that the reduction in overall mobility and shutting down of industry,
offices and institutions, thereby reducing the anthropogenic activity, are likely to impact
the overall daily mean concentration of trace gas species in the atmosphere. Several studies
have been conducted across the world to elucidate the influence of COVID-19 lockdowns
on trace gas concentrations and tropospheric distribution. The results reported in this
study comply with those studies reporting an overall decline in trace gas concentration
during lockdown periods. NO2 VCDs showed a decline following the start of lockdown
in 2020. However, in 2019, the reduction in emissions was observed after the start of the
annual Spring Festival. Similar trends were observed for HCHO during the same period.
Recent studies carried out over various parts of the world show similar trends [23–28,52].
Our results show higher reduction in the NO2 VCDs as compared to HCHO, owing to the
fact that NO2 mainly comes from anthropogenic sources. Therefore, the reduction in NO2
VCDs was more pronounced during the lockdown with the closure of businesses, industry,
transportation and economic activities. A comparison of in situ measurements of NO2
showed a reduction in the concentration of trace gas species during the lockdown period
as well as the corresponding Spring Festival holidays of the previous year, which complies
with the trends observed by the MAX-DOAS measurements. PM2.5 levels dropped in
the corresponding phases with an improvement in the AQI of the city. An improvement
in the AQI and a reduction in PM2.5 during the lockdown period have been reported
in the literature [52–56]. Level-1 of the lockdown depicted the highest reduction in the
concentration of NO2, HCHO and PM2.5 and the AQI during 2020 as compared to 2019.
The weekly cycle showed that the VCDs of NO2 were considerably lower for the lockdown
days compared to normal days during the week, while for weekends, the observed VCDs
were almost equal for normal and lockdown days. For HCHO, a definite pattern exists
over the week for normal days, while considerably lower values and a linear trend were
observed during the lockdown. This can be accredited to the fact that every day of the
week had almost the same anthropogenic activity during the lockdown. Anthropogenic
activities are considered as a secondary source of HCHO, while biogenic emissions are
the primary sources. Therefore, with reduced anthropogenic activity, biogenic emissions
became the only constant source of HCHO, leading to uniform VCDs throughout the week.
Overall, the variation in daily mean VCDs of NO2 and HCHO for different days of the
week was non-significant for the lockdown period, giving no definite weekly cycle.

The data from the Ministry of Transport show an almost 50% reduction in traffic load
for the 2020 annual Spring Festival as compared to the previous year (available online:
http://www.mot.gov.cn/, accessed on 22 June 2020). Several studies report the impact
of Spring Festival holidays on the trace gas concentration in the atmosphere [14–17]. Our
results comply with the literature, showing that the trace gas VCDs reduced significantly
during the annual Spring Festival for 2019 and 2020 with average low values during 2020
as compared to 2019. The backward trajectories generated for and around the Spring
Festival days showed that more air masses were coming from the sea during and after the
Spring Festival in 2020 which may carry less pollutant load, while for 2019, more inland
transmission happened during the Spring Festival holidays. This needs to be studied
further in order to obtain a clearer picture of the impact of long-range transport.

The O3 concentration did not show any impact of the lockdown and continued to
grow steadily over the study period with the intensification of solar radiation during late
winter and early spring. The observed value of the RFN used for the sensitivity analysis
of tropospheric O3 formation to the precursor species (NOx and VOCs) depicts that O3
production over the study area is mostly VOC-limited. Nevertheless, the subject needs
further investigation. Due to the specific nature of events, different studies reported the
effects of COVID-19 lockdowns on air quality and trace gas concentrations. Our results
comply with recent studies depicting an overall decline in trace gas concentrations and an
improvement in air quality [23–28,53–57].

http://www.mot.gov.cn/
http://www.mot.gov.cn/
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5. Conclusions

The average VCDs of NO2 and HCHO as observed from the MAX-DOAS instrument
were lower in 2020 compared to same days in 2019. In situ measurements for NO2, PM2.5
and the AQI portrayed similar results, while the meteorological conditions remained
similar for both the years. During the COVID-19 lockdown in 2020, the reduction in NO2
and HCHO VCDs was observed to be 43% and 24% for Level-1 and 20% and 22% for Level-
2, respectively. Meanwhile, no lockdown happened during 2019, but the VCD of NO2 and
HCHO showed a decline of 24% and 6.64%, respectively, for the period categorized as
Level-1, while a small rise was observed during Level-2. The reduction in atmospheric
VCDs during Level-1 in 2019 is attributed to the annual Spring Festival holidays. Further,
the comparison of weekly cycles for normal days with lockdown days showed that the
variation between atmospheric VCDs of NO2 and HCHO on different days of the week
is non-significant for the lockdown days, thereby depicting no definite weekly cycle. The
VCDs of HCHO and NO2 showed a drop during the annual Spring Festival holidays for
2019 as well as 2020. However, the post-Spring Festival days showed a rise in the VCDs
of observed trace gases for 2019, while they dropped further for 2020, which is attributed
to the COVID-19 lockdown. Backward trajectories showed that major air masses were
coming from the sea after the Spring Festival for 2019 and 2020, which can be attributed to
the smaller pollutant load during that period. However, this needs to be studied further in
order to get a better understanding. In situ measurements for the levels of O3 showed no
impact of the lockdown on the tropospheric concentration of O3 which continued to grow
steadily from January to April in 2019 as well as 2020. The ratio of HCHO to NO2 (RFN)
depicted that O3 production mostly fell in the VOC-limited regime.
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