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Abstract: Recently, a great many deep convolutional neural network (CNN)-based methods have
been proposed for hyperspectral image (HSI) classification. Although the proposed CNN-based
methods have the advantages of spatial feature extraction, they are difficult to handle the sequential
data with and CNNs are not good at modeling the long-range dependencies. However, the spectra
of HSI are a kind of sequential data, and HSI usually contains hundreds of bands. Therefore, it
is difficult for CNNs to handle HSI processing well. On the other hand, the Transformer model,
which is based on an attention mechanism, has proved its advantages in processing sequential
data. To address the issue of capturing relationships of sequential spectra in HSI in a long distance,
in this study, Transformer is investigated for HSI classification. Specifically, in this study, a new
classification framework titled spatial-spectral Transformer (SST) is proposed for HSI classification.
In the proposed SST, a well-designed CNN is used to extract the spatial features, and a modified
Transformer (a Transformer with dense connection, i.e., DenseTransformer) is proposed to capture
sequential spectra relationships, and multilayer perceptron is used to finish the final classification
task. Furthermore, dynamic feature augmentation, which aims to alleviate the overfitting problem
and therefore generalize the model well, is proposed and added to the SST (SST-FA). In addition,
to address the issue of limited training samples in HSI classification, transfer learning is combined
with SST, and another classification framework titled transferring-SST (T-SST) is proposed. At
last, to mitigate the overfitting problem and improve the classification accuracy, label smoothing is
introduced for the T-SST-based classification framework (T-SST-L). The proposed SST, SST-FA, T-SST,
and T-SST-L are tested on three widely used hyperspectral datasets. The obtained results reveal that
the proposed models provide competitive results compared to the state-of-the-art methods, which
shows that the concept of Transformer opens a new window for HSI classification.

Keywords: classification; convolutional neural network (CNN); hyperspectral image (HSI); Transformer

1. Introduction

Due to the advances in imaging spectrometry, hyperspectral sensors tend to capture
the intensity of reflectance of a given scene with increasingly higher spatial and spectral
resolution [1]. The obtained hyperspectral image (HSI) contains both spatial features and a
continuous diagnostic spectrum of different objects at the same time [2]. Thus, the obtained
abundant information makes HSI useful in many areas including effective measurement
of agricultural performance [3], plant diseases detection [4], identification of minerals [5],
disease diagnosis and image-guided surgery [6], ecosystem measurement [7], and earth
monitoring [8]. To fully use the obtained HSI, many data processing techniques have been
explored, such as unmixing, detection, and classification [8].

HSI classification aims to categorize the content of each pixel in the scene [9], which is
a basic procedure in applications such as identifying the type of land-cover classes in earth
monitoring [10].

A great many supervised methods have been proposed for HSI classification in
the last two decades [11]. In the early stage of HSI classification, the HSI classification
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methods used spectral information only. A typical spectral classifier was introduced
in [12], which was based on the support vector machine (SVM). SVM shows its low
sensitivity to high dimensionality [13]; therefore, many SVM-based classifiers have been
proposed to handle the spectral classification of HSI [14]. Hyperspectral sensors can
provide abundant spatial information of the observing scene with the development of
imaging technology. It is reasonable to develop spectral-spatial classifiers. Numerous
morphological operations have been developed to extract the spatial features of HSI for
following spatial-spectral classification, such as morphological profiles (MPs) [15], extended
MPs (EMPs) [16], extended multi-attribute profile (EMAP) [17], and extinction profiles
(EPs) [18]. However, the aforementioned HSI classifiers are not deep models [11].

In recent years, deep learning techniques, especially the deep convolutional neural
network (CNN), have revolutionized the means of remote sensing data processing. The task
of HSI classification is not an exception. In [19], stacked auto-encoder was introduced as a
deep model for HSI feature extraction and classification. After that, several deep learning
models such as the deep belief network [20], CNN [21,22], recurrent neural network [23,24],
generative adversarial network [25,26], and capsule network [27,28] were investigated for
HSI classification and obtained good classification performance.

Because of its local connection and shared weights, which makes it effective to capture
local correlations, CNN is quite useful for image processing, including HSI classification.
According to the input information of models, CNN-based HSI classification methods
can be divided into three types: spectral CNN, spatial CNN, and spectral-spatial CNN.
Spectral CNN-based HSI classification receives the pixel vector as input and uses CNN to
classify the HSI only in the spectral domain. For example, Hu et al. proposed 1-D CNN
with five convolutional layers to extract the spectral features of HSI [29]. Moreover, an
interesting work was proposed in [30], which used CNN to extract pixel-pair features for
HSI classification and obtained good classification performance.

Spatial CNN-based methods are the second type of CNN-based HSI classification
methods. In addition to spectral information, the obtained HSI contains abundant spatial
information; therefore, it is reasonable to use spatial CNN (2-D CNN) to extract the spatial
features of HSI. Most of existing spatial CNN-based HSI classification methods were
conducted on one or several principal components. For example, in [31], the cropped
spatial patches of pixel-centered neighbors, which belong to the first principal component
of his, were used to train a 2-D CNN for HSI classification.

Spectral-spatial CNN-based methods are the third type of CNN-based HSI classifi-
cation methods, which aim for joint exploitation of spectral and spatial HSI features in a
unified framework. Since the input of HSI is a cubic tensor, 3-D convolution was used for
HSI classification [32]. For example, in [33], He et al. proposed a 3D deep CNN to jointly
extracted spatial and spectral features by computing multiscale features. In [34], the 3-D
convolutional layer and batch normalization layer were utilized to extract spectral-spatial
information and regularize the model, respectively. Due to the good classification perfor-
mance obtained by CNN-based methods, CNN has become the de-facto standard for HSI
classification in recent years.

Existing CNN models for HSI classification have achieved state-of-the-art performance;
however, there are still several limitations. First, some information of input HSI is ignored
and is not well explored in CNN-based methods. CNN is a vector-based method, which
considers the inputs to be a collection of pixel vectors [35]. For HSI, it intrinsically has
a sequence-based data structure in the spectral domain. Therefore, using CNN can lead
to information loss when dealing with hyperspectral pixel vectors [36]. Second, learning
long-range sequential dependence back and forth between distant positions of bands is
difficult. Since convolutional operations process a local neighborhood, the receptive field
of CNN is strictly restricted by its kernel size and the number of layers, which has made it
less advantageous in capturing long-range dependencies of input data [37]. Therefore, it is
difficult to learn the long-range dependencies of HSI, which usually contain hundreds of
spectral bands.
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Very recently, a model called Transformer [38], which is based on the self-attention
mechanism [39], has been proposed for natural language processing. Transformer uses
attention to draw global dependency within a sequence of input. For deep learning models
including Transformer, there is a common problem of vanishing-gradient, which hampers
the convergence in the training procedure [40]. To alleviate the vanishing-gradient problem,
a new type of Transformer, which uses dense connection to strengthen feature propagation,
titled DenseTransformer, is proposed in this study.

Furthermore, two classification frameworks based on DenseTransformer are proposed
for HSI classification. The first classification framework combines CNN, DenseTransformer,
and multilayer perceptron. In the second classification framework, transfer learning
strategy is combined with Transformer to improve the HSI classification performance with
limited training samples.

The main contributions of this study are summarized as follows.
(1) A modified Transformer titled DenseTransformer is proposed, which uses dense

connection to alleviate the vanishing-gradient problem in Transformer.
(2) A new classification framework, i.e., spatial-spectral Transformer (SST), is proposed

for HSI classification, which combines CNN, DenseTransformer, and multilayer perceptron
(MLP). In the proposed SST, a well-designed CNN is used to extract the spatial features of
HSI, and the proposed DenseTransformer is used to capture sequential spectra relationships
of HSI, and the MLP is used to finish the classification task.

(3) Furthermore, dynamic feature augmentation, which aims to alleviate the overfitting
problem and therefore generalize the model well, is proposed and added to the SST to form
a new HSI classification method (i.e., SST-FA).

(4) Another new classification framework, i.e., transferring spatial-spectral Trans-
former (T-SST), is proposed to further improve the performance of HSI classification. The
proposed T-SST uses the pre-trained VGG-like model on a large dataset as the initialization
of the used CNN in SST; therefore, it enhanced the HSI classification accuracy with limited
training samples.

(5) At last, label smoothing is introduced into Transformer-based classification. Label
smoothing is combined with T-SST to formulate a new HSI classification method titled T-SST-L.

The rest of this paper is organized as follows. The proposed SST and transferring
SST for HSI classification are presented in Sections 2 and 3, respectively. The experimental
results and discussions are reported in Section 4. Section 5 presents the conclusion of
this study.

2. Spatial-Spectral Transformer for Hyperspectral Image Classification

The framework of the proposed SST for HSI classification is shown in Figure 1. In general,
there are three parts in the classification method: CNN-based spatial feature extraction,
modified Transformer-based spatial-spectral feature extraction, and MLP-based classification.

Firstly, for each band of HSI, a 2D patch, which contains the neighboring pixels of
the pixel to be classified, is selected as input. There are n (i.e., the number of bands of
HSI) patches for a training sample. After that, a well-designed CNN is used to extract the
features of each 2D patch, and then the extracted features are sent to Transformer. Then, the
modified Transformer is used to obtain the relationship of the sequential spatial features.
At last, the obtained spatial-spectral features are used to get the classification result.

2.1. CNN-Based HSI Spatial Feature Extraction

CNN has powerful capability to extract spatial features of image, and it is widely
used for image processing such as classification, detection, and segmentation. For HSI, it
contains abundant spatial information. CNN is used in this study to effectively extract the
spatial features of HSI.

CNN contains a wide range of different architectures. How to choose a proper
architecture is important. Although HSI is a 3-D cube, a 3-D CNN is not used in this study.
Instead, a 2-D CNN is used in this classification framework. Furthermore, we use 2-D CNN
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separately to extract the features of each band in his, and the extracted features are fed into
a Transformer.

VGGNet is a simple but effective model, which considers the depth of appropri-
ate layers and does not increase the total number of parameters compared to previous
AlexNet [41]. Therefore, we used VGG-like architecture. The original VGG contains
16 layers, which includes 13 convolutional layers and three fully connected layers. Each
convolutional layer is followed by BN layer and ReLU operation, and the max pooling layer
is added after the second, fourth, seventh, tenth, and 13th convolutional layer. Possibly, the
usage of the whole 16 layers is not a good choice for HSI spatial feature extraction. How
to design a proper CNN architecture is a key point for a successful HSI classifier. In the
experimental part, we designed a VGG-like deep CNN for spatial feature extraction of HSI.
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2.2. Spectral-Spatial Transformer for HSI Classification

CNN uses local connection to extract neighboring features of inputs. HSI usually
contains hundreds of bands; therefore, it is difficult for CNN to obtain spectral relationships
in a long distance. The self-attention mechanism can obtain the relationship of every two
bands. For example, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) contains
224 bands. Using self-attention, a matrix with the shape of 224 × 224 can be obtained
through the learning procedure. Each element in the matrix represents the relationship
between the two bands.

As shown in Figure 1, the extracted features by CNN in the last part are then sent to
the Transformer to learn long-range dependencies, which mainly contains three elements.

The first element is called the position embedding, which aims to capture the positional
information of the different bands. This element modifies the output features of the last
part, which depends on its positions without changing these full features. In this paper,
one dimensional position embedding is utilized, which considers the input features as
a sequence of different bands. These generated positional embeddings are added to
the features, then sent together to the next element. In addition, a learnable position
embedding is prepared (i.e., number zero), whose state serves as the whole representations
of the band. This learnable position embedding combines with the third part to finish the
classification task.

The second element is the Transformer encoder, which is the core part of our model.
The Transformer encoder contains a total of d encoder blocks, and each encoder block
consists of a multi-head attention and a MLP layer, coupled with layer normalization and
residual connection. In each encoder block, a normalization layer is added before each
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multi-head attention and an MLP layer, and residual connections are designed after each
multi-head attention and MLP layer.

Let denote the number of n bands of HSI (b1, b2, · · · bn) by B ∈ Rn×dmodel , where dmodel
indicates the dimension of the extracted features by CNN. The Transformer encoder aims
to capture the interaction among all n bands of HSI by encoding each band in terms of
the global contextual information. Specifically, three learnable weight matrices including
queries (i.e., Q), keys (i.e., K) of dimension dk, and values (i.e., V) of dimension dv are
defined. The dot products are applied to compute the query with all keys, and then the
softmax function is used to compute the weights on the values. The output of attention is
defined as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V, (1)

where dk is the dimension of K.
It is beneficial to project the queries, keys, and values several times (i.e., h times) with

different and learned projections, and then these results are concatenated. This process is
named the multi-head attention. Each result of those parallel computations of attention is
called a head.

MultiHead(Q, K, V) = concat(head1, · · · , headh)WO, (2)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, WQ

i ∈ Rdmodel×dq , WK
i ∈ Rdmodel ×dk , WV

i ∈
Rdmodel ×dv , and WO ∈ Rh×dv×dmodel are parameter matrices.

After that, the weights extracted by the multi-head attention mechanism are sent
to the MLP layer, whose output features are 512 dimensions. Here, MLP is constituted
by two fully connected layers with a nonlinearity named the Gaussian error linear unit
(GELU) activation between. Here, GELU is the variant of the ReLU, which can be defined
as follows [42]:

GELU = xΦ(x) = x·1
2

[
1 + erf

(
x/
√

2
)]

, (3)

where Φ(x) indicates the standard Gaussian cumulative distribution function, erf(x) =∫ x
0 e−t2

dt.
Before the MLP layer, there is always a normalization layer [43], which not only

reduces the training time by normalizing neurons, but also alleviates the vanishing or
exploding gradient problem. For the ith summed input at the l-th layer al

i , the normalization
layer represents as follows:

a−l
i =

gl

σl ·
(

al
i − µl

)
+ b, (4)

where a−l
i is normalized summed input, and µl and σl represent expectation and vari-

ance at lth layer, respectively. gl and b indicate the learned scale parameter and shift
parameter, respectively.

For a deep learning model, there is a common problem titled vanishing-gradient,
which hampers the convergence in the training of the deep Transformer model [40]. To
alleviate the vanishing-gradient and strengthen feature propagation, short-cut connection
is used to form a DenseTransformer. Specially, each layer in DenseTransformer has connec-
tions of the previous layers in the DenseTransformer. For a traditional Transformer HL(.)
with L layers, there are L connections, and a DenseTransformer has L(L+1)

2 connections. The
DenseTransformer encourages feature reuse and therefore mitigates the vanishing-gradient
problem. Figure 2 shows the proposed DenseTransformer when L = 3.
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The proposed DenseTransformer consists of L layers, considering a single eL indicates
the output of the traditional Transformer HL(.) at the L-th layer. Consequently, the L-th
layer of the proposed DenseTransformer receives the weights produced by the previous
preceding layers e0, e1, · · · , eL−1, which can be defined as follows:

eL = HL([e0, e1, · · · , eL−1]), (5)

DenseMultiHead(Q, K, V, eL) = concat(head1, · · · , headh)WO, (6)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i , (eL)i

)
, WQ

i ∈ Rdmodel×dq , WK
i ∈ Rdmodel×dk ,

WV
i ∈ Rdmodel×dv , and WO ∈ Rh×dv×dmodel are parameter matrices.

The third part of SST is MLP. The architecture of MLP includes two fully connected
layers with a GELU operation, where the last fully connected layer (i.e., the softmax layer)
aims to generate the final results for HSI classification. In softmax, for an input vector R,
the probability that the input belongs to category i can be estimated as follows:

P(Y = i|R, W, b) = s(WR + b) =
eWi R+bi

∑j eWjR+bj
, (7)

where W and b are weights and biases of the Softmax layer, respectively.
In the MLP, the size of the input-layer is set to be the same as the size of the output-

layer of the Transformer, and the size of the output-layer is set to be the same as the total
number of classes. Softmax ensures the activation of each output unit sums to 1. Therefore,
the output can be deemed as a set of conditional probabilities.

2.3. Dynamic Feature Augmentation

Due to the proposed, SST is often susceptible to overfitting and therefore requires
proper regularization to generalize well. In this subsection, a simple regularization tech-
nique called dynamic feature augmentation is proposed, which is implemented by ran-
domly masking out features during training. Then, SST is combined with feature aug-
mentation to form a new HSI classifier (i.e., SST-FA), which improves the robustness and
overall classification performance of SST.

Specially, the dimension of the spatial features extracted by the VGG is high (i.e.,
512-dimension), which is easy to overfit for the Transformer model. Here, a coordinate is
first randomly selected in the features, then, a mask is placed around the coordinate, which
decides how many features are set to zero. Note that the coordinate dynamically changes
w.r.t. epochs during training, which ensures the Transformer model receives different
features. The proposed SST-FA is not only easy to implement, but also able to further
improve the Transformer model performance.
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3. Heterogeneous Transferring Spatial-Spectral Transformer for Hyperspectral
Image Classification

The collection of training samples is not only expensive but also time-consuming.
Therefore, limited training samples are a common issue in HSI classification. To address
this issue, transfer learning is combined with SST in this study. Transfer learning is a
technique that extracts the knowledge from the source domain and transfers it to the target
domain [44]. For example, in CNN-based transfer learning, the learned weights on the
source domain can be used to initialize the net of the target domain. Therefore, when it is
properly used, transfer learning can improve the classification performance of the target
task if the number of training samples is limited.

To further improve classification performance of the proposed SST, transferring SST
(T-SST) is proposed in this section. Figure 3 shows the framework of the proposed T-SST for
HSI classification. In general, there are three parts in the classification method: transferring
CNN-based spatial feature extraction, Transformer-based spatial-spectral feature extraction,
and MLP-based classification.
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3.1. Heterogeneous Mapping of Two Datasets

There is a problem of simply using transfer learning for HSI classification, due to
the fact that the large-scale dataset (i.e., the source dataset) has three channels, but HSI
(i.e., the target dataset) contains hundreds of channels. To solve the problem caused by
heterogeneous transfer learning, a mapping layer is used to handle the issue of different
number of channels (i.e., bands) of the two datasets.

The pre-trained model on the large-scale ImageNet dataset has three channels of input
(i.e., R, G, and B), but CNN in T-SST receives one band as input.

Let O ∈ RW×H be the input of CNN, in which W × H represents the weight and
height of a 2D patch. O′ ∈ RW×H×3 is the mapped data for subsequent processing, and
α ∈ R3×1. Therefore,

O′ = O× α. (8)

There are three learnable parameters in the heterogeneous mapping. The mapping
operation is combined with subsequent CNN to form an end-to-end learning system.
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3.2. The Proposed T-SST for HSI Classification

Transfer learning is a technique that aims at extracting knowledge from the source
domain and applying it to the target domain [44]. The learned knowledge from the source
task is used to improve the performance of the target task. In deep learning-based transfer
learning, deep models can learn a lot of knowledge from a large dataset such as ImageNet,
and the learnt knowledge can be transferred to a new task such as HSI classification.
Therefore, the proper usage of transfer learning may reduce the number of necessary
training samples.

Many previous studies proved that the learnt weights in CNN of the original domain
can be re-used in the new task [45]. For an image classification task, the first several layers
usually extract low-level features (i.e., blobs, corners, and edges), and the low-level features
are usually common in image classification tasks. Due to the similarity tasks between the
ImageNet and HSI classification, the transfer learning step can be facilitated by fine-tuning
on HSI classification task. Specifically, the learned weights of VGGNet on the ImageNet
dataset can be utilized to initialize the network of the HSI classification and then fine-tune
the weights on an HSI classification task.

Here, a new classification framework titled T-SST is proposed for HSI classification,
which is a combination of transferred VGGNet, modified Transformer (i.e., DenseTrans-
former), and MLP. In T-SST, VGGNet with 16 layers is used, which was trained on the
ImageNet dataset, and the well-trained weights of all the convolutional layers from the
source task are transferred to our target task. Then, these initialized weights are fine-tuned
on the HSI dataset.

Using transferred VGGNet, more robust and discriminant features can be extracted
compared with the original VGGNet, which is useful for the following processing. The
obtained features using transferred VGGNet are used as inputs of Transformer. Specially, a
2D patch, which contains the neighboring pixels in a band of HSI, is an input of transferred
VGGNet. VGGNet uses all the convolutional layers to extract the features of the input,
then the obtained features are fed into the DenseTransformer. The following MLP is used
to obtain the final classification results.

3.3. The Proposed T-SST-L for HSI Classification

Without sufficient training samples, the model faces a problem of “overfitting”, which
means that the classification accuracy on test data will be low. This problem is expected
when T-SST is applied to HSI classification, because it is a common issue that there are only
limited training samples in real application. To address the overfitting issue in T-SST, label
smoothing is introduced.

In classification, each training sample x has the corresponding label y ∈ {1, 2, . . . , C}.
C is the number of classes. Here, we use a C-dimensional one-hot vector y to represent the
label of training sample x,

yk = δk,y, (9)

where k = 1, 2, . . . , C, δk,y represents the discrete Dirac delta function, which equals 1 for
k = y and 0 otherwise.

However, work in [46] has shown that, if we assign all ground truth labels as “hard
labels” (i.e., the δk,y), the model will struggle with many efforts to push the predicted
distribution of labels towards the hard label. Moreover, this can be effectively relieved if
the labels are properly smoothed, i.e., assigned tiny probability mass on the zeros in δk,y.
Intuitively, this happens because the model becomes too confident about its predictions.
Thus, in this paper, a mechanism called label smoothing for encouraging the model to be
less confident is introduced in this paper to achieve better performance. Label smoothing
changes the original label yk to y′k, which can be defined as follows:

y′k = (1− ε)δk,y +
(

1− δk,y

) ε

C−1 , (10)
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where y′k mixes the label of training sample x and the fixed uniform distribution of the
number of C−1 classes; ε is the smoothing factor [47].

By reducing the model to learn the full probability label of each training sample,
the label smoothing mechanism can mitigate the overfitting problem and increase the
generalization ability of the model in a simple form.

4. Experimental Results
4.1. Hyperspectral Datasets

In this study, the performance of proposed methods is evaluated on three public
datasets, including the Salinas, Pavia University (Pavia), and Indian Pines datasets. Table 1
reports the information of all the datasets including the sensor, number of bands, spatial
resolution, pixel size dimension, number of classes, and year of data acquisition. The
descriptions of all the datasets are summarized below.

Table 1. Details of each HIS dataset.

Dataset Sensor Number of
Bands

Spatial
Resolution Size Number of

Classes
Year of Data
Acquisition

Salinas AVIRIS 204 3.7 m 512 × 217 16 1998
Pavia ROSIS 103 1.3 m 610 × 340 9 2001

Indian Pines AVIRIS 200 20 m 145 × 145 16 1992

For the Salinas dataset, it was collected by the AVIRIS over Salinas Valley, CA, USA,
in 1998. After removing 20 bands of low signal to noise ratio (SNR), 204 bands were used
in the experiments.

There are 512 × 217 pixels with 3.7-m spatial resolution included in this hyperspectral
image. The common 16 classes are labeled in the ground truth. The false-color composite
image, the available ground-truth map, and the Scale bar are shown in Figure 4.
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Figure 4. The Salinas dataset. (a) False-color composite image; (b) ground truth map; (c) scale bar.

For the Pavia dataset, it was obtained by the Reflective Optics Spectrographic Imaging
System (ROSIS) sensor over an urban scene by Pavia University, Italy, in 2001. This dataset
has a size of 610 × 340 pixels with 1.3 m spatial resolution, and the spectral ranges from
0.43 to 0.86 µm. Due to the SNR and water absorption, 12 bands were removed, and
the remaining 103 bands were used in the experiments. There are nine urban classes to
discriminate. Figure 5 shows the false-color composite image, the available ground-truth
map, and the scale bar.
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For the Indian Pines dataset, it was captured by the AVIRIS sensor over the Indian
Pines region in Northwestern Indiana, 1992. The spatial size of it is 145 × 145 with the
spatial resolution of 20 m. The number of spectral bands is 200 with the wavelengths from
0.4 to 2.5 µm after discarding 20 water absorption bands. Sixteen ground truth classes
are labeled in the available ground truth. The false-color composite image, the available
ground-truth map, and the scale bar are shown in Figure 6.
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Each dataset is divided into three subsets: training set, validate set, and test set. The
training set consists of 200 labeled samples for model training, which are randomly selected
from all the labeled samples, the validate set includes 50 labeled samples for guiding the
model, and the remains are used as the test set.

The input HSI datasets are normalized into [−0.5, 0.5]. According to Figure 1, to
capture the relationships in a long distance in the spectral domain, the HSI data cube
consists of n bands, where the order of bands follows the spectral order. The neighborhood
pixels of each sample are set to 33 × 33, and then these samples are fed into VGGNet.

4.2. Training Details

The VGGNet with 16 layers are adopted in the experiments, which contains 13 convo-
lutional layers and three fully connected layers. The characteristic of VGGNet is mainly
adopted small convolutional filters with 3 × 3 size. Moreover, the 13 convolutional layers
can be divided into five groups, and each group contains two or three convolutional layers,
which are followed by a max pooling layer. The architecture of VGGNet in SST is similar to
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VGGNet; to reduce the overfitting for HSI classification, several convolutional layers are
ignored, the first three convolutional layer groups reduce one convolutional layer, and the
fourth convolutional layer reduces the first two convolutional layers. In addition, for the
T-SST, the architecture of VGGNet adopts all the convolutional layers, which are used as
initialized weights. For the Pavia and Indian pines datasets, dropout is added. Then, HSI
training samples are exploited to fine-tune the VGGNet by the back-propagation algorithm.
Due to the input of VGGNet in each band, a mapping layer is designed, whose input is
each band and output is three features. Then these features are sent to the VGGNet to
extract the discriminative features.

During the training procedure, the mini-batch algorithm is adopted, which is set to
128 for all the datasets [48]. For the SST, the initial learning rate is set to 8 × 10−5 for the
Salinas dataset, and 9 × 10−5 for the Pavia and Indian Pines datasets, and the learning rate
is reduced by 0.9 for each epoch. In the experiments, the small learning rate is found to be
suitable for the SST for HSI classification. Additionally, for the T-SST, the learning rate is
set to 3 × 10−4, 9 × 10−5, and 1 × 10−4 for the Salinas, Pavia, and Indian Pines datasets,
respectively. The learning rate is reduced by 0.7, 0.9, and 0.9 for each epoch for the Salinas,
Pavia, and Indian Pines datasets, respectively. Additionally, the training epoch is set to 150
for the Salinas dataset, and for the Pavia and Indian Pines datasets, the training epoch is
set to 80. Furthermore, the overall accuracies (OA), average (AA) accuracies, and kappa
coefficient (K) are considered to evaluate the performance of different methods.

4.3. Parameter Analysis

To give a comprehensive study of the spatial-spectral Transformer, some key param-
eters involved in the Transformer are analyzed in this section, including the number of
attention heads, the depth of the Transformer encoder, and the smoothing factor ε of the
proposed T-SST-L. For the number of attention heads and the depth of the Transformer
encoder, they not only influence the robustness of the model, but also affect the complexity
of the model. With the increment of the model depth, it is easy for the model to encounter
the overfitting problem. For the smoothing factor ε, the value of ε could influence the
performance of the model. Thus, the optimal parameter settings of these parameters are
needed to investigate.

To analyze the influences of these parameters to the model, other parameters are
fixed; 200 training samples are used for searching optimal parameters. Figure 7 shows
the analysis results evaluated by OA (%) on the Salinas, Pavia, and Indian Pines datasets,
respectively. For searching for the optimal number of attention heads, one, two, four,
eight, and 16 of attention heads are chosen. This result is shown in Figure 7a: it can be
seen that the best number of attention heads is two for all the datasets. For the depth
of the Transformer encoder, the depths ranging from one to five are searched. Figure 7b
shows that the best depth is two for all the datasets: it can be concluded that the lacking
depths may cause incomplete information, while for the too deep models, the accuracies
are decreased, due to the large amounts of parameters that are needed to train. In the
experiments, according to these results, the number of attention heads and depths of the
Transformer encoder are set to two for all the datasets to lead to better classification results.

ε is the smoothing factor of T-SST-L; to validate the influences of T-SST-L with different
values of ε, the grid search method is utilized to search the optimal value of ε varying from
0.2 to 0.9. The OA of different values of ε is shown in Figure 8. As can be seen, the OAs of
different values of ε are fluctuant, but the proposed T-SST-L obtains the best result when
the value of ε is set to 0.9 on the three datasets. Therefore, in all experiments, the value of ε
is set to 0.9 for all datasets to obtain the best performance for HSI classification.
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4.4. The Classification Results of SST and SST-FA for HSI Classification

In this section, the proposed SST and SST-FA are verified by using several comparison
experiments, including the traditional methods (i.e., RBF-SVM and EMP-SVM) and the
classical CNN related methods (i.e., CNN, SSRN, and VGG). For RBF-SVM, the radial
basis function is adopted as the kernel, and a grid search method is used for finding the
best value of C and γ, which are in the exponentially growing sequence {10−3, 10−2, . . . ,
103}. The best parameters C and γ are obtained using five-fold cross-validation. EMP-SVM
combines EMP with SVM; for EMP, a disk-shape structure element with an increasing size
from two to eight is designed for the opening and closing operations in EMP to extract
features. The architectures of CNN and SSRN are implemented following the settings
described in [34,49], respectively.

The experimental results of SST and SST-FA are reported in Tables 2–4. As can be seen,
the values of OA, AA, and kappa achieve by the proposed SST-FA are the best, which reach
94.94%, 93.37%, and 88.98% on the Salinas, Pavia, Indian Pines, respectively.
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Table 2. Test accuracy with different preprocessing methods on the Salinas dataset.

Method RBF-SVM EMP-SVM CNN SSRN VGG SST SST-FA

OA(%) 83.09 ± 1.08 87.59 ± 2.39 88.40 ± 2.13 88.73 ± 2.06 89.25 ± 5.20 94.42 ± 1.59 94.94 ± 1.31
AA(%) 85.46 ± 2.06 88.65 ± 1.93 92.48 ± 2.79 92.63 ± 1.47 90.16 ± 4.81 93.11 ± 1.85 93.05 ± 0.92
K×100 81.07 ± 1.19 86.15 ± 2.75 88.27 ± 2.73 87.51 ± 2.26 88.05 ± 5.82 93.73 ± 1.80 94.32 ± 1.48

Brocoli_green_weeds_1 94.15 ± 0.50 95.28 ± 4.21 81.75 ± 5.36 100.00 ± 0.00 82.46 ± 17.94 92.58 ± 11.90 92.44 ± 13.63
Brocoli_green_weeds_2 98.57 ± 0.89 98.49 ± 0.28 88.89 ± 7.69 100.00 ± 0.00 88.85 ± 2.11 97.50 ± 4.06 97.47 ± 3.37

Fallow 90.56 ± 0.50 70.53 ± 22.58 89.35 ± 3.85 72.85 ± 13.98 92.04 ± 1.61 91.47 ± 9.55 88.47 ± 12.43
Fallow_rough_plow 98.93 ± 0.40 99.80 ± 0.12 80.01 ± 5.86 99.78 ± 2.15 89.86 ± 0.37 91.98 ± 11.84 92.60 ± 7.79

Fallow_smooth 95.23 ± 0.63 93.34 ± 4.40 88.40 ± 2.57 98.68 ± 0.54 98.32 ± 3.18 95.59 ± 8.23 93.09 ± 13.63
Stubble 99.25 ± 0.91 99.36 ± 0.22 90.45 ± 6.38 99.85 ± 0.89 99.97 ± 1.53 99.53 ± 0.84 99.46 ± 0.90
Celery 98.82 ± 0.33 97.48 ± 1.84 97.96 ± 2.79 99.43 ± 0.43 96.98 ± 3.36 98.65 ± 2.14 97.89 ± 3.43

Grapes_untrained 78.50 ± 0.57 90.09 ± 7.83 69.63 ± 9.62 62.90 ± 14.95 75.66 ± 11.52 95.22 ± 2.90 95.09 ± 2.78
Soil_vinyard_develop 94.11 ± 0.50 98.89 ± 0.08 89.33 ± 9.79 97.87 ± 3.96 98.44 ± 0.13 99.46 ± 1.12 99.70 ± 0.44
Corn_senesced_green_

weeds 85.56 ± 0.36 90.74 ± 2.23 85.75 ± 9.08 88.08 ± 5.20 96.76 ± 13.29 98.28 ± 1.88 99.69 ± 0.60

Lettuce_romaine_4wk 90.63 ± 0.78 93.06 ± 2.02 88.92 ± 9.72 86.54 ± 7.17 95.72 ± 28.25 99.87 ± 0.15 98.47 ± 2.80
Lettuce_romaine_5wk 99.48 ± 0.03 99.98 ± 0.04 82.07 ± 9.37 99.41 ± 5.75 97.41 ± 1.01 89.80 ± 10.95 96.08 ± 3.15
Lettuce_romaine_6wk 20.08 ± 2.47 77.91 ± 39.03 82.65 ± 8.30 84.74 ± 7.69 96.82 ± 37.37 97.32 ± 4.98 97.47 ± 3.02
Lettuce_romaine_7wk 66.29 ± 1.67 98.34 ± 0.99 85.41 ± 9.25 99.33 ± 1.18 98.23 ± 1.40 96.37 ± 3.82 93.81 ± 2.07
Vinyard_untrained 59.14 ± 1.06 35.73 ± 30.40 76.80 ± 18.48 93.40 ± 12.17 84.13 ± 35.13 81.42 ± 16.37 86.72 ± 15.08

Vinyard_vertical_trellis 66.96 ± 0.78 79.35 ± 6.22 56.06 ± 12.02 98.71 ± 2.58 50.94 ± 41.64 65.07 ± 14.69 60.33 ± 21.01

Table 3. Test accuracy with different preprocessing methods on the Pavia dataset.

Method RBF-SVM EMP-SVM CNN SSRN VGG SST SST-FA

OA(%) 80.06 ± 1.52 89.43 ± 1.20 91.41 ± 1.44 91.59 ± 3.57 91.72 ± 2.12 92.74 ± 1.08 93.37 ± 1.96
AA(%) 69.48 ± 3.03 80.37 ± 3.60 81.03 ± 4.99 87.56 ± 3.57 84.13 ± 5.41 83.60 ± 2.35 85.01 ± 3.78
K×100 74.19 ± 2.02 85.81 ± 1.64 89.12 ± 1.83 88.96 ± 1.56 89.53 ± 2.70 90.80 ± 1.41 91.65 ± 2.49
Asphalt 88.75 ± 2.70 91.84 ± 1.75 92.36 ± 5.62 99.62 ± 2.57 89.85 ± 2.05 94.38 ± 5.08 98.36 ± 5.16

Meadows 94.94 ± 1.47 98.02 ± 0.68 98.85 ± 1.04 98.85 ± 4.91 98.68 ± 1.23 99.9 ± 0.27 97.49 ± 0.94
Gravel 34.89 ± 15.46 66.63 ± 14.10 42.94 ± 22.88 90.99 ± 25.41 68.99 ± 11.70 72.86 ± 6.29 48.88 ± 14.58
Trees 64.11 ± 9.76 92.10 ± 5.14 93.52 ± 3.53 94.13 ± 8.55 86.72 ± 2.18 77.73 ± 9.44 89.7 ± 9.26

Metal sheets 89.35 ± 8.20 86.26 ± 21.92 99.33 ± 0.72 99.63 ± 2.74 99.71 ± 0.21 79.02 ± 7.64 83.21 ± 9.83
Bare soil 66.54 ± 6.15 78.66 ± 7.12 98.62 ± 1.54 77.72 ± 8.91 91.36 ± 3.23 99.88 ± 3.93 98.32 ± 1.52
Bitumen 55.77 ± 22.79 74.43 ± 10.12 45.56 ± 27.30 59.63 ± 15.34 75.24 ± 22.87 59.78 ± 15.77 84.97 ± 13.92

Bricks 73.39 ± 7.31 90.92 ± 3.70 90.60 ± 5.68 67.52 ± 23.28 97.24 ± 1.59 97.02 ± 1.61 98.43 ± 2.03
Shadow 57.61 ± 21.51 74.11 ± 22.21 67.52 ± 33.51 99.90 ± 2.89 49.41 ± 26.69 71.84 ± 14.85 65.78 ± 8.79

All the experimental results demonstrate that SST-FA reaches the best performance on
all the HSI datasets, which has advantages in alleviating the overfitting. For the proposed
SST, take the Salinas dataset as an example, compared to the traditional methods, the OA is
11.33% and 6.83% points higher than that of RBF-SVM and EMP-SVM, respectively; the AA
is 7.65% and 4.46% points better, respectively, and the kappa is 12.66% and 7.58% points
higher. Besides, compared to CNN, OA of SST is improved by 6.02%, 1.33%, and 1.96%
on the Salinas, Pavia, and Indian Pines datasets, respectively. In addition, compared to
CNN-based methods including SSRN and VGG, for the Indian Pines dataset, the accuracy
of the proposed SST achieves 88.77%, which increases of 5.56% and 1.97%, respectively. SST
also offers improvement on the Salinas and Pavia datasets. Figure 9 shows learning curves
of SST including loss, accuracy of training, and validate samples on the three datasets. The
experimental results demonstrate that the proposed SST has the advantages in extracting
sequential information of HSI.
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Table 4. Test accuracy with different preprocessing methods on the Indian Pines dataset.

Method RBF-SVM EMP-SVM CNN SSRN VGG SST SST-FA

OA(%) 79.75 ± 1.89 81.53 ± 2.39 86.81 ± 1.28 83.21 ± 1.25 86.80 ± 1.08 88.77 ± 1.07 88.98 ± 0.66
AA(%) 60.11 ± 2.56 72.43 ± 6.35 68.30 ± 4.82 62.88 ± 7.12 63.18 ± 1.98 66.75 ± 6.44 68.15 ± 1.06
K×100 75.82 ± 2.35 78.87 ± 2.78 84.20 ± 1.57 80.86 ± 1.39 84.10 ± 1.29 86.48 ± 1.27 86.70 ± 0.78
Alfalfa 38.67 ± 26.66 50.27 ± 41.37 38.70 ± 32.39 25.00 ± 35.08 35.56 ± 9.07 35.40 ± 33.24 62.91 ± 29.44

Corn-notill 80.01 ± 9.17 72.43 ± 7.51 84.64 ± 6.07 87.16 ± 12.44 90.74 ± 1.98 90.52 ± 3.51 91.56 ± 3.23
Corn-min 52.50 ± 11.83 80.77 ± 5.42 63.15 ± 22.10 95.61 ± 20.25 38.80 ± 20.66 50.81 ± 15.66 63.28 ± 13.48

Corn 23.85 ± 22.71 74.44 ± 19.28 55.37 ± 45.79 20.60 ± 17.82 55.32 ± 27.30 22.13 ± 36.06 13.83 ± 27.66
Grass-pasture 61.00 ± 16.10 77.04 ± 8.10 56.41 ± 10.40 84.93 ± 21.91 51.24 ± 11.62 66.00 ± 10.46 64.64 ± 10.76

Grass-trees 91.76 ± 4.49 95.27 ± 3.54 96.90 ± 3.94 99.71 ± 6.22 94.21 ± 2.60 93.50 ± 2.83 94.40 ± 1.18
Grass-pasture-

mowed 16.58 ± 23.12 49.63 ± 49.64 42.54 ± 38.16 28.70 ± 48.04 13.58 ± 19.21 42.96 ± 43.87 29.63 ± 22.83

Hay-
windrowed 87.89 ± 8.56 97.43 ± 2.90 85.84 ± 27.28 97.65 ± 2.15 73.44 ± 18.42 82.15 ± 17.78 70.66 ± 21.10

Oats 42.21 ± 37.64 28.95 ± 39.68 12.75 ± 18.33 9.28 ± 43.22 24.07 ± 34.05 5.88 ± 13.15 8.82 ± 17.65
Soybean-notill 74.57 ± 8.69 74.92 ± 7.72 90.33 ± 6.48 80.77 ± 8.61 85.78 ± 4.08 91.54 ± 3.91 92.57 ± 2.70

Soybean-mintill 92.74 ± 3.23 85.30 ± 4.85 94.21 ± 3.32 83.09 ± 6.57 95.70 ± 1.82 97.29 ± 1.82 97.37 ± 2.38
Soybean-clean 48.60 ± 13.61 60.49 ± 10.01 58.07 ± 12.47 70.77 ± 21.72 69.35 ± 8.91 70.19 ± 11.47 65.73 ± 8.25

Wheat 61.59 ± 25.50 75.54 ± 37.88 85.99 ± 14.62 98.48 ± 12.96 96.75 ± 2.72 81.24 ± 17.71 58.94 ± 22.58
Woods 94.26 ± 2.15 96.56 ± 3.24 96.63 ± 2.53 96.99 ± 3.86 98.02 ± 1.93 97.16 ± 3.36 98.88 ± 1.80

Buildings-
Grass-Trees 52.78 ± 28.23 73.77 ± 9.55 67.38 ± 28.38 38.76 ± 18.17 58.04 ± 42.38 80.15 ± 26.42 98.55 ± 2.20

Stone-Steel-
Towers 42.78 ± 34.42 66.09 ± 43.03 63.96 ± 33.59 53.85 ± 44.51 30.22 ± 12.73 61.08 ± 37.67 78.69 ± 38.57

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

Corn 23.85±22.71 74.44±19.28 55.37±45.79 20.60±17.82 55.32±27.30 22.13±36.06 13.83±27.66 
Grass-pasture 61.00±16.10 77.04±8.10 56.41±10.40 84.93±21.91 51.24±11.62 66.00±10.46 64.64±10.76 

Grass-trees 91.76±4.49 95.27±3.54 96.90±3.94 99.71±6.22 94.21±2.60 93.50±2.83 94.40±1.18 
Grass-pasture-mowed 16.58±23.12 49.63±49.64 42.54±38.16 28.70±48.04 13.58±19.21 42.96±43.87 29.63±22.83 

Hay-windrowed 87.89±8.56 97.43±2.90 85.84±27.28 97.65±2.15 73.44±18.42 82.15±17.78 70.66±21.10 
Oats 42.21±37.64 28.95±39.68 12.75±18.33 9.28±43.22 24.07±34.05 5.88±13.15 8.82±17.65 

Soybean-notill 74.57±8.69 74.92±7.72 90.33±6.48 80.77±8.61 85.78±4.08 91.54±3.91 92.57±2.70 
Soybean-mintill 92.74±3.23 85.30±4.85 94.21±3.32 83.09±6.57 95.70±1.82 97.29±1.82 97.37±2.38 
Soybean-clean 48.60±13.61 60.49±10.01 58.07±12.47 70.77±21.72 69.35±8.91 70.19±11.47 65.73±8.25 

Wheat 61.59±25.50 75.54±37.88 85.99±14.62 98.48±12.96 96.75±2.72 81.24±17.71 58.94±22.58 
Woods 94.26±2.15 96.56±3.24 96.63±2.53 96.99±3.86 98.02±1.93 97.16±3.36 98.88±1.80 

Buildings-Grass-Trees 52.78±28.23 73.77±9.55 67.38±28.38 38.76±18.17 58.04±42.38 80.15±26.42 98.55±2.20 
Stone-Steel-Towers 42.78±34.42 66.09±43.03 63.96±33.59 53.85±44.51 30.22±12.73 61.08±37.67 78.69±38.57 

All the experimental results demonstrate that SST-FA reaches the best performance 
on all the HSI datasets, which has advantages in alleviating the overfitting. For the pro-
posed SST, take the Salinas dataset as an example, compared to the traditional methods, 
the OA is 11.33% and 6.83% points higher than that of RBF-SVM and EMP-SVM, respec-
tively; the AA is 7.65% and 4.46% points better, respectively, and the kappa is 12.66% and 
7.58% points higher. Besides, compared to CNN, OA of SST is improved by 6.02%, 1.33%, 
and 1.96% on the Salinas, Pavia, and Indian Pines datasets, respectively. In addition, com-
pared to CNN-based methods including SSRN and VGG, for the Indian Pines dataset, the 
accuracy of the proposed SST achieves 88.77%, which increases of 5.56% and 1.97%, re-
spectively. SST also offers improvement on the Salinas and Pavia datasets. Figure 9 shows 
learning curves of SST including loss, accuracy of training, and validate samples on the 
three datasets. The experimental results demonstrate that the proposed SST has the ad-
vantages in extracting sequential information of HSI. 

lo
ss

epoch  
0 20 40 60 80

0

0.5

1

1.5

2

2.5

3

epoch
 

 

0 20 40 60 80
0

20

40

60

80

100

0 20 40 60 80
0

20

40

60

80

100

train loss
validate loss
train accuracy
validate accuracy

epoch  
0 20 40 60 80

0

0.5

1

1.5

2

2.5

3

epoch
 

 

0 20 40 60 80
0

20

40

60

80

100

0 20 40 60 80
0

20

40

60

80

100

train loss
validate loss
train accuracy
validate accuracy ac

cu
ra

cy

epoch  
(a) (b) (c) 

Figure 9. Learning curves of SST on the three HSI datasets. (a) Salinas; (b) Pavia; (c) Indian Pines. 
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4.5. The Classification Results of the Proposed T-SST and T-SST-L for HSI Classification

In this section, the experimental results of the proposed T-SST and T-SST-L are pre-
sented to test the performance of HSI classification, which use the pre-trained VGGNet on
a large dataset as the initialized weights of VGGNet. To further verify that the proposed
T-SST and T-SST-L are superior to other methods for HSI classification, EMP-random forest
(RF), EMP-CNN, VGG, and T-CNN are selected for comparison. For EMP-RF, the detailed
information about EMP is the same as the previous settings. Then, the features extracted
by EMP are fed into the RF classifier with 200 decision trees [50]. Additionally, EMP-CNN
combines EMP with CNN and is implemented for spectral-spatial classification. Specifi-
cally, the architecture design of EMP-CNN is similar to CNN [49]. Moreover, we adopt a
comparison method named VGG, whose architecture follows all the convolutional layers
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in VGGNet; after that, a fully connected layer is added for HSI classification. In addition,
to demonstrate the proposed Transformer method with transfer learning is effective, CNN
with transfer learning (T-CNN) is also utilized. Three bands are randomly selected from
all bands, then all the VGGNet weights of the first seven convolutional layers are used to
initialize T-CNN to finish HSI classification task.

The results of the proposed T-SST and T-SST-L are reported in Tables 5–7. The pro-
posed T-SST-L achieves competitive results as compared to state-of-the-art well-designed
networks. The OA of the proposed T-SST-L reaches 96.83%, 93.73%, and 91.20% on Salinas,
Pavia, and Indian Pines datasets, respectively. In addition, it can be observed that the
proposed T-SST is superior to other existing methods on all the datasets. Specifically, the
T-SST outperforms the EMP-RF by 4.16%, 5.08%, and 4.96% in terms of OA on Salinas,
Pavia, and Indian Pines datasets, respectively. Additionally, the accuracy obtained by the
proposed T-SST on the Salinas dataset is 3.09% better than that of the EMP-CNN, while,
for the Indian Pines dataset, it is 2.84%. In addition, compared to T-CNN, the proposed
T-SST achieves about 2% improvements on the Salinas dataset in terms of OA and K.
Furthermore, compared to the proposed T-SST, the proposed T-SST-L increases accuracies
by 1.03% and 1.14% on Salinas and Indian Pines datasets, respectively. It demonstrates that
label smoothing is an effective method to prevent the overfitting problem.

Table 5. Test accuracy with different preprocessing methods on the Salinas dataset.

Method EMP-RF EMP-CNN VGG T-CNN T-SST T-SST-L

OA(%) 91.64 ± 0.82 92.71 ± 0.66 89.25 ± 5.20 93.17 ± 1.46 95.80 ± 0.90 96.83 ± 0.97
AA(%) 92.05 ± 2.14 93.22 ± 0.62 90.16 ± 4.81 90.34 ± 2.79 94.20 ± 1.38 96.08 ± 0.83
K×100 90.68 ± 0.92 91.83 ± 0.74 88.05 ± 5.82 92.16 ± 1.79 95.28 ± 1.01 96.43 ± 1.09

Brocoli_green_weeds_1 99.39 ± 0.48 93.91 ± 6.37 82.46 ± 17.94 90.25 ± 11.95 95.00 ± 10.13 98.47 ± 2.83
Brocoli_green_weeds_2 98.64 ± 2.55 85.93 ± 8.49 88.85 ± 2.11 99.28 ± 1.45 91.55 ± 4.95 93.51 ± 6.67

Fallow 86.65 ± 7.69 93.31 ± 11.47 92.04 ± 1.61 71.84 ± 23.63 91.97 ± 10.59 93.19 ± 9.53
Fallow_rough_plow 98.91 ± 1.40 97.94 ± 1.57 89.86 ± 0.37 93.22 ± 6.48 92.75 ± 4.05 97.38 ± 1.91

Fallow_smooth 91.71 ± 13.54 94.90 ± 4.25 98.32 ± 3.18 95.69 ± 4.86 97.39 ± 2.17 98.57 ± 1.46
Stubble 97.71 ± 1.66 98.91 ± 1.54 99.97 ± 1.53 96.14 ± 3.22 99.91 ± 0.18 99.99 ± 0.03
Celery 99.21 ± 0.58 97.42 ± 1.66 96.98 ± 3.36 100.00 ± 0.00 97.44 ± 3.36 98.71 ± 1.05

Grapes_untrained 89.18 ± 2.53 93.71 ± 2.40 75.66 ± 11.52 94.24 ± 3.98 96.61 ± 2.23 96.85 ± 2.33
Soil_vinyard_develop 99.56 ± 0.36 98.41 ± 0.86 98.44 ± 0.13 100.00 ± 0.00 99.96 ± 0.06 99.68 ± 0.60

Corn_senesced_green_weeds 92.34 ± 6.93 95.93 ± 3.25 96.76 ± 13.29 97.86 ± 1.48 97.64 ± 3.67 98.25 ± 2.30
Lettuce_romaine_4wk 82.34 ± 17.84 93.25 ± 7.93 95.72 ± 28.25 93.15 ± 10.85 95.92 ± 4.15 97.69 ± 1.65
Lettuce_romaine_5wk 92.30 ± 9.95 92.98 ± 9.99 97.41 ± 1.01 98.78 ± 1.49 97.06 ± 3.74 97.25 ± 2.89
Lettuce_romaine_6wk 93.16 ± 12.10 91.48 ± 11.01 96.82 ± 37.37 76.05 ± 33.94 93.80 ± 4.74 95.21 ± 2.88
Lettuce_romaine_7wk 85.10 ± 28.67 98.07 ± 2.78 98.23 ± 1.40 95.83 ± 5.27 94.53 ± 4.84 96.56 ± 3.30

Vinyard_untrained 78.36 ± 8.13 78.57 ± 5.36 84.13 ± 35.13 81.07 ± 16.68 91.53 ± 3.80 93.13 ± 5.15
Vinyard_vertical_trellis 88.30 ± 6.08 86.80 ± 7.39 50.94 ± 41.64 62.03 ± 23.75 74.11 ± 12.41 82.86 ± 13.46

Table 6. Test accuracy with different preprocessing methods on the Pavia dataset.

Method EMP-RF EMP-CNN VGG T-CNN T-SST T-SST-L

OA(%) 88.29 ± 2.24 91.65 ± 1.22 91.72 ± 2.12 92.55 ± 2.06 93.37 ± 1.60 93.73 ± 1.73
AA(%) 81.87 ± 5.41 83.13 ± 3.57 84.13 ± 5.41 84.84 ± 2.43 85.30 ± 2.55 89.45 ± 3.66
K×100 84.36 ± 3.09 89.42 ± 1.56 89.53 ± 2.70 90.54 ± 2.64 61.61 ± 2.03 92.10 ± 2.19
Asphalt 94.22 ± 2.45 91.99 ± 2.81 89.85 ± 2.05 92.59 ± 4.48 90.88 ± 6.09 86.63 ± 3.32

Meadows 96.21 ± 1.71 97.95 ± 1.32 98.68 ± 1.23 99.66 ± 0.19 99.60 ± 0.52 98.77 ± 0.41
Gravel 70.14 ± 10.05 49.02 ± 10.07 68.99 ± 11.70 70.42 ± 12.74 98.51 ± 11.94 86.16 ± 9.81
Trees 85.59 ± 10.22 89.25 ± 4.96 86.72 ± 2.18 72.63 ± 11.76 82.02 ± 2.03 86.70 ± 3.28

Metal sheets 85.26 ± 24.14 95.31 ± 5.13 99.71 ± 0.21 95.84 ± 3.54 82.39 ± 7.64 100 ± 0.00
Bare soil 65.94 ± 10.99 98.45 ± 1.47 91.36 ± 3.23 98.62 ± 2.29 99.61 ± 3.54 98.48 ± 5.38
Bitumen 52.93 ± 22.35 73.50 ± 13.36 75.24 ± 22.87 82.02 ± 12.91 64.63 ± 11.87 86.58 ± 11.03

Bricks 94.29 ± 3.25 93.24 ± 3.25 97.24 ± 1.59 95.35 ± 4.84 98.85 ± 1.35 96.51 ± 2.85
Shadow 92.24 ± 16.31 59.49 ± 21.87 49.41 ± 26.69 56.41 ± 27.04 51.17 ± 23.38 65.24 ± 28.69
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Table 7. Test accuracy with different preprocessing methods on the Indian Pines dataset.

Method EMP-RF EMP-CNN VGG T-CNN T-SST T-SST-L

OA(%) 85.10 ± 1.59 87.22 ± 1.37 86.80 ± 1.08 87.83 ± 0.78 90.06 ± 0.68 91.20 ± 1.35
AA(%) 74.85 ± 2.35 74.77 ± 5.50 63.18 ± 1.98 65.32 ± 2.77 80.12 ± 4.49 83.05 ± 5.94
K×100 82.96 ± 1.84 85.03 ± 1.62 84.10 ± 1.29 85.35 ± 1.00 88.05 ± 0.82 89.85 ± 1.17
Alfalfa 60.88 ± 31.15 44.81 ± 30.09 35.56 ± 9.07 37.78 ± 36.95 84.64 ± 6.09 92.36 ± 8.59

Corn-notill 78.10 ± 7.99 87.81 ± 7.01 90.74 ± 1.98 93.03 ± 3.61 85.86 ± 3.84 88.96 ± 6.83
Corn-min 83.43 ± 11.56 73.58 ± 11.10 38.80 ± 20.66 45.46 ± 17.23 68.91 ± 22.92 71.79 ± 21.13

Corn 59.23 ± 16.02 64.95 ± 37.09 55.32 ± 27.30 34.79 ± 33.53 47.86 ± 40.14 54.96 ± 45.01
Grass-pasture 74.90 ± 10.75 71.72 ± 21.07 51.24 ± 11.62 82.07 ± 10.06 67.90 ± 21.08 72.32 ± 16.20

Grass-trees 94.34 ± 6.50 88.79 ± 5.09 94.21 ± 2.60 94.02 ± 4.19 91.08 ± 6.22 93.55 ± 5.45
Grass-pasture-

mowed 32.15 ± 39.56 63.95 ± 42.30 13.58 ± 19.21 38.52 ± 32.84 77.78 ± 39.13 79.26 ± 39.66

Hay-
windrowed 99.85 ± 0.17 96.50 ± 3.02 73.44 ± 18.42 70.01 ± 33.41 98.36 ± 2.11 99.90 ± 0.20

Oats 5.26 ± 15.79 20.00 ± 40.00 24.07 ± 34.05 13.33 ± 26.67 48.17 ± 39.89 50.53 ± 42.96
Soybean-notill 74.18 ± 10.67 88.60 ± 4.97 85.78 ± 4.08 89.20 ± 6.52 91.24 ± 3.77 90.85 ± 2.44

Soybean-
mintill 90.84 ± 4.55 92.43 ± 3.42 95.70 ± 1.82 94.45 ± 2.11 98.23 ± 0.32 97.08 ± 0.67

Soybean-clean 71.13 ± 15.48 71.39 ± 17.31 69.35 ± 8.91 77.95 ± 21.29 76.98 ± 4.45 76.85 ± 5.79
Wheat 99.50 ± 0.90 91.08 ± 7.05 96.75 ± 2.72 92.61 ± 8.42 85.56 ± 13.47 93.33 ± 10.81
Woods 97.29 ± 1.35 95.60 ± 4.29 98.02 ± 1.93 93.05 ± 4.13 95.04 ± 1.44 95.12 ± 1.11

Buildings-
Grass-Trees 82.12 ± 17.62 74.28 ± 14.20 58.04 ± 42.38 36.49 ± 28.41 80.56 ± 18.16 87.02 ± 16.96

Stone-Steel-
Towers 94.46 ± 2.12 70.88 ± 27.37 30.22 ± 12.73 52.31 ± 30.74 83.74 ± 21.95 84.95 ± 20.63

4.6. Analysis of Transformer Encoder Representation of the Proposed T-SST

In this subsection, to see how the proposed T-SST captures long-distance dependency
relations, we analyze the Transformer encoder representation by visualizing the normalized
attention weights. Figures 10–12 display normalized attention weights between bands on
the three hyperspectral datasets.
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Figure 10. Visualization of attention weights for the head 2, layer 2 of T-SST on the Salinas dataset. (a) Dependency rela-
tions between the band 1 and another band; (b) dependency relations between the band 100 and another band; (c) de-
pendency relations between the band 204 and another band. 
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Since there are hundreds of bands in HSI, it is difficult to make complete visualization
for each of them. Therefore, the first band, the middle band, and the last band are chosen
to illustrate the long-range dependency relations between the chosen band and another
band. Specially, band 1, band 100, and band 204 are chosen on the Salinas dataset; band 1,
band 50, and band 103 are chosen on the Pavia dataset; and band 1, band 100, and band
200 are chosen on the Indian Pines dataset.
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As shown in Figures 10–12, the values of attention weight strongly fluctuate on the
three hyperspectral datasets, and the value of attention weight can be high even if the two
bands have a long distance.
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Take the Salinas dataset as an example: in Figure 10a, the value of normalized attention
weight between band 50 and band 203 is very high, although distance of the two bands is
far. The results demonstrate that T-SST tends to capture long-range dependency relations.

4.7. Classification Maps

Here, to fully evaluate the classification results, Figures 13–15 display classification
maps of different methods from a visual perspective on all the datasets; the methods
include EMP-SVM, CNN, SSRN, VGG, and our proposed methods (i.e., SST-FA and T-
SST-L). Through comparison, it can be observed that classification maps of EMP-SVM
produce more errors for all the datasets, while for the proposed SST and T-SST, there exist
fewer noise points. In addition, in Figure 15, compared to other CNN-based methods, for
example, in comparison of CNN, SSRN, and VGG (see Figure 15b–d), many pixels are
misclassified on the boundary among different classes on the Indian Pines dataset, while
the proposed methods are able to classify more classes correctly (i.e., Soybean-clean) and
have a clearer distinction. Obviously, SST-FA and T-SST-L produce classification maps with
the highest quality compared to other approaches, which demonstrates that the proposed
SST-FA and T-SST-L are effective in enhancing the performance of model, respectively.
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4.8. Time Consumption

The execution time of different methods for the three HSI datasets with 200 training
samples is reported in Table 8. All the experiments are conducted on a computer with an
Intel Core i7-10700F processor with 2.9 GHz, 64 GB of DDR4 RAM, an NVIDIA GeForce
RTX 3070 graphical processing unit (GPU). For the traditional methods including RBF-SVM,
EMP-SVM, and EMP-RF, the processing time is short, but these methods achieve poor
performance. In addition, for the CNN and T-CNN, since CNN includes fewer parameters
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than other competitive deep-learning-based methods and T-CNN only contains three bands
for transfer learning, the running time is short. Additionally, compared to CNN, SSRN and
VGG take longer time, because SSRN needs more epochs to train the network and VGG
contains many 3 × 3 convolutional kernels. For the proposed methods (i.e., SST, T-SST, and
T-SST-L), since the proposed methods consider the model of Transformer, the processing
times are long.

Table 8. Running time (min.) of different methods on the three HSI datasets with 200 training samples.

Datasets

Methods
RBF-
SVM

EMP-
SVM

EMP-
RF

EMP-
CNN

CNN T-
CNN

SSRN VGG SST SST-
FA

T-SST T-
SST-L

Salinas 0.83 0.06 0.06 1.60 1.86 0.22 3.47 2.53 22.42 22.46 28.86 28.89
Pavia 0.71 0.06 0.07 0.64 0.79 0.24 1.62 0.95 16.69 16.70 18.01 18.05

Indian Pines 0.47 0.03 0.03 0.35 0.55 0.17 2.27 0.71 21.43 21.44 26.91 26.91

5. Conclusions

In this study, Transformer is investigated for HSI classification. Specifically, Dense-
Transformer is proposed, which uses dense connection to alleviate the vanishing-gradient
problem in the training of a Transformer.

Moreover, two classification frameworks (i.e., SST and T-SST) have been proposed to
handle the task of HSI classification. The proposed methods obtained superior performance
in terms of classification accuracy on the three popular HSI datasets.

For the proposed SST-based HSI classification method, it took full advantage of CNN
to capture spatial features of a 2D patch and made best of DenseTransformer to capture
relationships in a long distance in spectral domain. The used self-attention mechanism con-
sidered the intrinsic sequential data structure of a pixel vector of his, and the combination
of CNN and DenseTransformer obtained the spectral-spatial discriminate features, which
are useful for the following HSI classification.

In addition, DenseTransformer combined with dynamic feature augmentation (i.e.,
SST-FA) is proposed for alleviating the overfitting problem, and thus it enhances the
accuracy of the model in a simple form.

Furthermore, the effectiveness of T-SST has been tested. The proposed T-SST combined
transfer learning and SST to further improve the classification performance. To use the
pre-trained model on the ImageNet dataset, a heterogeneous mapping layer was designed,
which was used to map the model from the source domain (i.e., ImageNet dataset) to target
domain (i.e., HSI). The obtained experimental results have shown the usefulness of T-SST
for HSI classification.

At last, label smoothing has been proved as a useful regularization technique in
Transformer-based HSI classification. The proposed T-SST-L led to high performance
compared to SST, SST-FA, T-SST, and other methods.

The proposed SST and T-SST have shown the potential of the proposed DenseTrans-
former for HSI classification. However, it is in the early stage of Transformer-based HSI
classification. In our future work, various improvements of Transformer can be used to
open a new widow for HSI accurate classification.
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