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Abstract: Visible and infrared imaging spectroscopy have greatly revolutionized our understanding
of the diversity of minerals on Mars. Characterizing the mineral distribution on Mars is essential for
understanding its geologic evolution and past habitability. The traditional handcrafted spectral index
could be ambiguous as it may denote broad mineralogical classes, making this method unsuitable
for definitive mineral investigation. In this work, the target detection technique is introduced for
specific mineral mapping. We have developed a new subpixel mineral detection method by joining
the Hapke model and spatially adaptive sparse representation method. Additionally, an iterative
background dictionary purification strategy is proposed to obtain robust detection results. Laboratory
hyperspectral image containing Mars Global Simulant and serpentine mixtures was used to evaluate
and tailor the proposed method. Compared with the conventional target detection algorithms, includ-
ing constrained energy minimization, matched filter, hierarchical constrained energy minimization,
sparse representation for target detection, and spatially adaptive sparse representation method,
the proposed algorithm has a significant improvement in accuracy about 30.14%, 29.67%, 29.41%,
9.13%, and 8.17%, respectively. Our algorithm can detect subpixel serpentine with an abundance
as low as 2.5% in laboratory data. Then the proposed algorithm was applied to two well-studied
Compact Reconnaissance Imaging Spectrometer for Mars images, which contain serpentine outcrops.
Our results are not only consistent with the spatial distribution of Fe/Mg phyllosilicates derived
by spectral indexes, but also denote what the specific mineral is. Experimental results show that
the proposed algorithm enables the search for subpixel, low-abundance, and scientifically valuable
mineral deposits.

Keywords: hyperspectral remote sensing; Mars; mineral detection; Hapke model; sparse representation

1. Introduction

Recent advances in imaging spectrometer technology allow the simultaneous acquisi-
tion of hundreds of continuous spectral bands over the visible and infrared range [1–3].
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) [3] conveys essen-
tial spectral information that is interpreted in order to determine the compositional and
mineralogical makeup of the martian surface [4–8]. The characterized minerals are critical
to understanding the evolution of Mars, which in turn serves as a potential window into
our planet’s history. Many efforts have been made to map minerals regionally or globally
on Mars based on hyperspectral images (HSIs) [9–12]. These studies reveal that Mars has a

Remote Sens. 2021, 13, 500. https://doi.org/10.3390/rs13030500 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1368-1621
https://orcid.org/0000-0002-4313-600X
https://orcid.org/0000-0002-6256-0826
https://orcid.org/0000-0002-9945-5050
https://doi.org/10.3390/rs13030500
https://doi.org/10.3390/rs13030500
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13030500
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/3/500?type=check_update&version=2


Remote Sens. 2021, 13, 500 2 of 21

basaltic upper crust with regional variations in the relative abundances of other hydrated
minerals [4].

Several methods have been developed to map martian minerals over the past decades.
The most prevalent method uses spectral indices [13,14], which explore the position, depth,
and shape of diagnostic absorptions to characterize minerals. Although this method has
led to many significant findings, spectral indices could be ambiguous because an index
may denote broad classes rather than a definitive specific mineral. In addition, due to insuf-
ficient spatial resolution and mixing effects happening at different spatial scales [15], mixed
pixels are generally encountered in mineral mapping from orbit. To address the mixing
phenomenon and acquire quantitative information of each constituent, a spectral unmixing
technique is used on hyperspectral images of Mars [9,10,16]. However, the accuracy of
abundance retrieval greatly depends on the selected endmembers [15]. Endmember extrac-
tion is challenging in CRISM data analysis due to relatively shallow spectral absorptions
and spatial heterogeneity [17].

On Mars, scientists are more interested in the less exposed, sporadically distributed,
but scientifically valuable hydrated minerals deposits compared with widely distributed
basalts. Identification of these minerals can be regarded as a target detection process. Target
detection focuses on distinguishing specific target pixels from various background pixels
with a priori knowledge of the target spectra [18,19]. Recently, the sparse representation
for target detection algorithm (STD) has attracted much attention [20–23]. The philoso-
phy of STD is that a pixel in a HSI lies in a low-dimensional subspace and thus can be
represented as a sparse linear combination of a structured dictionary consisting of target
and background training spectral samples [21]. The target spectra are assumed to be
known in advance, while the background dictionary is generated locally for each test
pixel through a dual concentric window [21]. To further exploit the spatial information
of HSI, the spatially adaptive STD (SASTD) [23] was proposed and achieved competitive
performance. In essence, these representation theory-based methods are grounded in
linear mixing modeling [19], which is unsuitable to mineral detection because the observed
reflectance of mixtures involves nonlinear combinations of each endmember in visible and
near infrared wavelengths [24]. Furthermore, the target interference with the background
dictionary during the sliding process of the dual-window heavily degrades the detection
performance [25].

Fortunately, single-scattering albedo (SSA) is linearly additive in visible and infrared
wavelength [26]. The Hapke model relates a mineral mixture’s reflectance to a linear com-
bination of the SSAs of its constituents [27]. To exploit the advantages of the representation
theory-based method and make it suitable for mineral detection, we developed a nonlinear
target detection framework by joining the Hapke model and SASTD (HSASTD). Moreover,
an iterative background dictionary purification (IBP) strategy is proposed to mitigate the
target interference issue. Before applying the proposed detection method to orbital data,
we first rigorously tested the algorithm on an HSI acquired by a laboratory imaging spec-
trometer, which contains binary mixtures of serpentine and Mars Global Simulant (MGS-1).
MGS-1 is a chemical and mineralogic analog to the martian basaltic regolith-specifically
that of Rocknest measured by the Curiosity rover [28]. Six different mass fractions mixtures
were prepared, namely 100%, 10%, 5%, 2.5%, 1%, and 0% serpentine. This dataset is
used to evaluate and tailor the method to the unique qualities of serpentine. To sum up,
the contributions of this paper are threefold.

• A joint Hapke model and spatially adaptive sparse representation approach was pro-
posed for subpixel mineral detection. We address the nonlinear issue by introducing
the Hapke model, which significantly boosts the detection performance. Further-
more, an iterative background purification strategy is proposed to alleviate the target
interference issue, which can be easily implanted into other sparse representation
detection algorithms;

• We used a well-designed mineral mixture HSI to evaluate the detection capabilities of
our method. The MGS-1 and serpentine were mixed by six different mass fractions
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to assess the detection performance of the proposed algorithm. This dataset includes
detailed groundtruth information, which can serve as a benchmark dataset for martian
mineral detection;

• A systematic comparison of several representative detection algorithms was con-
ducted on the laboratory HSI. The detection limit of serpentine abundance by the
proposed method was derived. Finally, the proposed method was applied to CRISM
images. This study provides a critical link between laboratory measurement and
orbital observation.

The rest of this paper is organized as follows. Section 2 briefly introduces preliminary
knowledge of the martian mineral mapping methods and the STD. The datasets and the
proposed algorithm are presented in Section 3. The experimental results of laboratory
and CRISM HSIs are given in Section 4. The discussion and conclusions are covered in
Sections 5 and 6, respectively. Finally, a glossary of all the acronyms with brief descriptions
is included in Appendix A.

2. Related Work

In this section, we first introduce two commonly used martian mineral mapping
methods: spectral index and spectral unmixing. A detailed summary of spectral pro-
cessing techniques for martian mineral mapping can be found in Supplement Table S1.
Subsequently, the STD is briefly reviewed.

2.1. Martian Mineral Mapping Methods

Spectral Index: Spectral indexes use the position, depth, and shape of diagnos-
tic absorptions to identify minerals [13,14]. Table 1 shows several spectral indexes re-
lated to phyllosilicates. In the formulation, Rλ denotes the reflectance at wavelength
λ. RCλ represents the linear interpolated reflectance at λ, where RCλ = aRλL + bRλR ,
b = (λC − λL)/(λR − λL), a = 1− b, λL and λR are the wavelength at the left and right
shoulder. Spectral indexes serve as guidelines for the assessment of a diverse range of
minerals, such as phyllosilicates, carbonates, hydrated silica, and sulfates. To enhance the
spectral contrast of the target mineral and mitigate the effects of the atmospheric correction
residuals and instrumental artifacts, researchers usually divide the average spectrum of a
region of interest (ROI) with a neutral spectrum from the same columns [7]. The ratioed
spectrum is then compared with laboratory spectra. Although this method has led to many
notable discoveries e.g., [5,7,8], the spectral index can be ambiguous because an index
may denote broad classes rather than a specific mineral. Moreover, the selection of neutral
spectra is often difficult and sometimes impossible, depending on the specific hyperspectral
image. The hand-crafted nature of this method is time-consuming and inadaptable for
extensive mineralogical surveys [29–31]. Recently, an exploratory mineralogical mapping
method using CRISM spectral indexes was proposed to classify minerals [29]. However,
the classification label often represents a mineralogical class rather than a specific mineral.

Table 1. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral indexes related to phyllosilicates.

Name Meaning Formulation [14] Rationale Caveats

BD1900 1.9 µm H2O band depth 1− 0.5× R1930 + R1985
a×R1850 + b×R2067

H2O

D2200 2.2 µm dropoff 1− R2210/RC2210 + R2230/RC2230
2×R2165/RC2165

Al-OH minerals Chlorite,
Prehnite

D2300 2.3 µm dropoff 1− R2290/RC2290 + R2320/RC2320 + R2330/RC2330
R2120/RC2120 + R2170/RC2170 + R2210/RC2210

Hydroxylated Fe, Mg
silicates strongly > 0 Mg-Carbonate

Spectral Unmixing: Spectral unmixing is also used in martian minerals mapping,
which extracts the spectrally pure constituent materials and their respective fractional
abundances in each mixed pixel. Mixing models can be categorized as either linear or
nonlinear. Both linear [32–34] and nonlinear [9,16] unmixing models have been used to re-
trieve mineral abundances on Mars. In visible and near-infrared wavelengths, the observed
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reflectance of minerals is a nonlinear mixture of endmembers. The Hapke model [27]
is a widely employed nonlinear mixing model for planetary spectral studies. However,
the accuracy of abundance retrieval greatly depends on the selected endmembers. It is
challenging to separate mineralogical information from instrument artifacts in the im-
ages because of the relatively shallow absorption features of surface minerals in orbitally
acquired spectra [30]. Therefore, identifying all endmembers in the scene is nontrivial.

2.2. Sparse Representation for Target Detection

Unlike unmixing, which needs to determine all endmembers in the scene, target
detection focuses on the target of interest, which intends to suppress the undesired back-
ground spectra and highlight the target spectra simultaneously. The characteristic of this
approach is appropriate for identifying a specific spectral signature. Many target detection
algorithms have been proposed over the last couple decades, such as statistical-based meth-
ods [35] and representation theory-based methods [18]. Among them, the STD algorithm
has attracted much attention. The STD exploits the fact that a pixel in an HSI lies in a
low-dimensional subspace and thus can be represented as a sparse linear combination of a
structured dictionary [21]. In this work, the structured dictionary refers to a collection of
target and background spectra. Let y ∈ RL be a spectrum with L bands, Db and Dt are the
background and target dictionaries consisting of Nb and Nt spectra. The spectrum y can
be linearly represented by multiplying the dictionary with a sparse vector as follows

y = (Db
1 xb

1 + . . . + Db
Nb xb

Nb) + (Dt
1xt

1 + . . . + Dt
Nt xt

Nt)

= [Db
1 Db

2 . . . Db
Nb ] [xb

1 xb
2 . . . xb

Nb ]
T
+ [Dt

1 Dt
2 . . . Dt

Nt ] [xt
1 xt

2 . . . xt
Nt
]
T

= Dbxb + Dtxt = Dx

(1)

where xb and xt are vectors whose entries correspond to the coefficients of the columns in
Db and Dt; D ∈ RL×(Nb+Nt) is the union of background and target dictionary; x ∈ R(Nb+Nt)

is a concatenation of xb and xt. The sparse vector x can be derived by solving the follow-
ing equation

x = arg min‖x‖0 s.t. ‖Dx− y‖2 ≤ δ (2)

where ‖x‖0 denotes the `0-norm, which is defined as the number of nonzero entries in
x, σ is the fitting residual due to the noise and modeling errors. The equation in (2) can
be solved by greedy pursuit algorithms. The recovery implicitly leads to a competition
between the background and target subspaces [21]. The final detector is determined by
comparing the reconstruction residuals between Db and Dt.

f (y) = rb − rt (3)

where rb = ‖y− Dbxb‖2, rt = ‖y− Dtxt‖2.

3. Datasets and Methodology

In this section, the laboratory and orbital HSIs are first described. Then, the proposed
target detection method is illustrated in detail. The experimental settings and evaluation
metrics are presented lastly.

3.1. Datasets

3.1.1. Laboratory Data

Samples preparation: Serpentine and MGS-1 powders were mixed by mass fraction
in six proportions, precisely at 0%, 1%, 2.5%, 5%, 10% and 100% serpentine. The grain
size of serpentine is dominated by 125~250 µm. The MGS-1 powders are sieved to <1 mm,
which have a mean grain size of 122 µm [28]. The reason for selecting serpentine as
an endmember is that serpentine serves as a marker for distinctive aqueous chemical
conditions [36]. Its presence implies that localized habitable environments may have
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existed on ancient Mars. MGS-1 is an excellent physical and spectroscopic analog to the
global basaltic martian soil. For the mineral recipe, physical, and chemical properties of
MGS-1, we refer the reader to [28]. As shown in Figure 1a, the samples were separately
filled in six 2.5 × 2.5 × 1 cm, specially painted black trays. The contribution of scattering
from the tray to the sensor is negligible since the overall reflectance of the tray is less than
3% over 0.4–2.6 µm.
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Figure 1. (a) Layout of the mineral samples. The abundance of each sample is indicated by yellow note. “Serp” represents
“serpentine”, “MGS-1” means Mars Global Simulant. The red boxes denote the preserved central pixels; (b) Blow-up of each
preserved segment. (c) Groundtruth of the laboratory data. The pixels with serpentine and its mixtures are defined as 1
(white color). Otherwise, the pixels are defined as 0 (black color).

Data acquisition: The samples were measured at Brown University by a Headwall
Imaging Spectrometer (https://www.headwallphotonics.com/), which is fixed 80 cm
above a translation table that moves across the field of view at a rate synched with the
Headwall frame rate to acquire square pixels. The field of view of the instrument is
illuminated by a quartz halogen lamp. The incidence, emergence, and phase angles are
26◦, 0◦, and 26◦, respectively. There is a fixed Spectralon® target along one end of the
translation table for calibration. The data is processed as follows

R =
DNm − DNd
DNS − DNd

× S (4)

where R is reflectance; DNm, DNs and DNd are the digital number of mineral samples,
Spectralon®, and dark current. The dark current was captured with the lens covered by a
cap, and the illumination lamp turned off. The Spectralon® reflectance S was measured in
the Reflectance Experiment Laboratory (RELAB, Brown University) and resampled to the
wavelengths of Headwall.

Here we used the Headwall shortwave infrared (SWIR) sensor because the diagnostic
absorptions of hydrated minerals are mainly in SWIR. There are 178 bands with a wave-
length range from 1.0 to 2.6 µm. After removing the low SNR bands (bands 1–10 and
171–178), 160 bands were retained. The image scene is 180 × 120 pixels with the spatial res-
olution 0.13 cm/pixel. To avoid the effects of edge and illumination shadows on detection,
we only preserved the central 15 × 15 pixels (red boxes in Figure 1a) of each sample tray.
The preserved segments are blow up and shown in Figure 1b. It is observed the bright-
ness of each segment decreases as serpentine abundance drops. The MGS-1 spectra were
randomly inserted into the rest of the pixels to serve as an analog for the basaltic regolith
on Mars. The groundtruth shown in Figure 1c is derived by a binarization operation on
the laboratory image. The pixels with serpentine and its mixtures are defined as 1 (white
color). Otherwise, the pixels are defined as 0 (black color). As shown in Figure 2a, each

https://www.headwallphotonics.com/
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spectrum is an average of 5 × 5 pixels centering the sample tray. The absorptions at 1.39,
2.12, 2.32 µm are diagnostic of the presence of serpentine. However, it is hard to recognize
2.12 and 2.32 µm absorptions in mixtures since the serpentine abundance is relatively low.
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3.1.2. Orbital Data

Two well-studied CRISM images containing serpentines were exploited to further vali-
date our method. CRISM is an imaging spectrometer onboard the Mars Reconnaissance Or-
biter (MRO) that collects spectral cubes from 0.36 to 3.92 µm sampled at 6.55 nm/channel [3].
The first image FRT0000634B (390 × 640 pixels) locates at Claritas Rise, and the second
image FRT0000ABCB (480 × 640 pixels) locates at Nili Fossae. Their spatial resolutions
are both 18 m/pixel. The incident, emission, and phase angles of each image are archived
in the derived data records. The CRISM data can be accessed through the planetary data
system (https://pds-geosciences.wustl.edu/). The false-color maps of the two images are
shown in Figure 3. The reasons for selecting the two CRISM images are: (1) they display
good serpentine signatures; (2) they are well-studied by experts and their mineralogical
contents are known from the manual analysis. Thus, the qualitative evaluation of our
method is possible. We used the radiance data rather than the TRR3 (calibration level
3) products to avoid the 2.1 µm artifact as described in [37]. The images were processed
to I/F, which is defined as the ratio of radiance at the sensor (I) and a solar irradiance
(J) divided by π (F = J/π) [3]. Images were photometrically corrected by dividing each
spectrum by the cosine of the incidence angle. Then the atmospheric gas absorptions
were empirically corrected by a modified “Volcano Scan” method [38]. Vertical stripes
and spectral spikes in the image were removed. All the above operations were performed
by CRISM Analysis Toolkit (CAT 7.3.1). Considering the CRISM detector boundary and
surface thermal emission at long wavelengths [39], we used the wavelength between 1 µm
and 2.6 µm.

3.2. Methodology

In this work, a new mineral detection method that joins the Hapke model and SASTD
with IBP is proposed. The reflectance of each pixel was first converted to SSA using the
Hapke model, after which the SASTD with IBP is applied to the SSA data. An illustration
of the proposed HSASTD-IBP framework is displayed in Figure 4. The three steps consist
of the following:

• Single-scattering albedo retrieval. The multiple scattering among mineral particles
introduces nonlinearities in reflectance. The SSA is linearly additive in visible and
near-infrared wavelengths [27]. The purpose of this step is to convert the reflectance
to SSA. Consequently, the linear target detection method can be implemented on
SSA data;

https://pds-geosciences.wustl.edu/
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• Background and target dictionaries construction. The target dictionary Dt is con-
structed using a priori knowledge of target spectra, while the background dictionary
Db is generated locally through a dual window. However, target pixels may fall into
Db due to improper window size settings relative to mineral distribution size or the
sliding window process. We propose an iterative background purification method to
remove the potential target pixels in Db.

• Spectral reconstruction and target detection. A spatially adaptive sparse representa-
tion for target detection (SASTD) is adopted in this work, which incorporates spatial
information into target detection. The final detection is in favor of the class that has
the lowest reconstruction error.
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3.2.1. Single-Scattering Albedo Retrieval

SSA is the ratio of scattering efficiency to total extinction (scattering and absorption)
efficiency. The Hapke bidirectional reflectance distribution function enables us to convert
the reflectance to the SSA. The function is described as follows [26]

r(i, e, g) =
ω

4
µ0

(µ0 + µ)
[(1 + B(g))P(g) + H(µ0)H(µ)− 1] (5)

where r(i,e,g) is the radiance factor; i, e, and g are incidence, emergence, and phase angles,
respectively; µ0 and µ are the cosines of the incidence angle and emergence angle; ω is
the average single-particle scattering albedo; B(g) is the backscattering function describing
the opposition effect which is strong at a near-zero phase angle; P(g) is the surface phase
function describing how reflected energy changes with the viewing direction; and H is the
Chandrasekhar integral function associated with the observation geometry. The H function
is approximated by [26]

H(µ) =
1 + 2µ

1 + 2µγ
, γ =

√
1−ω (6)

We set P(g) = 1 with the assumption that particles scatter isotropically [40]. The
opposition effect can be omitted when the phase angle is greater than 15◦ [40]. We assumed
B(g) = 0 because the phase angles of the data used in this study are greater than 15◦. Using
Equations (5) and (6), we calculated reflectance at every SSA value from zero to one at a
step size of 0.0001 [39]. Then a lookup table approach is used to retrieve the SSA from the
observed HSI.

3.2.2. Iterative Background Dictionary Purification

The background dictionary Db is generated locally for each pixel through a dual
concentric window [21]. The dual-window is widely used to construct the background
dictionary in representation theory-based methods [41]. As shown in Figure 5a, the yellow
square denotes the pixel under test, whereas the red object represents targets. The local
region of each test pixel is split into two parts: a small inner window region (IWR), which
is centered within a broader outer window region (OWR). The IWR serves as a guard
window to avoid the target signals leakage while the OWR is employed to model the local
background characterization. Pixels in the annulus (the light gray region in Figure 2) are
selected as background dictionary. In practice, there are three possible scenarios for the
background dictionary: (1) as shown in Figure 5a, the ideal case is that the inner window
is larger than the targets and no target pixels exist in the outer region. (2) In Figure 5b,
although the inner window is larger than the size of targets, some targets fall into the
annulus during the sliding process. (3) As shown in Figure 5c, the inner window is smaller
than the targets. Thus, the targets impinge into the outer window. The last two cases
generate an impure background dictionary, which consists of both background and target
pixels. The target interference issue leads to inferior detection performance [25].
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inner window encloses the targets, and no targets exist in the outer window; (b) The inner window encloses the targets, but
targets fall into the outer window; (c) The targets impinge into the outer window.
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To obtain a relatively pure background Db, we used the spectral angle technique [42]
to remove doubtful target pixels in the dual window. The spectral angle distance (SAD)
between

{
Db

i
}

i=1,2,...,Nb
and

{
Dt

j

}
j=1,2,...,Nt

is defined by [42]

SAD(i, j) = cos−1(
dot(Db

i , Dt
j )

‖Db
i ‖2 × ‖D

t
j ‖2

) (7)

where dot( , ) denotes the inner product of two vectors; cos−1 implements the inverse cosine
operation. The smaller the spectral angle, the more similar the background signature to
the target pixel. The background spectrum with a spectral angle smaller than a specified
threshold is removed. If the number of remaining background pixels is less than a given
number (we set the value as Nt since the number of target pixels in Dt is two orders of
magnitude less than that of Db), we enlarge the window size of IWR and OWR at a step
size of 2 lines/columns. Then the dictionary purification is performed iteratively until
the number of remaining background spectra is greater than Nt. With the IBP process,
we mitigate the target interference and have flexible window size settings.

3.2.3. Spectral Reconstruction and Target Detection

In STD, the test pixel is treated individually regardless of the correlation between
neighboring pixels [21]. However, the neighboring pixels often contain similar materials
in real world. To incorporate the spatial pattern into target detection, we pay attention
to the non-local spatial information [23]. Specifically, the spectral difference between the
central pixel and its neighbors is used to determine the weight for each neighboring pixel.
Assuming Y = [y1, y2, . . . ym] is a matrix whose columns are pixels in a small neighborhood
Nm, The weight function is defined as

w = ϕ(d(i, j)) (8)

where d( , ) is used to compare the spectral distance between two spatial patches

d(i, j) =
1
L

L

∑
k=1

(‖P(i)k − P(j)k‖2) (9)

where pixels i and j belong to Nm; P(i) and P(j) are matrixes whose columns are pixels
surrounding i and j, respectively. The patch size is set as 7 × 7 as suggested in [23]; ϕ( ) is
employed to convert the distance to weight, which is defined as

w = ϕ(d(i, j)) = (1− (
d(i, j)

t
)

2

)

2

(10)

where t is used to control the decay of weight. We set t as the maximum spectral patch
distance within Nm so as to normalize the weight within the range [0,1]. This formula
guarantees that the greater the distance, the lower the assigned weight will be.

Once the weights are obtained, the method is formulated as follows

YW = D[x1, x2, · · · xm] = DX (11)

where W = diag(w1, w2, . . . wm) is a diagonal weighting matrix; D is the union of background
and target dictionary; X is a sparse coefficient matrix with a few nonzero rows, which can
be recovered by solving the following problem

min‖YW − DX‖F s.t. ‖X‖row,0 ≤ K (12)

where ‖X‖row,0 denotes the number of nonzero rows of X; K is the sparsity level. We
used the simultaneous orthogonal matching pursuit (SOMP) algorithm [20] to solve the
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problem (12). The label of the test pixel is in favor of which class has the minimum
reconstruction error

f (y) = ‖YW − DbXb‖2 − ‖YW − DtXt‖2 (13)

where Xb and Xt are the rows of the recovery matrix X corresponding to Db and Dt, respectively.

3.3. Experimental Settings and Evaluation Metrics

For laboratory HSI, the proposed method is compared with the following detection
algorithms: (1) constrained energy minimization (CEM) [35]; (2) matched filter (MF) [43];
(3) hierarchical CEM (hCEM) [44]; (4) STD [21]; (5) SASTD [23]. All the experiments are
implemented using MATLAB 2017a on a desktop with 3.4-GHz CPU and 16-GB Memory.
The detection performance is evaluated by two quantitative metrics: the Receiver Operating
Characteristic (ROC) curve and Area Under ROC Curve (AUC) value. The ROC curve
illustrates the relationship between the detection probability Pd and the false alarm rate Pf
at a series of thresholds. The area under the ROC curve is called AUC value. Pd and Pf are
defined by [44]

Pd =
Ndetected

NT
, Pf =

Nmis

Nall
(14)

where Ndetected is the number of detected target pixels at a certain threshold; NT denotes
the number of total target pixels in the image; Nmis represents the number of background
pixels mistaken as targets; Nall is the number of total pixels in the image.

We set the IWR as 15 × 15, which is the same as the sample size. The OWR was set as
21 × 21. Three pixels from the 100% serpentine tray were randomly chosen as the target
spectra, thus Nt = 3. For all algorithms, we used the same target spectra as input. For CEM
and hCEM, the mean of the three selected target pixels is used as the target signature. The
optimal parameters of the sparsity level for STD were set according to the corresponding
AUC values. For the proposed algorithm, the threshold of SAD (θ) between the spectrum in
the target dictionary and the spectrum in the background dictionary is set as 1◦, the sparsity
level K is set as 10, the neighbor size is set as 5 × 5. The detailed parameter analysis of our
method is given in Section 4.1.2.

For CRISM data, we used a set of conservative parameter values according to the parame-
ters analyzed in Section 4.1.2. The size of the neighborhood, IWR, and OWR are set as 3 × 3,
23 × 23 and 31 × 31, respectively. The threshold of SAD is set as 2◦. The sparsity level is set as
20. We randomly select three serpentine pixels in each image according to the identification
results by [37]. The selected target spectra are exhibited in Figure 3c,d, respectively.

4. Experimental Results

In this section, the superiority of the proposed method was first evaluated on a
laboratory HSI. We compared HSASTD-IBP with several traditional and state-of-the-art
target detection algorithms. The performance was assessed by three aspects, including
detection map, ROC curve, and AUC value. Due to parameter settings that could affect
the detection result, we further investigated the effects of parameter settings. Then the
proposed algorithm was applied to two well-studied CRISM data sets.

4.1. Experiments with Laboratory Data

4.1.1. Detection Performance

The two-dimensional detection maps of all methods on reflectance and SSA data are
displayed in Figure 6a,b, respectively. The first row in each panel is the false-color image
(R: 2.32 µm, G: 2.12 µm, B: 1.39 um), displaying the variations of samples’ surfaces. The
subsequent rows are detection maps derived from different target detection methods. The
serpentine abundance decreases from left to right. For a fair comparison, the detection
values are normalized to [0, 1] for the output of each method. The reddish color represents
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that the pixel is more likely to be a serpentine, while the blueish color indicates that the
pixel belongs to MGS-1.
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Figure 6. Detection results of the laboratory reflectance data (a) and SSA data (b). The detection maps
derived from one target detection method are arranged in a row. The serpentine abundance decreases
from left to right. The reddish color represents that the pixel is more likely to be a serpentine, while
the blueish color indicates that the pixel belongs to MGS-1.
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As shown in Figure 6a, CEM and MF detect parts of pure serpentine and serpentine
mixtures, while hCEM mainly identifies pixels in the 100% serpentine. The 100% serpentine
pixels in the hCEM map are more distinguishable than those in CEM and MF maps. The
reason is that hCEM relies on a hierarchical layer-by-layer filtering procedure. Thus, weak
targets might be suppressed. All the sparse representation-based detection algorithms
detect 100% and 10% serpentine. However, STD and SASTD only detect parts of 100%
serpentine pixels. That is because the target interference degrades the discrimination ability.
As shown in Figure 6b, the detection performances are boosted on SSA data. The detection
values of 100% serpentine pixels in CEM and MF are higher than those in Figure 6a. The
proposed approach gets high detection values for the 100% and 10% serpentine pixels as
well as STD, SASTD. Additionally, our method detects almost all 5% and 2.5% serpentine
mixtures when compared with the SASTD detection maps, demonstrating that dictionary
purification mitigates the target interference efficiently. Overall, the SSA versions of these
detection algorithms outperform their reflectance versions. However, the 1% serpentine
mixture is below the detection limit of our method. That is because the 1% serpentine
spectral features are highly similar to the pure MGS-1.

The statistics of detection values for different algorithms were illustrated in Figure 7.
On each box, the central black line indicates the median. The bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The outlier is plotted individually
using the solid circle. For each panel, the detection values decline from left to right as the
serpentine abundance decreases from 100% to 0%. The first two rows (Figure 7a–f) show
the boxplots of each detector on the original reflectance data. As shown in Figure 7a,b,
CEM and MF cannot effectively discriminate the various serpentine mixtures since the
median of each box overlaps. As for the last four detectors (Figure 7c–f), the detection value
of 100% serpentine is significantly greater than the low abundance mixtures. For hCEM,
the signals of mixtures are strongly suppressed, thus, their boxes are extremely flat. For the
representation theory-based detectors, although the median of low abundance serpentine
mixtures is slightly above that of MGS-1, it is still difficult to discriminate them. The last
two rows (Figure 7g–l) show the boxplots of each detector on the single-scattering albedo
data. Generally, the same trends can be found for the first three statistic-based detectors. As
shown in Figure 7g–i, the detection values of the 1% serpentine and MGS-1 boxes overlap
with those of the other mixtures’ boxes. Thus, it is hard to completely separate these
different serpentine mixtures apart by a threshold. For the representation theory-based
detectors, the 2.5%, 5%, and 10% serpentine boxes are elevated when compared with their
reflectance counterparts. The detection value gaps among different serpentine samples are
clear in Figure 7l. The medians of mixtures (abundance > 2.5%) are significantly different
from those of 1% and 0% mixtures. More explicitly, the serpentine detection limit of our
algorithm is 2.5%.
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Conventionally, a better TD algorithm gets higher Pd at the same Pf. As shown in
Figure 8a, for the laboratory reflectance data, the ROC curves of sparse representation-
based detection algorithms are above those of traditional detectors CEM, hCEM, and MF.
Moreover, the ROC curve of SASTD-IBP encloses those of the other detectors, demon-
strating that dictionary purification process improves the detection accuracy. A similar
phenomenon is found in Figure 8b. For the SSA data, the ROC curve of the proposed
method broadly encloses those of other detectors, especially when Pf ranges from 0.005
to 1. It is also observed that the ROC curve of each detection algorithm for the reflectance
data is below that of its SSA version, which makes clear that SSA domain is more suitable
for mineral detection.
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The AUC values and computation times for the different detectors are shown in
Table 2. The best results are emphasized in bold. In reflectance data, the AUC value ob-
tained by SASTD is improved from 0.7469 to 0.7799 by purifying the background dictionary.
In SSA data, the HSASTD-IBP achieves the best AUC value of 0.8965. The relative increment
of each method on the SSA dataset ( AUCSSA−AUCreflec tan ce

AUCreflec tan ce
) is 16.39%, 6.93%, 2.56%, 7.65%,

8.73%, and 14.95%, respectively. In terms of computation time, the traditional method (e.g.,
CEM, MF, hCEM) takes about 1 s to run the algorithm. For the sparse representation-based
method, it takes more than 100 s, which is two orders of magnitude of running time for the
statistic-based method. However, this computation burden is acceptable considering its
superior performance.

Table 2. AUC values and running time (seconds) for the different detection algorithms. The best
results are emphasized in bold.

Algorithm

Dataset Reflectance SSA

AUC Time AUC Time

CEM 0.5090 0.19 0.5924 0.20
MF 0.5584 0.32 0.5971 0.41

hCEM 0.5848 1.86 0.5998 1.93
STD 0.7455 130.78 0.8025 139.27

SASTD 0.7469 161.62 0.8121 160.28
SASTD-IBP 0.7799 179.34 0.8965 181.79

4.1.2. Parameter Analysis

The laboratory SSA data is used to investigate the effects of various parameters on
detection performance. There are four parameters in HSASTD-IBP, namely the neighbor-
hood size centering at the test pixel, the dual window sizes, the SAD threshold θ, and the
sparsity level K. Each time we focus on one specific parameter and keep the others fixed.
For the neighborhood size, we use a 1 × 1, 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, and 13 × 13
window neighborhoods. The size of the IWR is fixed as above mentioned 15, and the range
of the OWR size is set to [21, 23, 25, 27, 29, 31, 33, 35, 37]. The range of θ is set as [0, 0.1,
0.5, 1, 2, 3, 5, 10, 15] degree, and the range of K is set to [5, 10, 15, 20, 25, 30, 35, 40, 45, 50].
Detection performance is evaluated by the AUC value.

We first analyzed the performance of the HSASTD-IBP under the varying size of the
neighborhood. As shown in Figure 9a, the AUC value improves rapidly from 1 to 3, which
proves that spatial correlation boosts detection accuracy. However, a broader neighborhood
may contain pixels different from the central pixel. Thus, the AUC value tends to generally
decreases. The effect of outer window size on serpentine detection was further evaluated.
As shown in Figure 9b, the AUC value increases at first and then slightly fluctuates as
the increment of OWR. Figure 9c exhibits the sensitiveness of the performance on θ. The
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AUC value climbs as the increase of threshold and reaches a peak of 0.8877 at θ = 2◦. The
improvement benefits from those potential target pixels in the background dictionary are
removed. Then a sudden decline is observed when θ exceeds 2◦. Finally, we illustrate how
the detection results are affected by the sparsity level K in Figure 9d. The sparsity level K
refers to the number of nonzero rows in X. The AUC value gradually rises as the increase
of K and achieves the maximum value 0.8959 at K = 40, then rapidly decreases.
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4.2. Application on CRISM Data

Due to no groundtruth for the two images, a false-color map indicating the spatial dis-
tribution of minerals is created by assigning RGB values to the intensities of phyllosilicates
related indexes. The meaning and formula of each index are illustrated in Table 1. Image
stretching is performed on each index individually (lower bound: 0.005, upper bound:
99.9% of the cumulative histogram). The purpose of stretching is to ensure positive values
of absorption depth while omitting outliers. As shown in Figure 10a,c, red/magenta colors
indicate the presence of Fe/Mg smectites, while green/cyan colors indicate the presence of
Al/Si-OH bearing minerals. The final detection maps were also stretched and shown in
Figure 10b,d. The serpentine detection results are consistent with the spatial distribution of
red/magenta colors in the index maps. In addition, the ratioed spectra of high detection
value regions are used for spectral validation. As shown in Figure 10e, the orange spectra
are extracted from FRT0000634B while the green spectra are acquired from FRT0000ABCB.
Each curve is the ratio of an average of 5 × 5 spectra of the central pixel to the average of
neutral pixels in the same columns. The low signal to noise of orbital data often obscures
the narrow absorption, thus, the weak 1.39 µm absorption in ratioed spectra is shallow
or absent. Nonetheless, these ratioed spectra have the same absorption features at 2.12,
2.32, 2.5 µm as the laboratory serpentine spectrum LALZ01 (http://speclib.rsl.wustl.edu/),
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which further corroborates our detection results. It is worth noting that the spectral in-
dex does not represent a specific mineral distribution. Thus, a quantitative comparison
is infeasible.
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5. Discussion

In this section, the detection limit of serpentine abundance is first assessed, which
helps to answer the question of how much confidence we have about our detection result.
After that, the impact of prior information (target spectra) on detection performance
is discussed.

Detection limit: To explore the minimum detectable abundance of serpentine, we
analyze the performance of the proposed method on each sample tray. Figure 11a exhibits
the ROC curves of each serpentine tray. The detection probabilities (Pd) is a function of
serpentine abundance. As the serpentine abundance decreases, the detection performance
declines. For example, as shown in Figure 11a, when Pf = 0.05, Pd for the 5 trays are 100%,
80.99%, 74.38%, 69.70%, and 3.31%, respectively. As displayed in Figure 11b, the AUC
value for each tray gradually drops as the serpentine abundance decreases. An abrupt
decay is observed for the 1% serpentine tray. The trend is expected since the lower the
abundance of serpentine the less spectral similarity to the target. The stripe noise and
powder inhomogeneous within 5% serpentine impair the performance. Thus, the AUC
value of 5% serpentine is smaller than that of 2.5% serpentine. It should be noted that the
detection limit is based on the laboratory binary mixture data. In practice, the martian
surface is more complicated. Moreover, the pervasive martian dust potentially masks the
mineralogical signatures, which further hinders the mineral detection.
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Figure 11. (a) ROC curves of the proposed method on each serpentine tray; (b) AUC values of the proposed method on
each serpentine tray.

Impact of prior information: Due to intrinsic (e.g., grain size) and extrinsic (e.g.,
imaging condition) factors, targets could show spectral variability. The effect of the selected
target spectra on detection is evaluated here. The number of target spectra Nt is set from
1 to 30. Each time we randomly select Nt pixels from 100% serpentine tray as input and
repeated 20 times. The mean (red square) and standard deviation (blue bar) of AUC values
are shown in Figure 12. The AUC value slightly increases at first and then tends to saturate.
The variation at each point shows the detection uncertainty because of spectral variability.
Figure 12 shows that the proposed method achieves a satisfactory performance with a
small number of target spectra.
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For practical applications, there are two solutions to acquire prior target information.
One approach is to extract the in-scene target signatures by endmember extraction. This
approach has been proved beneficial to detection performance [45]. However, endmember
extraction algorithms tend not to work well when there are few targets in the image. An
alternative approach is to explore the available spectral library. For example, the target
mineral’s reflectance and band depth tend to vary as the grain size changes. The spectral
library usually has multiple target spectra, which sufficiently represents the spectral vari-
ability. This approach sidesteps extracting target spectra from the image, which promotes
the application to large volume of data. Although there are discrepancies between spectral
library and image due to imaging conditions, calibration procedures, and spatial resolu-
tions, it is still promising to employ a spectral library to construct a target dictionary if
these mismatches are well addressed.

6. Conclusions

In this study, a new mineral detection method was proposed by joining the Hapke
radiative transfer model and SASTD with iterative background purification. Laboratory
mineral mixtures and two well-studied CRISM images with serpentine were used to
validate our method. Several interesting conclusions can be drawn: (1) The proposed
method achieves the best detection performance in both reflectance and SSA data. (2) Our
method is able to detect low abundance serpentine (above 2.5%) in the laboratory binary
mixtures. The 1% serpentine is below the detection limit since the signal is too weak.
(3) The detection performance is boosted by purifying the background dictionary. The IBP
strategy proposed in this work can be implanted into other representation theory-based
detection methods. (4) The SSA versions of these detectors are superior to their reflectance
versions, demonstrating that SSA has excellent potential for discriminating target minerals
from background minerals.

Overall, the proposed method enables the search for subpixel-level, less exposed,
but scientifically valuable deposits. The laboratory imaging offers a critical link in scale
between field measurements and orbital observations. Acquiring new HSIs containing
other hydrated minerals (e.g., nontronite, selenite, calcite, kaolinite) and MGS-1 mixtures
to tailor the proposed method will be the focus of our future research. Additionally, we
also plan to study the effect of grain size on detection result in the future.
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Appendix A

Table A1. Glossary of all the acronyms and their descriptions.

Abbreviation Description

AUC Area Under ROC Curve
CAT CRISM Analysis Toolkit
CEM Constrained Energy Minimization

CRISM Compact Reconnaissance Imaging Spectrometer for Mars
hCEM Hierarchical Constrained Energy Minimization

HSI Hyperspectral Image
IBP Iterative Background Dictionary Purification
IWR Inner Window Region
MF Matched Filter

MGS-1 Mars Global Simulant
MRO Mars Reconnaissance Orbiter
OWR Outer Window Region

RELAB Reflectance Experiment Laboratory
ROC curve Receiver Operating Characteristic Curve

ROI Region of Interest
SAD Spectral Angle Distance
SAM Spectral Angle Mapper

SASTD Spatially Adaptive Sparse Representation for Target Detection
Serp Serpentine

HSASTD-IBP Joint the Hapke model and SASTD with IBP
SSA Single-Scattering Albedo
STD Sparse Representation for Target Detection

SWIR Shortwave Infrared
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