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Abstract: With the development of spaceborne global navigation satellite system-reflectometry
(GNSS-R), it can be used for terrestrial applications as a promising remote sensing tool, such as soil
moisture (SM) retrieval. The reflected L-band GNSS signal from the land surface can simultaneously
generate coherent and incoherent scattering, depending on surface roughness. However, the con-
tribution of the incoherent component was directly ignored in previous GNSS-R land soil moisture
content retrieval due to the hypothesis of its relatively small proportion. In this paper, a detection
method is proposed to distinguish the coherence of land GNSS-R delay-Doppler map (DDM) from
the cyclone global navigation satellite system (CYGNSS) mission in terms of DDM power-spreading
features, which are characterized by different classification estimators. The results show that the
trailing edge slope of normalized integrated time-delay waveform presents a better performance
to recognize coherent and incoherent dominated observations, indicating that 89.6% of CYGNSS
land observations are dominated by the coherent component. Furthermore, the impact of the land
GNSS-Reflected DDM coherence on soil moisture retrieval is evaluated from 19-month CYGNSS data.
The experiment results show that the influence of incoherent component and incoherent observations
is marginal for CYGNSS soil moisture retrieval, and the RMSE of GNSS-R derived soil moisture
reaches 0.04 cm3/cm3.

Keywords: GNSS reflectometry (GNSS-R); cyclone global navigation satellite system mission (CYGNSS);
coherent scattering; soil moisture

1. Introduction

Soil moisture (SM) is an essential parameter for the hydrology and energy cycle. Rapid
acquiring and accurate monitoring of terrestrial SM is not only required in the hydrological
research but also a significant benefit to water management and agricultural production.
Since the L-band microwave has a strong sensitivity to the change of surface SM and can
more easily penetrate the atmosphere and vegetation canopy, it has been widely used as
the main soil moisture remote sensing frequency band in the satellite-based radiometer and
radar missions [1]. Such as the European Space Agency’s (ESA) Soil Moisture and Ocean
Salinity (SMOS) mission and the National Aeronautics and Space Administration’s (NASA)
Soil Moisture Active Passive (SMAP) mission, both can provide global SM measurement
with the spatial resolution on the order of 40 km and coverage every 2–3 days using carried
L-band radiometer. Spaceborne global navigation satellite system-reflectometry (GNSS-
R) is an innovative and sustainable low-cost technique with high spatial and temporal
resolution [2], which operates as a passive bistatic forward scattering radar. The observe
system directly receives the pre-existing signals transmitted by the GNSS satellites reflected
off the Earth’s surface [3], and the received scattering signals are typically expressed in a
delay-Doppler map (DDM) for Earth’s surface geophysical parameters retrieval [4], which
provide a new paradigm in the land remote sensing to cover the space-time gap of the
traditional high-cost dedicated monostatic active or passive satellite missions.
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In the past decade, spaceborne GNSS-R has undergone rapid development with suc-
cessfully deployed satellite missions, such as the UK Technology Demonstration Satellite-1
(TDS-1, launched in July 2014), NASA’s cyclone global navigation satellite system (CYGNSS,
launched in December 2016), China’s Bufeng-1 A/B mission (launched in June 2019) [5].
Although all missions were originally designed for ocean surface wind speed retrieval,
they also provided a large number of land observations for terrestrial remote sensing
applications, such as soil moisture retrieval, forest biomass estimation, and wetland ex-
tent detection [6]. However, there are many differences between GNSS-R land and ocean
applications [7]. Before using GNSS-R for geophysical parameters retrieval, the key issue
is to determine the scattering mechanisms of observed DDM. Over the sea surface, the
surface height standard deviation is at least a significant fraction of the signal wavelength
under windy conditions and increases with the wind speed [8,9], so the L-band GNSS
signal echoes from the ocean are purely incoherent, which can be well explained by the
Z-V model [10]. Compared to the ocean surface, the L-band signal scattering from the land
surface is more complicated, and the GNSS signal returns are affected by many factors,
such as soil moisture, vegetation, surface roughness, inland water, topographic relief, and
soil texture. The DDM generated after noncoherent integration loses phase information,
and the land surface small-scale roughness is variant in space and time, which is extremely
difficult to be determined. As a result, it is hard to distinguish the coherence of land
reflected DDM, which affects its subsequent land applications.

In previous GNSS-R land applications, it has been generally assumed that the coherent
component dominates the land scattering field, and the incoherent component is negligible.
The coherence defined here refers to reflected signals from the first Fresnel zone arriving
at the GNSS-R receiver with similar phase shifts [9]. Many studies have proved that
coherent DDM derived reflectivity is sensitive to the change of soil moisture and forest
biomass [11–15]. However, due to the sensitivity of coherent and incoherent observation
on the land geophysical parameters is different, it is important to distinguish the coherence
of observations for quantified parameter retrieval. Theoretical simulations have revealed
that the roughness of the land surface was close to 5 cm, where only incoherent scattering
will occur [9]. Meanwhile, the effect of topography is independent of surface roughness,
and the topographic relief can mitigate the reflectivity [16]. Different DDM observables
have been used for GNSS-R sea ice detection based on the difference of coherent reflected
signal from the sea ice surface and diffuse scattering from the sea surface [17,18]. However,
it is relatively difficult to verify the coherence of current ground CYGNSS data. The
coherence of a single complex DDM look can be robustly distinguished based on the
differences of coherent and noncoherent integration from the “raw IF” signal [19] because
the correlated power of a perfectly coherent signal will increase over the given period
from longer integration lengths, while the incoherent will not. Unfortunately, the CYGNSS
mission only recorded very few I/F signals limited by its storage capability. Nevertheless,
with the help of these I/F signals from the land surface, different estimators have been
characterized in the studies for DDM coherence detection [7,20], and the results show that
the purely coherent reflection only occurs over the inland water surface in spaceborne
GNSS-R observation. The problem is that the differences in estimator performance can lead
to different results, and the I/F signal dataset used is too small, lacking sufficient persuasive
power. Based on the different assumptions, several SM inversion methods have also been
developed, such as spatial averaging, combine linear regression method, machine-learning
method, and the global inversion accuracy of SM can reach about 0.05 cm3/cm3 [21–30].

In this paper, a statistical method is developed to detect the coherence of CYGNSS
level-1 DDM from the land. We assume that the delay-Doppler-spreading features of
incoherent DDM from the ocean and land scattering are similar, which all present a
typical “horseshoe” shape, only the magnitude of the absolute scattering power differs.
The defined estimators are used to determine the flag of coherence in terms of known
incoherent DDM from the windy ocean surface, and the inversion accuracy of GNSS-R
derived soil moisture with high confidence coherent DDM is evaluated and validated.
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The paper is organized as follows, Section 2 introduces the scattering theory over the sea
surface and smooth soil surface and the definition of the coherent classification estimators
based on the difference of typical coherent and incoherent dominated DDM. Section 3
shows the classification performance of different estimators, the distribution characteristics
of coherent and incoherent observation over the land surface, and presents soil moisture
retrieval results. Section 4 discusses the impact of coherent and incoherent DDM on SM
remote sensing applications. Finally, conclusions are summarized in Section 5.

2. Methods and Datasets

If the land surface is relatively flat and smooth, the roughness of the scattering re-
gion is lower than the scale of the wavelength of the incoming GNSS signal; then the
scattering mechanism is different from the diffuse scattering general occurring over the
ocean surface. The land-coherent scattering only comes from the first Fresnel zone around
the specular point instead of the whole glistening zone. The image theory and Friis
transmission equation are used to explain this coherent forward scattering process, and
the geophysical characteristics of the reflection surface are indicated by reflectivity [31].
As the surface roughness increases, the contribution of the incoherent component dra-
matically increases [32]; when the surface roughness approaches the signal wavelength
scale, the conditions on the sea surface will recur. Next, we first introduce the scattering
model, then present our coherence detection estimators, dataset, and GNSS-R soil moisture
retrieval algorithm.

2.1. Bistatic Forward Scattering

The DDM is the function of signal time-delay and Doppler frequency shift from
the surface specular point, which implies the mapping relationship of scattering power
between space and delay-Doppler domain. When the L-band signal impinges on the rough
sea surface, incoherent scattering occurs in most cases and scattering power can be well
signified by the Z-V model [6]:

P(τ̂, f̂D) =
T2

I PTλ2

(4π)3

x

A

GTσ0GR

R2
RR2

T
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2
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∣∣∣∣∣
2
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where P(τ̂, f̂D) is the complex, diffuse scattering power, PT is the right-hand circular
polarized (RHCP) transmitted power of the GNSS satellite, GT is the transmitter antenna
gain, GR is the GNSS-R receiver antenna gain, RR is the distance from the receiver to the
scatter point over the ocean surface, RT is the distance from the transmitter to the scatter
point, λ is the wavelength of the GNSS carrier, TI is the coherent integration time, σ0 is
normalized bistatic radar cross-section, Λ(τ̂ − τ) is the correlation function of the GNSS
navigation code, τ̂ and τ are the local replica code in the receiver and received signal time
delays, respectively, sinc( f̂D − fD) is the attenuation due to Doppler misalignment, f̂D and
fD are the local replica code in the receiver and received signal Doppler frequency shift,
respectively. The product of the correlation function and the sinc function is called the
Woodward ambiguity function (WAF) of the GNSS PRN navigation code. A indicate the
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glistening zone, dA is the differential area within the glistening zone. The σ0 can be further
expressed as:

σ0 =
π|<LR(θ)|2

→
q

4

q4
z

P

(
−
→
q⊥
qz

)
(5)

where <LR is the Fresnel reflection coefficient of scattered left-hand circular polarized
(LHCP) signal over the sea surface,

→
q is the scattering unit vector,

→
q⊥ and qz are horizontal

and vertical components, respectively, and P is the probability density function of the sea
surface slope. The coherent integration time commonly sets 1ms on the delay Doppler
mapping instrument to generate a single DDM look. Due to the diffuse scattering signals
over sea surface being relatively weak, to improve the signal-to-noise ratio (SNR) of DDM
and reduce the effect of speckle and thermal noise within a coherent integration of a DDM
look, there is an extra noncoherent integrated step that takes 1 s, during which the received
signal will lose the phase information. Normalized bistatic radar cross-section (NBRCS)
has been used as the land surface remote sensing fundamental observable in the backward
scatterometer for a very long time, which is also reasonable to be employed in GNSS-R
with specific calibration.

Theoretically, real land scattering power consists of coherent and incoherent compo-
nents. After noncoherent integration, the DDM can be expressed as:〈∣∣∣P(τ̂, f̂D)

∣∣∣2〉 =

〈∣∣∣Pcoh(τ̂, f̂D)
∣∣∣2〉+

〈∣∣∣Pincoh(τ̂, f̂D)
∣∣∣2〉 (6)

where
〈∣∣∣Pcoh(τ̂, f̂D)

∣∣∣2〉 and
〈∣∣∣Pincoh(τ̂, f̂D)

∣∣∣2〉 are coherent and incoherent contributions,

respectively. Previous studies focus on land SM retrieval directly assumed that the inco-
herent item is negligible on Earth’s land surface; the received scattering power mainly
concentrates from the adjacent region around specular point. According to the image
theory and Friis transmission equation, the coherent scattering power coming from the
first Fresnel zone can be expressed:

Pcoh =
PTGTλ2GR

(4π)2(RR + RT)
2 Γ(θ)γ2 exp(−(2kσ cos(θ))2) (7)

where Γ is reflectivity, it is the function of the Fresnel reflection coefficient < (Γ(θ) =

|<LR(θ)|2). γ is the transmissivity which indicates the vegetation layer attenuation, it is the
function of vegetation opacity depth (VOD) τ( γ= exp(−τ sec θ)). The exponential term
represents signal attenuation caused by surface roughness. k is the wavenumber, and σ
represents the standard deviation of surface height. The size of the first Fresnel zone is
related to the height of the receiver platform and signal incidence angle. For the CYGNSS
mission, the diameter of the first Fresnel zone is about 0.5 km. Considering this small area
compared to the spatial resolution of CYGNSS DDM pixels, it is reasonable to directly pick
the peak power value in the DDM to calculate reflectivity. According to Equation (7), the
surface reflectivity can be derived as follows:

Γ(θ) =
(4π)2Ppeak(RR + RT)

2

λ2PTGTGR
(8)

where Ppeak is the coherent power with surface roughness and vegetation attenuation
correction. Since the velocity of CYGNSS satellites along the track is 7 km/s, the spatial
resolution corresponding to the peak power measurement is about 0.5 km × 7 km. After
June 2019, the sampling frequency of the CYGNSS mission has increased to 0.5 Hz, which
allows the spatial resolution along the direction of satellite movement to reach 3.5 km.

When the roughness of the land surface is comparable to the scale of GNSS carrier
wavelength, incoherent scattering will occur over the land surface. Since there is no
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reliable high spatial-temporal surface roughness information, it is difficult to determine
the coherence of a DDM. The aforementioned assumption indeed ignores two issues for
GNSS-R SM inversion. On one hand, if we directly consider that the main contribution
of scattering power comes from the coherent component, which implies the influence of
the incoherent components in DDM is ignored. On the other hand, when the GNSS-R
observation footprint passes through the land surface with large roughness, the purely
incoherent signal will be received, the influence of incoherent observations on the SM
inversion is ignored as well. There is a big difference between the sensitivity of coherent
and incoherent DDM observables to the SM level [9], so it is important to evaluate the
influence of the previous assumption. Due to the different scattering mechanisms that
happen behind the coherent and incoherent observations, the shape and magnitude of the
measured scattering power in the DDM are different. The coherent DDM resembles the
WAF itself without delay-doppler spreading [33]. Figure 1a shows a typical land reflected
DDM over the winter wheat field. As a comparison, Figure 1b presents the DDM observed
over the ocean surface with the 6.6 m/s wind speed near the specular point. The received
diffuse scattering signals come from the entire glistening zone with the WAF spreading in
the direction of delay and Doppler axis; DDM exhibits the typical “horseshoe” shape.
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Figure 1. Typical scattering-power delay-Doppler map (DDM) and delay waveforms over the land
surface (a,c) and ocean surface (b,d).

The time-delay waveform (DW) is the 1D representation of DDM; it is also a funda-
mental observable in the GNSS-R study, which usually includes two types: central Doppler
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time-delay waveform (CDW) and integrated time-delay waveform (IDW). The CDW is
the zero Doppler delay scattering power in the DDM. The IDW is obtained by summing
the columns along the Doppler axis of DDM. In our classification method, we also define
the deviation of time-delay waveforms (DDW) calculated by IDW subtracting CDW at
each time delay bin. It can be noticed from the land reflected DW in Figure 1c that the
trailing edge scattering power quickly decreases to the noise floor level after the peak point,
and the deviation between CDW and DDW is small. Whereas the scattering power of
the trailing edge of DW derived from the sea surface scattered DDM decreases slowly,
especially for IDW and DDW, which is shown in Figure 1d, and the peak and trailing
edge power of DDW are much larger than CDW. As the land topography changes and
the surface roughness increases, which can lead to the intensity of the incoherent field
strengthened rapidly, the coherent field weakens according to the conservation of energy.
Then, the magnitude and distribution characteristics of DDM gradually approach the sea
surface observations. Based on these features, we proposed a method to classify CYGNSS
coherent and incoherent observations.

2.2. Definition of Classification Estimator

Since the DDM observed from the ocean surface dominated by incoherent scattering
and from the relatively flat land surface dominated by coherent scattering are significantly
different [17,25], the coherence classification method proposed here is based on the shape
and distribution characteristics of power-spreading in the DDM. Here and after, we directly
call coherent component dominated DDM as coherent DDM, and incoherent component
dominated as incoherent DDM. The whole classification idea is inspired by GNSS-R sea ice
detection [17,18], and both are essentially determining the similarity to the coherent model.
For the coherent DDM, it resembles the Woodward ambiguity function (WAF) without
delay-doppler spreading [33], while incoherent DDM exhibits the typical “horseshoe”
shape. The calculation of the defined classification estimators is introduced in the following
part in detail. To characterizes the difference in the coherence of DDM, combining the
known typical range of estimator values calculated from ocean scattered incoherent DDM,
the threshold of coherence can be determined in the CYGNSS land observation. It should
be noted that the reference position of defined DDM estimators from the land surface
refers to the delay and doppler bin of the DDM peak power. If the DDM observable can be
calculated from the DW, the selected window is set to spanning 5 time-delay bins from the
peak. For the DDMA calculation, the selected delay/Doppler window is a 5 × 3 matrix
with the center located on the peak location. The given window size mainly depends on
two reasons. On one hand, the position of peak power is not fixed in each CYGNSS DDM,
so when the entire DDM is directly used to calculate the estimator, the range of statistical
delay and Doppler is different. On the other hand, it is based on the shape of WAF, which
is shown in Figure 2. The main coherent reflection power concentrate on this zone. The
final objective is to compute the probability density function (PDF) of DDM observables
in the land and ocean observations to determine the separation threshold of coherent and
incoherent dominated observations.
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1. TES: It is the trailing edge slope of the normalized DW and determined using the
least-squares fitting within the time-delay window to a linear expression:

aN
TES =

n
n
∑

i=1
τiPN

i −
n
∑

i=1
τi

n
∑

i=1
PN

i

n
n
∑

i=1
τ2

i − (
n
∑

i=1
τi)

2 (9)

where n = 5 is the number of time-delay bins for the linear fitting. τi is the time-
delay of each bin. PN

i is the normalized scattering power in raw count within the
corresponding time-delay bin.

2. TEV: It is the average volume of the normalized DW trailing edge:

PN
TEV =

1
n

n

∑
i=1

PN
i (10)

3. TEV_POW: It is the average absolute scattering power of the DW trailing edge:

PTEV_POW =
1
n

n

∑
i=1

Pi (11)

where Pi is the scattering power of the corresponding time-delay bin.
4. DDMA: It is the average of the normalized scattering power DDM near its peak:

σN
DDMA =

1
nm

n

∑
i=1

m

∑
j=1

PN
i,j (12)

where n and m indicate the selected size of delay and Doppler window.
5. DDMA_POW: It is the average of the absolute scattering power DDM near the peak:

σDDMA_POW =
1

mn

n

∑
i=1

m

∑
j=1

Pi,j (13)

6. MF: It is known as the WAF-matched filter (MF) approach, which directly calculates
the correlation coefficient of normalized DDM and unitary energy WAF:

RMF =

∣∣∣∣〈〈∣∣∣P(τ̂, f̂D)
∣∣∣2〉, χ(τ̂, f̂D)

〉∣∣∣∣2〈〈∣∣∣P(τ̂, f̂D)
∣∣∣2〉,

〈∣∣∣P(τ̂, f̂D)
∣∣∣2〉〉〈χ(τ̂, f̂D), χ(τ̂, f̂D)

〉 (14)

2.3. Dataset for Soil Moisture Retrieval

CYGNSS is part of the NASA Earth system science pathfinder program; it is deployed
as the first dedicated spaceborne GNSS-R constellation launched in December 2016. The
space segment consists of eight microsatellites orbiting on a non-synchronous near-circular
orbit with an inclination of approximately 35◦ (all spacecraft distributed on the same orbital
plane). Each spacecraft is capable of tracking 4 reflections simultaneously, resulting in
32 DDMs per second over the Earth’s surface. The standard CYGNSS DDM consists of
17 delay bins with the resolution of a quarter of the GPS C/A chip by 11 Doppler bins
with an interval of 500 Hz. Each DDM was processed using 1 ms coherent integration
followed by 1000 looks of noncoherent averaging. After July 2019, the noncoherent time
was reduced to 0.5 s. The primary objective of CYGNSS is to monitor the wind speed
during the evolution of tropical cyclones. The footprint of its measurement covers the
critical latitude band between ±38◦ [34]. At the same time, it also provides substantial
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land observations within this scope. The work conducting in this paper uses the CYGNSS
level-1 DDMs in power analog from published version 2.1 data product ranging from
January 2018 to August 2019. General data quality control (QC) in the land application is
also utilized, the DDM SNR lower than 2 dB, receiver antenna gain at the specular point
direction lower than 0 dB, and specular incidence angle over 65◦ are screened. To get
the purely incoherent DDMs from the ocean surface [9], the corresponding DDMs with
ERA5 wind speed greater than 5 m/s are employed. Land and sea surface observations are
directly distinguished by the quality flag provided in the CYGNSS level-1 data.

The SMAP dataset used as the land surface reference SM is version 6 level-3 radiometer
global daily 36 km equal-area scalable earth grid version 2.0 (EASE-Grid 2.0) soil moisture
product within the same period time of the CYGNSS dataset [35], except the data product
missing from 20 June to 22 July 2019. The SMAP SM data provides daily descending (a.m.)
and ascending passes (p.m.) measurement, including the auxiliary parameters VOD (in the
SMAP product indicates vegetation opacity parameter) and surface roughness coefficient
(in the SMAP product indicates vegetation_roughness_coefficient), which are used to
correct the attenuation of CYGNSS scattering power from the impact of surface roughness
and vegetation canopy. In the soil moisture retrieval process, only the recommended data
are used without the open water, urban area.

2.4. Soil Moisture Retrieval Algorithm

In previous spaceborne GNSS-R soil moisture retrieval studies, the primary method-
ology is to establish the relationship between GNSS-R derived land surface reflectivity
and reference truth SM values, which assumes that coherent component dominates GNSS-
R land scattering field. In the theory of surface electromagnetic scattering, the surface
reflectivity is the function of the incidence angle of the incoming signal and the Fresnel
reflection coefficient; the latter one is mainly affected by the near-surface SM [1]. Figure 3
simulates the relationship between reflectivity and SM at different incidence angles with
the solid line, where the semi-empirical Dobson model is used to mapping the relationship
between soil moisture and complex permittivity [36]. The surface reflectivity increases
monotonously with soil becoming wetter, and the response of reflectivity to the change
of SM from 0.0 cm3/cm3 to 0.7 cm3/cm3 can reach 10 dB. The effect of the incidence
angle on the mapping relationship between SM and reflectivity is negligible when the
incidence angle is less than 60◦. In our CYGNSS SM inversion experiements, the DDM
peak value of coherent scattered power is picked in the CYGNSS level-1 data as the left
term of Equation (7). Since the small scale roughness and upwelling vegetation cover can
attenuate the scattering signal, the roughness and vegetation correction in Equation (7)
directly use the roughness coefficient and VOD parameter provided in SMAP product
for individual observation. Although the influence of the signal incidence angle is small,
the method proposed in [25] is still used in this work. The effect of the incidence angle
correction is represented by the dashed lines in Figure 3 as well.
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Due to the pseudorandom distribution of CYGNSS measurement, the influence of
observation noise, and the spatial difference of surface roughness and vegetation cover at
the specular point, currently, it is difficult to directly establish a reliable SM retrieval model
at the GNSS-R specular point modeling all these factors, the optimal approach is to improve
the SNR of reflectivity using the space–time-averaging method to form the gridded retrieval
model [18]. Since the SM reference data used in this work is from the SMAP level-3 version
6 product, the individual CYGNSS reflectivity calculated with Equation (8) within one day
will be projected into a global cylindrical 36 km × 36 km EASE-Grid 2.0 grid to align with
the reference SM values, the average reflectivity is picked as the grid value. Here, we set a
data quality control criterion; if the count of projected reflectivity at the grid is less than
three, the corresponding grid observation will be considered invalid on that day. Next,
the time matching is used to combine the gridded reflectivity and SMAP SM to establish
the training dataset and mask the pixels in the SMAP SM data flagged with inland water
and urban areas. Finally, the retrieval model is fitted at each grid. Usually, the variation
range of local surface soil moisture is limited in a year; the linear model can achieve high
modeling accuracy. Therefore, the training samples are used to fit the linear model between
mean reflectivity and reference SM values pixel-by-pixel:

SMCYGNSS
i,j = ai,jΓi,j + bi,j (15)

where the a and b are the pending parameters of the model. i and j are the grid location
in the 36 km × 36 km EASE-Grid 2.0 grid. Γ is the grid mean reflectivity after space-time
average processing.

3. Results and Analysis
3.1. Performance Evaluation of DDM Observables

In this work, we assume that coherent and incoherent scattering simultaneously occurs
on the land surface in the CYGNSS land observations, and only two scattering cases appear:
coherent reflection mainly contributed to DDM or incoherent scattering mainly contributed
to DDM. We classify the two cases based on the statistical characteristics of the predefined
estimators. Since we have known that ocean surface observation belongs to the latter, the
characteristic information of incoherent DDM can be obtained. To evaluate the performance
of different classification estimators defined in Section 2.2, the CYGNSS collected land and
ocean DDMs in January 2018 are used to calculate the PDF and accumulation distribution
function (CDF) of each DDM observable separately. Figure 4 gives the PDF and CDF of TES,
TEV, TEV_POW calculated from CDW (top row), IDW (middle row), and DDW (bottom
row). It can be found that the performance of the three types of DW-derived classification
estimators is different. The PDF of TES between land and ocean observations is separated
more and sharper, which means that the classification results of TES are generally better
than the other two. TES values from ocean surface scattered signals are generally larger
than land observation; its PDF appears on the right side of the figure. The reason is the
L-band GNSS signals impinge on the ocean surface always occurring diffuse scattering, the
time-delay, and Doppler-spreading cause DW to appear a significant “smearing” feature;
in other words, the scattered power of the trailing edge will slowly decrease. In addition,
the PDF of land reflected DDM-derived TES is more dispersed than ocean observations.
In the first column of Figure 4, the closer TES to the left side of the x-axis, the greater the
contribution of the coherent component to the DDM since the DW is much closer to the
WAF correlation function. As the roughness of the land surface increases, the contribution
of the incoherent component rapidly increases and begins to impact the scattering power of
the DW trailing edge, so the TES value gradually approaches the ocean observations, two
PDFs finally intersect. The performance of TEV_POW is the worst; the distribution of PDF
from the land and ocean observations is overlapped. It can be explained by the fact that
the peak value of coherent DM is larger than incoherent DM, while the scattering power
of incoherent DW declines slowly after the peak value, the final result is the average of
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absolute scattering power within 5 time-delay bins between land and ocean DDM derived
TEV_POW are close. The performance of TEV is in the middle.
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Figure 4. Statistic performance of trailing edge slope (TES), the average volume of the normalized
time-delay waveform (DW) trailing edge (TEV), average absolute scattering power of the DW trailing
edge (TEV_POW) derived from central Doppler time-delay waveform (CDW; a–c), integrated time-
delay waveform (IDW; d–f), and deviation of time-delay waveform (DDW, g–i) over land and ocean
surface, dataset collected from the cyclone global navigation satellite system (CYGNSS) level-1B in
January 2018.

Figure 5 shows the PDF of estimator DDMA, DDMA_POW, and MF derived from
the ocean and land DDMs. The performance of DDMA_POW is very close to TEV_POW;
the distribution of two PDF almost overlaps, which can be explained by the same reason
as TEV_POW. Therefore, we can conclude that it is difficult to determine the coherence
of the DDM based on the feature of its absolute power in the given window. In the
rest of the paper, we will exclude the absolute power estimators. Here, MF shows the
best performance; DDM from land generally has a higher correlation with the WAF in
comparison with the ocean, which is in line with the previous assumption.
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Figure 5. Average of the normalized scattering power DDM near its peak (DDMA) (a), an average of the absolute scattering
power DDM near the peak (DDMA_POW) (b), and WAF-matched filter (MF) (c) statistic performance over land and ocean
area, dataset collected from the CYGNSS level-1B in January 2018.

The performance of different estimators is variant depending on the land surface
scattering mechanisms; the classification threshold is determined by the intersection of
two PDFs, which is represented by the magenta dotted line in the vertical direction in
Figures 4 and 5. The horizontal magenta dotted lines indicate the accumulative probability
density of the corresponding estimator computed from the CYGNSS land and ocean surface
data, which not only presents the probability of detection (PD) of coherent DDM but also
indicates the proportion of the coherent and incoherent data. Table 1 summarizes the
classification threshold, PD, the probability of false alarm (PFA), and the probability of
error (PE) of each estimator. It can be found that the PD between different observables is
small except DDW-derived TEV, and the average PD of all estimators is 89.6%. Among
eight estimators, the PD of TES calculated from normalized IDW (NIDW) is the largest, and
the PE is the smallest. Comparing all the subgraphs in Figure 4, it can also be found that
the PDF of NIDW-derived TES is more separated between land and ocean data. Moreover,
it is more concentrated and sharper than normalized CDW, and normalized DDW derived
TES. Hence, it is considered the best estimator to detect the coherent and incoherent DDM
collected over the land surface in this study. In the rest of the paper, we just use NIDW-
derived TES as the classification estimator to recognize the high confidence coherent DDM
in the CYGNSS land data for SM retrieval.

Table 1. The classification threshold and the probability of different DDM observables.

Observables aN,CDW
TES PN,CDW

TEV aN,IDW
TES PN,IDW

TEV aN,DDW
TES PN,DDW

TEV σN
DDMA RMF

Threshold −0.6191 0.6878 −0.1798 0.8726 −0.0394 0.8144 0.7053 0.6171
PD 0.9146 0.8789 0.9379 0.9132 0.9192 0.7307 0.9368 0.9362
PFA 0.0284 0.0360 0.0289 0.0376 0.0312 0.0808 0.0310 0.0381
PE 0.0569 0.0786 0.0455 0.0622 0.0560 0.1751 0.0471 0.0510

3.2. Coherent and Incoherent DDM Observations

The coherent and incoherent observation is determined by the threshold of the classi-
fication estimator of NIDW-derived TES. Figure 6 shows the average SM values from 9 km
EASE-Grid 2.0 SMAP level-3 product, average CYGNSS gridded coherent and incoherent
land surface reflectivity with the same projection grid in January 2018. Land coherent
DDM can be detected in the entire footprint of the CYGNSS mission, whereas incoherent
observations are more likely to occur in high altitude mountainous and hilly terrain.
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Figure 6. The global distribution of monthly average Soil Moisture Active Passive (SAMP) soil
moisture (SM) (a), coherent reflectivity (b), and incoherent observations (c) in January 2018.

According to the classification results, the range of coherent reflectivity is from−44 dB
to −3 dB; the strongest coherent reflection indeed comes from the inland open water
surface, while the area of the tropical rainforest and the arid mountainous area has the
lowest reflectivity. It is worthy to note that the GNSS-R reflectivity over tropical dense forest
areas is lower than the barren/desert area, which is consistent with previous studies [37].
Nevertheless, compared to the distribution of SMAP SM in Figure 6a, it can be found that
the SM values in corresponding areas are high. Meanwhile, incoherent scattering rarely
occurs in dense vegetation-covered areas, as Figure 6c shown. However, part of the reason
is the applying of QC, which excludes some noisy DDM with lower DDN SNR. However,
even we ignore the influence of QC, the count of involved incoherent observations for
spatial averaging is still less than four in most of the grids, which is much smaller than
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the total number of coherent measurements in the same grid. In terms of the International
Geosphere-Biosphere Program (IGBP) land cover type parameters provided in the SMAP
products, the statistical results also show that the proportion of coherent and incoherent
GNSS-R observations over different land cover types is almost the same before and after
QC. It confirms that even the dense upwelling vegetation cannot change the scattering
mechanism of the land surface, but dense forest canopies will generate a strong attenuation
effect on the GNSS-R coherent scattering signals, which may be attributed to vegetation
volume scattering. Moreover, many coherent and incoherent overlapped areas can be
found in Figure 6b,c; we speculate that the main reason is the spatial distribution of the
surface roughness is different within the projected grid, so the coherent and incoherent
observations can be collected simultaneously in a grid.

3.3. GNSS-R Soil Moisture Retrieval

To analyze the influence of incoherent observations on the GNSS-R land surface SM
inversion in the previous SM retrieval method, we compared two retrieval configurations:
using 19 months CYGNSS land observations and screened coherent data for retrieval model
evaluation with k-fold cross-validation approach, where k = 5. Since the global SM value
in most areas of the land is generally small in a year, the PDF of the monthly SMAP SM
data in 2018 is presented in Figure 7a, and the maximum probability density of SM is
0.06 cm3/cm3. To further evaluate the performance of the established SM model over the
high-humidity areas, the accuracy of the inversion model is evaluated when the referenced
SM value is greater than 0.1 cm3/cm3.
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Using the SM inversion method introduced in Section 2.4, Table 2 summarizes the
performance of the two models established from two training datasets. When all CYGNSS
land observations are used for modeling, the cross-validation model bias, mean absolute
error (MAE) and root-mean-square error (RMSE) are −0.0003 cm3/cm3, 0.0274 cm3/cm3,
and 0.0416 cm3/cm3, respectively. The inversion results with the distinguished coherent
observation training dataset constructed retrieval model show that the bias, MAE, and
RMSE are −0.0003 cm3/cm3, 0.0269 cm3/cm3, and 0.0408 cm3/cm3, respectively. The
model performance between the two strategies is very close. When the SM reference values
are greater than 0.1 cm3/cm3, the model accuracy of the two methods is 0.0569 cm3/cm3

and 0.0564 cm3/cm3, respectively, and the inversion results did not show a big difference.
Figure 7b shows the density scatterplot between SMAP reference SM and GNSS-R-derived
SM generated from a split of k-fold cross-validation with the coherent observation estab-
lished model. The red line represents the linear fitting line; the predicted SM shows an
overall fairly good agreement with the SMAP SM, all CYGNSS land data retrieved SM show
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an identical situation. Figure 8 presents the coherent inversion accuracy at each grid pixel
with k-fold cross-validation. The analysis shows that CYGNSS incoherent observations
will not cause any noticeable SM spatial inversion accuracy differences compared to the
coherent results, so it is not given here.

Table 2. Soil moisture retrieval model evaluating with k-fold cross-validation (unit: cm3/cm3).

Dataset Total Bias Total
MAE

Total
RMSE

SM > 0.1,
Bias

SM > 0.1,
MAE

SM > 0.1,
RMSE

All land observations −0.0003 0.0274 0.0416 −0.0124 0.0426 0.0569
Coherent observations −0.0003 0.0269 0.0408 −0.0123 0.0421 0.0564
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4. Discussion

GNSS-R coherent and incoherent observations have different sensitivities to the land
SM values [9]. According to the classification results with the defined estimator in this
study, 6.2% of the measurements in the CYGNSS land observations have a high possibility
controlled by the incoherent scattering field. In addition, the PDFs of reflectivity calcu-
lated from the land surface coherent and incoherent observations do show distribution
differences, as shown in Figure 9. It should be noted that if the DDM scattering power
is dominated by incoherent components, NBRCS is commonly picked as the fundamen-
tal quantity, which is calculated according to [21]. Since most of the previous studies
ignored incoherent scattering, namely the counterpart reflectivity is directly calculated by
Equation (8), it is reasonable to use this equation to calculate incoherent reflectivity and
analyze their influence on CYGNSS SM retrieval in this paper. The experiments show that
extra incoherent observations have no obvious effect on the final CYGNSS SM retrieval
with space-time averaging combined with the linear regression method. To further val-
idate this conclusion, the threshold of NIDW-derived TES is set to −0.5 to improve the
confidence of discriminated coherent DDM, where the probability of false alarm is only
0.01. It also can be considered that the contribution of the incoherent component is very
small in screened coherent observations. At this point, the coherent DDM accounts for
75.8% of CYGNSS land measurements. The bias, MAE, and RMSE of final inversed soil
moisture are −0.0003 cm3/cm3, 0.0265 cm3/cm3, and 0.0403 cm3/cm3, respectively. The
RMSE is reduced by 3.1% compared to the constructed model with assuming all coherent
land observations. When the reference SM value is greater than 0.1 cm3/cm3, the inversion
bias is −0.0145 cm3/cm3, MAE values is 0.0416 cm3/cm3, and RMSE is 0.0558 cm3/cm3.
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The inversion accuracy of the aforementioned GNSS-R space-time averaging SM
retrieval methods with two different training datasets is similar because the magnitude and
number of incoherent reflectivity are smaller when compared to coherent reflectivity, and
the spatial average processing will further mitigate its influence. However, there is no doubt
that coherence classification methods play a key role in future GNSS-R land detection. The
inversion model can be directly established at the individual specular point with improved
high-quality and high spatial resolution observations, which provides in the following
dedicated spaceborne GNSS-R land remote sensing missions, and also contributes to
other land applications, such as inland water system detection, biomass detection, and
wetland extent determination. Another noteworthy issue is that the established GNSS-R
SM inversion model tends to underestimate the surface soil moisture when the land SM
over 0.3 cm3/cm3, while most of the previous studies also show the same problem. Since
most training samples are concentrated in the lower SM range, the regression model is
more affected by this part of the data. Therefore, there should be a better weighting strategy
to solve this problem in future work.

5. Conclusions

This paper presents a classification methodology to distinguish coherent and inco-
herent DDMs in the CYGNSS land observations. Since the GNSS scattering signals from
the windy ocean surface are almost incoherent, while the coherent land DDMs are closer
to WAF, six different classification estimators are established based on scattering power-
spreading shape and magnitude features over the ocean, and land CYGNSS collected
DDMs, which are used to screen the land high confidence coherent component dominated
DDMs. The results show that the estimators based on the absolute magnitude features
of DDM are difficult to distinguish its coherency, while the estimator indicating shape
features performs better. The average proportion of GNSS-R land observations dominated
by coherent components is 89.6%. NIDW-derived TES performs best among all defined
DDM observables, and its PDFs from the ocean and land DDMs are more separated and
sharper, whose detection probability for coherent observations can reach 93.8% with the
lowest detection probability of error. The distribution of high-confidence coherent and
incoherent surface observation indicates that observations over the dense forest cannot
change the surface scattering properties but will greatly weaken the coherent scattering
power. Using 19 months of CYGNSS observation data and SMAP SM product for land SM
retrieval model validation, the RMSE of model performance with k-fold cross-validation
can reach 0.04 cm3/cm3. Incoherent observations have not seriously impaired the accuracy
of CYGNSS soil moisture inversion.
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