Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Microwave Radiation Imager (MWRI) Brightness Temperature (BT)
2.3. Moderate-Resolution Imaging Spectroradiometer (MODIS) Datasets (MOD10A1 and MOD35)
2.4. Air Temperature
2.5. Land Cover
2.6. Topographic
2.7. Ground Observation
2.8. Long-Term Series of Daily Snow Depth Dataset in China
3. Methodology
3.1. Snow Cover Identification from MWRI
3.2. Downscaling Snow Depth Retrieval Model
3.3. Model Evaluation and Accuracy Metrics
4. Results
4.1. Corrections of Factors
4.2. Case Study of Spatial Distribution
4.3. Accuracy Validation
5. Discussion
5.1. Improvement of Snow Cover
5.2. A Rough Comparison of Snow Storage at the Study Area
5.3. Error Analysis Based on Multiple Factors
5.4. Advantages and Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lievens, H.; Demuzere, M.; Marshall, H.-P.; Reichle, R.H.; Brucker, L.; Brangers, I.; De Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W.; et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Masson, T.; Dumont, M.; Mura, M.D.; Sirguey, P.; Gascoin, S.; Dedieu, J.-P.; Chanussot, J. An assessment of existing method-ologies to retrieve snow cover fraction from MODIS data. Remote Sens. 2018, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Huang, X.; Ma, X.; Feng, Q.; Liang, T.; Xie, H. Snow disaster early warning in pastoral areas of Qinghai Province, China. Remote Sens. 2017, 9, 475. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Deronde, B.; Debruyn, W.; Gontier, E.; Goor, E.; Jacobs, T.; Verbeiren, S.; Vereecken, J. 15 years of processing and dissemination of SPOT-VEGETATION products. Int. J. Remote Sens. 2014, 35, 2402–2420. [Google Scholar] [CrossRef]
- Harrison, A.R.; Lucas, R. Multi-spectral classification of snow using NOAA AVHRR imagery. Int. J. Remote Sens. 1989, 10, 907–916. [Google Scholar] [CrossRef]
- Salomonson, V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, C.; Duguay, M.; Mölg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow cover maps from MODIS images at 250 m resolution, part 1: Algorithm description. Remote Sens. 2013, 5, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, C.; Duguay, M.; Mölg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow cover maps from MODIS images at 250 m resolution, part 2: Validation. Remote Sens. 2013, 5, 1568–1587. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, N.; Righetti, M.; Avesani, D.; Zaramella, M.; Notarnicola, C.; Borga, M. Comparison of MODIS and model-derived snow-covered areas: Impact of land use and solar illumination conditions. Geosciences 2020, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jiang, L.; Dai, L.; Pan, J.; Wu, S.; Wang, G. The consistency of SSM/I vs. SSMIS and the influence on snow cover detection and snow depth estimation over China. Remote Sens. 2019, 11, 1879. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Che, T.; Ding, Y.; Hao, X. Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing. Cryosphere 2017, 11, 1933–1948. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol. 1987, 9, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Aschbacher, J. Land Surface Studies and Atmospheric Effects by Satellite Microwave Radiometry. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 1989. [Google Scholar]
- Che, T. Study on Passive Microwave Remote Sensing of Snow and Snow Data Assimilation Method. Ph.D. Thesis, Chinese Academy of Sciences, Lanzhou, China, 2006. [Google Scholar]
- Foster, J.L.; Sun, C.; Walker, J.P.; Kelly, R.; Chang, A.; Dong, J.; Powell, H. Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens. Environ. 2005, 94, 187–203. [Google Scholar] [CrossRef]
- Tedesco, M.; Narvekar, P.S. Assessment of the NASA AMSR-E SWE product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 141–159. [Google Scholar] [CrossRef]
- Josberger, E.G.; Mognard, N.M. A passive microwave snow depth algorithm with a proxy for snow metamorphism. Hydrol. Process. 2002, 16, 1557–1568. [Google Scholar] [CrossRef]
- Kelly, R.; Chang, A.; Tsang, L.; Foster, J.L. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens. 2003, 41, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Pulliainen, J.T.; Grandell, J.; Hallikainen, M.T. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1378–1390. [Google Scholar] [CrossRef]
- Chen, C.-T.; Nijssen, B.; Guo, J.; Tsang, L.; Wood, A.; Hwang, J.-N.; Lettenmaier, D. Passive microwave remote sensing of snow constrained by hydrological simulations. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1744–1756. [Google Scholar] [CrossRef]
- Hung, C.W.; Mao, W.L.; Huang, H.Y. Modified PSO algorithm on recurrent fuzzy neural network for system identification. Intell. Autom. Soft Comput. 2019, 25, 329–341. [Google Scholar]
- Xu, F.; Zhang, X.F.; Xin, Z.H.; Yang, A. Investigation on the Chinese text sentiment analysis based on convolutional neural networks in deep learning. Comput. Mater. Contin. 2019, 58, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.C.; Li, C.; Liu, Q. R2N: A novel deep learning architecture for rain removal from single image. Comput. Mater. Contin. 2019, 58, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Liu, Q.; Liu, X. A review on deep learning approaches to image classification and object segmentation. Comput. Mater. Contin. 2019, 60, 575–597. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lu, W.; Li, F.; Peng, X.; Zhang, R. Deep feature fusion model for sentence semantic matching. Comput. Mater. Contin. 2019, 61, 601–616. [Google Scholar] [CrossRef]
- Senthilnath, J.; Varia, N.; Dokania, A.; Anand, G.; Benediktsson, J.A. Deep TEC: Deep transfer learning with ensemble classifier for road extraction from UAV imagery. Remote Sens. 2020, 12, 245. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Xie, Z.; Feng, Y.; Chen, Z. Road Extraction from high-resolution remote sensing imagery using deep learning. Remote Sens. 2018, 10, 1461. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.B.; Long, M.S.; Wang, J.M.; Gao, Z.F.; Yu, P.S. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Chen, X.; Xu, C.; Yang, X.; Tao, D. Long-term video prediction via criticization and retrospection. IEEE Trans. Image Process. 2020, 29, 7090–7103. [Google Scholar] [CrossRef]
- Xue, Y.; Forman, B.A. Comparison of passive microwave brightness temperature prediction sensitivities over snow-covered land in North America using machine learning algorithms and the Advanced Microwave Scanning Radiometer. Remote Sens. Environ. 2015, 170, 153–165. [Google Scholar] [CrossRef]
- De Gregorio, L.; Callegari, M.; Marin, C.; Zebisch, M.; Bruzzone, L.; Demir, B.; Strasser, U.; Marke, T.; Günther, D.; Nadalet, R.; et al. A novel data fusion technique for snow cover retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2862–2877. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.A.; Forman, B.A.; Kwon, Y.H. Analyzing machine learning predictions of passive microwave brightness temperature spectral difference over snow-covered terrain in High Mountain Asia. Front. Earth Sci. 2019, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Pulliainen, J.; Takala, M.; Hallikainen, M.; Pampaloni, P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens. Environ. 2004, 90, 76–85. [Google Scholar] [CrossRef]
- Tabari, H.; Marofi, S.; Abyaneh, H.Z.; Sharifi, M.R. Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Comput. Appl. 2009, 19, 625–635. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sens. Environ. 2018, 210, 48–64. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Cheng, X.; Hu, Y. Retrieval of snow depth over arctic sea ice using a deep neural network. Remote Sens. 2019, 11, 2864. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Liu, X.; Huang, K.; Li, X.; Shi, X.; Yaning, C.; Li, J. Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance. Remote Sens. Environ. 2015, 156, 500–509. [Google Scholar] [CrossRef]
- Sun, Z.W.; Yu, P.S.; Xia, L.; Wu, S.L.; Jiang, L.M.; Guo, L. Progress in study of snow parameter inversion by passive microwave remote sensing. Remote Sens. Land Resour. 2015, 27, 9–15. (In Chinese) [Google Scholar]
- Wang, Y.L.; Huang, X.D.; Wang, J.S.; Zhou, M.Q.; Liang, T.G. AMSR2 snow depth downscaling algorithm based on a multi-factor approach over Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Walters, R.D.; Watson, K.A.; Marshall, H.P.; McNamara, J.P.; Flores, A. A physiographic approach to downscaling fractional snow cover data in mountainous regions. Remote Sens. Environ. 2014, 152, 413–425. [Google Scholar] [CrossRef]
- Mhawej, M.; Faour, G.; Fayad, A.; Shaban, A. Towards an enhanced method to map snow cover areas and derive snow-water equivalent in Lebanon. J. Hydrol. 2014, 513, 274–282. [Google Scholar] [CrossRef]
- Yu, H.; Bian, Z.; Mu, S.; Yuan, J.; Chen, F. Effects of climate change on land cover change and vegetation dynamics in Xinjiang, China. Int. J. Environ. Res. Public Health 2020, 17, 4865. [Google Scholar] [CrossRef]
- Chen, W.; Ding, J.; Wang, J.; Zhang, J.; Zhang, Z. Temporal and spatial variability in snow cover over the Xinjiang Uygur Autonomous Region, China, from 2001 to 2015. PeerJ 2020, 8, e8861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huai, B.J.; Wang, Y.T.; Sun, W.J.; Wang, X.Y. The unique regional east gale with blowing snow natural disaster in Jeminay County, Xinjiang Uygur Autonomous Region, China. Nat. Hazards 2018, 93, 1105–1108. [Google Scholar]
- Wufu, A.; Wang, H.; Chen, Y.; Rusuli, Y.; Ma, L.; Yang, S.; Zhang, F.; Wang, D.; Li, Q.; Li, Y. Lake water volume fluctuations in response to climate change in Xinjiang, China from 2002 to 2018. PeerJ 2020, 8, e9683. [Google Scholar] [CrossRef]
- Wang, T.; Yan, C.; Song, X.; Xie, J. Monitoring recent trends in the area of aeolian desertified land using Landsat images in China’s Xinjiang region. ISPRS J. Photogramm. Remote Sens. 2012, 68, 184–190. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), central Asia. Catena 2020, 187, 104343. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Li, X.; Liang, T. MODIS fractional snow cover mapping using machine learning technology in a mountainous area. Remote Sens. 2020, 12, 962. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.G.; Zhang, Y.H.; Cheng, Y.Y.; Zhang, X.L.; Feng, X.Z.; Huang, W.; Zhou, H. Detecting snowfall events over moun-tainous areas using optical imagery. Water 2018, 10, 1514. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Xiong, C.; Pan, J.; Wang, T.; Shi, J.; Wang, N. High-resolution reconstruction of the maximum snow water equivalent based on remote sensing data in a mountainous area. Remote Sens. 2020, 12, 460. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, R.; Wu, T.; Hu, G.; Xiao, Y.; Du, Y.; Zhu, X.; Ni, J.; Ma, J.; Zhang, Y.; et al. Evaluation of reanalysis soil temperature and soil moisture products in permafrost regions on the Qinghai-Tibetan Plateau. Geoderma 2020, 377, 114583. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, X.; Liang, T.; Xie, H.; Wang, X.; Feng, Q.; Chen, Q. A new approach of dynamic monitoring of 5-day snow cover extent and snow depth based on MODIS and AMSR-E data from Northern Xinjiang region. Hydrol. Process. 2012, 26, 3052–3061. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, P.; Liu, W.; Guo, Z.; Xue, S. The application of elevation corrected MERRA2 reanalysis ground surface temperature in a permafrost model on the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2020, 175, 103067. [Google Scholar] [CrossRef]
- Tan, M.L.; Ramli, H.P.; Tam, T.H. Effect of DEM resolution, source, resampling technique and area threshold on SWAT outputs. Water Resour. Manag. 2018, 32, 4591–4606. [Google Scholar] [CrossRef]
- Kan, X.; Zhang, Y.; Zhu, L.; Xiao, L.; Wang, J.; Tian, W.; Tan, H. Snow cover mapping for mountainous areas by fusion of MODIS L1B and geographic data based on stacked denoising auto-encoders. Comput. Mater. Contin. 2018, 57, 49–68. [Google Scholar] [CrossRef]
- Sun, J.; Hu, Z.Y.; Chen, X.L.; Zhang, M.; He, H.G.; Zhang, Y.J. Comparative analysis on momentum bulk transfer coefficients and roughness length under the different underlying surfaces in upper and middle reaches of Heihe River Basin. Plateau Meteorol. 2012, 31, 920–926. (In Chinese) [Google Scholar]
- Dai, L.; Che, T.; Ding, Y. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China. Remote Sens. 2015, 7, 7212–7230. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Wang, P.; Zhang, L.; Yang, H.; Yang, J. Improvement of snow depth retrieval for FY3B-MWRI in China. Sci. China Earth Sci. 2014, 57, 1278–1292. [Google Scholar] [CrossRef]
Frequency (GHz) | 10.65 | 18.7 | 23.8 | 36.5 | 89 |
---|---|---|---|---|---|
Resolution (km) | 51 × 85 | 30 × 50 | 27 × 45 | 18 × 30 | 9 × 15 |
Bandwidth (MHz) | 180 | 200 | 400 | 900 | 2300 |
Polarization | V, H | V, H | V, H | V, H | V, H |
Sensitivity (K) | 0.6 | 1 | 1 | 1 | 2 |
Accuracy (K) | 1.2 | 2 | 2 | 2 | 2.8 |
Angle of Incidence (°) | 53 | ||||
Swath (km) | ≥1400 |
BTD | Altay_R2 | Tuscaloosa_R2 | Yining_R2 | Ulan Wusu_R2 | Mean_R2 |
---|---|---|---|---|---|
BTD10h89h | 0.4391 | 0.5258 | 0.4025 | 0.5342 | 0.4753 |
BTD18h36h | 0.6037 | 0.5286 | 0.2261 | 0.2958 | 0.4136 |
BTD18v36v | 0.6243 | 0.4763 | 0.1872 | 0.2902 | 0.3945 |
BTD23v89v | 0.4061 | 0.4546 | 0.3882 | 0.5709 | 0.4550 |
BTD18h89v | 0.4305 | 0.4014 | 0.4024 | 0.5331 | 0.4419 |
BTD23h89h | 0.3876 | 0.4208 | 0.4045 | 0.5445 | 0.4394 |
Mean_R2 | 0.4819 | 0.4679 | 0.3352 | 0.4615 | 0.4366 |
Snow Depth Datasets | RMSE (cm) | PME (cm) | NME (cm) | MAE (cm) | BIAS (cm) |
---|---|---|---|---|---|
Downscaled SD | 8.16 | 3.78 | −8.49 | 4.73 | −2.71 |
WESTDC_SD | 9.38 | 2.95 | −10.06 | 5.36 | −2.78 |
MWRI_A_SD | 9.45 | 4.42 | −10.11 | 5.49 | −3.73 |
MWRI_D_SD | 10.55 | 3.03 | −11.16 | 6.13 | −6.28 |
SD (cm) | Downscaled SD | WESTDC_SD | MWRI_A_SD | MWRI_D_SD |
---|---|---|---|---|
0 ≤ SD ≤ 3 cm | 1.03 | 3.60 | 2.49 | 4.06 |
3 < SD ≤ 6 cm | 4.49 | 5.41 | 3.92 | 5.41 |
6 < SD ≤ 10 cm | 6.30 | 5.77 | 8.13 | 6.73 |
10 < SD ≤ 30 cm | 11.15 | 13.11 | 15.77 | 13.11 |
SD > 30cm | 20.88 | 26.40 | 27.85 | 24.09 |
Elevation Range | NX across Elevation | Stations Distribution across Elevation |
---|---|---|
<500 m | 18.47% | 29.73% |
500 m–1000 m | 31.95% | 32.43% |
1000 m–1500 m | 22.79% | 16.22% |
1500 m–2000 m | 10.99% | 13.51% |
>2000 m | 15.81% | 8.11% |
Aspect | NX across Aspect | Stations Distribution across Aspect |
---|---|---|
North | 17.32% | 27.03% |
Northeast | 14.85% | 5.41% |
East | 8.02% | 8.11% |
Southeast | 8.81% | 13.51% |
South | 14.03% | 24.32% |
Southwest | 14.35% | 5.41% |
West | 10.20% | 5.41% |
Northwest | 12.43% | 10.81% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Zhang, Y.; Wang, J.; Tian, W.; Liu, Q.; Ma, G.; Kan, X.; Chu, Y. Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning. Remote Sens. 2021, 13, 584. https://doi.org/10.3390/rs13040584
Zhu L, Zhang Y, Wang J, Tian W, Liu Q, Ma G, Kan X, Chu Y. Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning. Remote Sensing. 2021; 13(4):584. https://doi.org/10.3390/rs13040584
Chicago/Turabian StyleZhu, Linglong, Yonghong Zhang, Jiangeng Wang, Wei Tian, Qi Liu, Guangyi Ma, Xi Kan, and Ya Chu. 2021. "Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning" Remote Sensing 13, no. 4: 584. https://doi.org/10.3390/rs13040584
APA StyleZhu, L., Zhang, Y., Wang, J., Tian, W., Liu, Q., Ma, G., Kan, X., & Chu, Y. (2021). Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning. Remote Sensing, 13(4), 584. https://doi.org/10.3390/rs13040584