Spatiotemporal Fusion of Formosat-2 and Landsat-8 Satellite Images: A Comparison of “Super Resolution-Then-Blend” and “Blend-Then-Super Resolution” Approaches
Abstract
:1. Introduction
1.1. Motivation
1.2. Previous Studies
1.3. Need for Further Study and Research Purpose
1.4. Objectives
2. Material and Methods
2.1. Study Area and Dataset
2.2. Methodologies
2.2.1. Data Preprocessing
2.2.2. Method 1: Image Blending Using Spatiotemporal Image Fusion Method
2.2.3. Method 2: Image SR Using VDSR
2.2.4. Method 3: Hybrid Spatiotemporal Fusion Approach SR-B
2.2.5. Method 4: Hybrid Spatiotemporal Fusion Approach B-SR
2.3. Accuracy Analysis
- (1)
- Reflectance bias: This index is used to evaluate the degree of difference in reflectance among observed and fused images. This study calculated the average and standard deviation (SD) of the reflectance bias between observed images and fused images. The lower difference indicates better result.
- (2)
- SSIM: This index is used to evaluate the similarity of the overall structure between observed and fused images. This index is based on the human visual system to extract structural information for comparing the luminance, contrast, and structure between images. The SSIM ranges from −1 to 1. The larger the value, the higher the similarity between the two images. The expression for the SSIM is presented in Equation (13), where l(x, y) is the luminance comparison function, c(x, y) is the contrast comparison function, s(x, y) is the structure comparison function, μx and μy are the mean of images x and y, σx and σy are the SDs of images x and y, and are the variances of images x and y, σxy is the cross-covariance between images x and y, and C1, C2, and C3 are constants used to maintain the stability of l(x, y), c(x, y), and s(x, y), respectively.
- (3)
- PSNR: This index is used to assess the degree of distortion of the fused image. This study used the observed image as the reference undistorted image. The ratio of the maximum value of an image signal to the noise in an image was used as the evaluation index. The larger the value of this index, the higher degree of undistortion between the two images. The PSNR is given by Equation (14), where x and y are the observed image and fused image, respectively, n is the image bit depth, and MSE is the mean square error between the observed image and the fused image. In the absence of noise, the observed image and the fused image are identical, and the MSE is equal to 0; therefore, the PSNR is infinite.
- (4)
- Entropy: The entropy is used to assess the amount of information contained in an image. Generally, a clear image provides more detailed information than a blurred image. Hence, the greater the entropy of a fused image, the greater the amount of information contained in the fused image. The equation of entropy is presented in Equation (15), where n is the total number of grayscale levels, Ni is the number of pixel i in the image, and Ns is the total number of pixels in the image:
- (5)
- BRISQUE: The quality of a fused image is evaluated according to the natural characteristics of the fused image, and it is the reference value of the image quality obtained from the characteristics of natural statistics of the image. The scene statistics of locally normalized luminance coefficients are used to quantify the distortion in the image and assess the quality of the image. BRISQUE ranges from 0 to 100, with the value of 0 representing an undistorted image. This implies that a smaller value indicates lower distortion and better image quality. Details on BRISQUE can be found in Mittal et al.’s [45] paper.
3. Results
4. Discussions
4.1. Quantitative Analysis
4.2. Qualitative Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A Crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Sobue, S.I.; Chiang, S.H.; Maung, T.H.; Chang, L.Y. Delineating and predicting changes in rice cropping systems using multi-temporal MODIS data in myanmar. J. Spat. Sci. 2017, 62, 235–259. [Google Scholar] [CrossRef]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Wood, E.F. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 2018, 11, 556. [Google Scholar] [CrossRef]
- Huang, C.-H.; Ho, H.-C.; Lin, T.-H. Improving the image fusion procedure for high spatiotemporal aerosol optical depth retrieval: A case study of urban area in Taiwan. J. Appl. Remote Sens. 2018, 12, 042605. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, X.J.; Kittler, J. Infrared and visible image fusion using a deep learning framework. In Proceedings of the International Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; pp. 2705–2710. [Google Scholar]
- Chen, Y.; Gan, W.; Jiao, S.; Xu, Y.; Feng, Y. Salient feature selection for CNN-based visual place recognition. IEICE Trans. Inf. Syst. 2018, 101, 3102–3107. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Zhang, J.; Wu, Y.; Jiao, L.; Zhu, H.; Zhao, W. A novel two-step registration method for remote sensing images based on deep and local features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4834–4843. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M. A note on the temporary misregistration of Landsat-8 operational land imager (OLI) and sentinel-2 multi-spectral instrument (MSI) imagery. Remote Sens. Environ. 2016, 186, 121–122. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Remote Sensing Time Series Image Processing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; p. 243. [Google Scholar]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527. [Google Scholar]
- Cheng, Q.; Liu, H.; Shen, H.; Wu, P.; Zhang, L. A spatial and temporal nonlocal filter-based data fusion method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4476–4488. [Google Scholar] [CrossRef] [Green Version]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; White, J.C. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Song, H.; Huang, B. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1883–1896. [Google Scholar] [CrossRef]
- Huang, B.; Song, H. Spatiotemporal reflectance fusion via sparse representation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3707–3716. [Google Scholar] [CrossRef]
- Moosavi, V.; Talebi, A.; Mokhtari, M.H.; Shamsi, S.R.F.; Niazi, Y. A wavelet-artificial intelligence fusion approach (WAIFA) for blending landsat and MODIS surface temperature. Remote Sens. Environ. 2015, 169, 243–254. [Google Scholar] [CrossRef]
- Tan, Z.; Di, L.; Zhang, M.; Guo, L.; Gao, M. An enhanced deep convolutional model for spatiotemporal image fusion. Remote Sens. 2019, 11, 2898. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 821–829. [Google Scholar] [CrossRef]
- Li, X.; Ling, F.; Foody, G.M.; Ge, Y.; Zhang, Y.; Du, Y. Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sens. Environ. 2017, 196, 293–311. [Google Scholar] [CrossRef]
- Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for landsat and MODIS data fusion. Remote Sens. Environ. 2015, 156, 34–44. [Google Scholar] [CrossRef]
- Xue, J.; Leung, Y.; Fung, T. An unmixing-based bayesian model for spatio-temporal satellite image fusion in heterogeneous landscapes. Remote Sens. 2019, 11, 324. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comp. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigen, D.; Krishnan, D.; Fergus, R. Restoring an image taken through a window covered with dirt or rain. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 633–640. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, P.; Hradis, M.; Barina, D.; Zemcik, P. Compression artifacts removal using convolutional neural networks. J. WSCG 2016, 24, 63–72. [Google Scholar]
- He, W.; Yokoya, N. Multi-temporal sentinel-1 and-2 data fusion for optical image simulation. ISPRS Int. J. Geoinf. 2018, 7, 389. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Jarihani, A.A.; McVicar, T.R.; Van Niel, T.G.; Emelyanova, I.V.; Callow, J.N.; Johansen, K. Blending Landsat and MODIS data to generate multispectral indices: A comparison of “Index-then-Blend” and “Blend-then-Index” approaches. Remote Sens. 2014, 6, 9213–9238. [Google Scholar] [CrossRef] [Green Version]
- Teo, T.A.; Shih, T.Y.; Chen, B. Automatic georeferencing framework for time series formosat-2 satellite imagery using open source software. In Proceedings of the Asian Conference on Remote Sensing, New Delhi, India, 23–27 October 2017. [Google Scholar]
- McInerney, D.; Kempeneers, P. Orfeo toolbox. In Open Source Geospatial Tools; Springer: Cham, Switzerland, 2015; pp. 199–217. [Google Scholar]
- Stone, H.S.; Orchard, M.T.; Chang, E.C.; Martucci, S.A. A fast direct fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2235–2243. [Google Scholar] [CrossRef] [Green Version]
- Randrianjatovo, R.N.; Rakotondraompiana, S.; Rakotoniaina, S. Estimation of land surface Temperature over reunion island using the thermal infrared channels of Landsat-8. In Proceedings of the IEEE Canada International Humanitarian Technology Conference (IHTC), Montreal, Canada, 1–4 June 2014. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell. Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the International Conference on Pattern Recognition (ICPR 2010), Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
Bands | FS-2 | LS-8 | ||
---|---|---|---|---|
Spectral Bands | Spectral Bands | |||
Blue | Band 1 | 0.45~0.52 | Band 2 | 0.45~0.51 |
Green | Band 2 | 0.52~0.60 | Band 3 | 0.53~0.59 |
Red | Band 3 | 0.63~0.69 | Band 4 | 0.64~0.67 |
Near Infrared | Band 4 | 0.76~0.90 | Band 5 | 0.85~0.88 |
Sensor | Training Dataset | Accuracy Analysis |
---|---|---|
FS-2, LS-8 | 2014/01/13, 2014/01/29 2015/02/01, 2016/01/26 | 2014/12/06 |
Bands | STARFM | VDSR | B-SR | SR-B | |
---|---|---|---|---|---|
Mean (∆) | Blue | 64.428 | 55.910 | 64.054 | 55.426 |
Green | 69.959 | 71.482 | 69.654 | 64.475 | |
Red | 89.626 | 92.461 | 89.323 | 81.204 | |
NIR | 297.946 | 254.803 | 297.837 | 298.994 | |
4 Bands | 130.489 | 118.664 | 130.217 | 125.025 | |
SD (∆) | Blue | 88.568 | 81.576 | 88.534 | 80.500 |
Green | 111.092 | 113.134 | 111.060 | 103.288 | |
Red | 145.661 | 151.123 | 145.639 | 137.954 | |
NIR | 341.856 | 228.877 | 341.839 | 344.398 | |
4 Bands | 171.794 | 143.677 | 171.768 | 166.535 |
2014/12/06 | |||||
---|---|---|---|---|---|
Bands | Satellites | Min | Max | Mean | SD |
Blue | FS-2 | 1043 | 2216 | 1250.568 | 114.589 |
LS-8 | 1005 | 5950 | 1282.070 | 173.274 | |
Green | FS-2 | 770 | 2585 | 1095.109 | 155.392 |
LS-8 | 657 | 6195 | 1055.731 | 192.599 | |
Red | FS-2 | 544 | 3084 | 899.848 | 218.592 |
LS-8 | 312 | 6743 | 833.172 | 255.384 | |
NIR | FS-2 | 609 | 3699 | 2273.934 | 640.359 |
LS-8 | 384 | 8992 | 2686.187 | 818.275 |
STARFM | VDSR | B-SR | SR-B | |
---|---|---|---|---|
SSIM | 0.906 | 0.894 | 0.906 | 0.910 |
PSNR | 34.763 | 33.933 | 34.774 | 35.305 |
Entropy | 2.433 | 2.389 | 2.433 | 3.001 |
BRISQUE | 25.335 | 50.326 | 25.178 | 24.383 |
STARFM | VDSR | B-SR | SR-B | ||
---|---|---|---|---|---|
Vegetation regions | Mean (∆) | 95.275 | 104.924 | 94.933 | 98.884 |
SD (∆) | 78.705 | 84.129 | 78.605 | 80.996 | |
SSIM | 0.936 | 0.909 | 0.936 | 0.935 | |
PSNR | 40.069 | 38.907 | 40.106 | 40.137 | |
Entropy | 3.612 | 3.625 | 3.614 | 3.645 | |
BRISQUE | 29.959 | 53.749 | 30.001 | 32.744 | |
Building regions | Mean (∆) | 99.675 | 133.020 | 99.383 | 98.708 |
SD (∆) | 91.094 | 115.218 | 91.037 | 90.339 | |
SSIM | 0.932 | 0.876 | 0.932 | 0.933 | |
PSNR | 38.601 | 35.863 | 38.625 | 38.796 | |
Entropy | 4.228 | 4.000 | 4.230 | 4.400 | |
BRISQUE | 21.241 | 55.826 | 21.256 | 21.769 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teo, T.-A.; Fu, Y.-J. Spatiotemporal Fusion of Formosat-2 and Landsat-8 Satellite Images: A Comparison of “Super Resolution-Then-Blend” and “Blend-Then-Super Resolution” Approaches. Remote Sens. 2021, 13, 606. https://doi.org/10.3390/rs13040606
Teo T-A, Fu Y-J. Spatiotemporal Fusion of Formosat-2 and Landsat-8 Satellite Images: A Comparison of “Super Resolution-Then-Blend” and “Blend-Then-Super Resolution” Approaches. Remote Sensing. 2021; 13(4):606. https://doi.org/10.3390/rs13040606
Chicago/Turabian StyleTeo, Tee-Ann, and Yu-Ju Fu. 2021. "Spatiotemporal Fusion of Formosat-2 and Landsat-8 Satellite Images: A Comparison of “Super Resolution-Then-Blend” and “Blend-Then-Super Resolution” Approaches" Remote Sensing 13, no. 4: 606. https://doi.org/10.3390/rs13040606
APA StyleTeo, T. -A., & Fu, Y. -J. (2021). Spatiotemporal Fusion of Formosat-2 and Landsat-8 Satellite Images: A Comparison of “Super Resolution-Then-Blend” and “Blend-Then-Super Resolution” Approaches. Remote Sensing, 13(4), 606. https://doi.org/10.3390/rs13040606