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Abstract: In this paper we consider the tracking problem of a moving target competing against
noise and clutter in a surveillance radar scenario. For a single array-antenna multiple-target tracking
system and according to the Track-Before-Detect paradigm, we present a novel approach based
on a three-stage processing chain that involves the Sparse Learning via Iterative Minimization
algorithm, the k-means clustering method and the ad hoc detector by exploiting the sparse nature of
the operating scenario. Under the latter assumption, the detection strategy declares the presence of
targets subsequently to the retrieval of their corresponding tracks performed by jointly processing
the received echoes of multiple consecutive radar scans. Simulation results show that the proposed
approach is able to provide good tracking and detection capabilities for different multiple target
trajectories with low Signal-to-Interference-plus-Noise ratio and results in providing advantages
when compared to a number of other reference Track-Before-Detect strategies based on sparse data
processing techniques.

Keywords: air surveillance radar; clustering; machine learning; multiple-target tracking; radar;
sparse data recovery; Track-Before-Detect

1. Introduction

In a multiple target tracking problem, the objective is to estimate an unknown and
time varying number of targets as well as their trajectories from sensor data [1]. Traditional
radar tracking algorithms are designed assuming that the sensor provides a set of point
measurements at each scan, obtained by thresholding the output of a matched filter fed
by a baseband version of the collected echoes [2–4]. This approach is effective in the
limited case of Signal-to-Interference-plus-Noise ratio (SINR), while it experiences some
limitations when the signal amplitude is weak compared to the background interference,
and in general, in the detection of dim targets. Specifically, for dim targets the threshold
must be low enough to allow for sufficient probability of target detection with the drawback
that a low threshold leads to high volumes of false alarms.

An alternative approach, referred to as Track-Before-Detect (TBD), consists in supply-
ing the processor with either thresholded or unthresholded data from several consecutive
scans [5]. Unlike conventional techniques that declare the presence of a target at each scan
of the radar, TBD-based procedures jointly process more consecutive scans and, exploiting
the physically admissible target transitions, jointly declare the presence of a target and its
track. Track-Before-Detect improves track accuracy and allows the tracker to effectively
deal with low-observable targets, i.e., objects with a low SINR. The main difficulty in TBD
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techniques is that the measurements depend on the target state in a highly nonlinear way.
Typically, the target state describes the kinematic evolution of the target and may also
include its amplitude. A possible means to solve the nonlinear estimation problem is to
resort to particle filtering [6]. An alternative is to discretize the target state space, since
when the state is discrete, the linearity is irrelevant [7–11]. In this case, the problem with
using a discrete state space is that it leads to high computation and memory resource
requirements. Summarizing, if on one hand the TBD paradigm allows for a detection
performance improvement, on the other hand, it leads high computational costs due to the
huge amount of data collected at each scan. We refer the readers to [12] for a comparison
of several TBD strategies to detect low amplitude targets.

The idea behind TBD has been developed in the past 20 years and its importance
in low SINR radar application was first investigated in [13,14]. Since then, a number of
TBD techniques and applications have been studied [15–19]. In recent years, security
applications employing radar sensors for surveillance objectives are becoming increasingly
important, so it is convenient to apply TBD techniques because targets with a low SINR
appear [20–24]. In [21] the authors present a family of TBD procedures for early detection
of moving targets from airborne radars exploiting a sectorization of the coverage area,
the received echoes are jointly processed in the fast and slow time domains. In [22], TBD
strategies for space-time adaptive processing radars are derived. The authors introduce the
target and noise models in discrete-time form and a generalized likelihood ratio test strategy
for target detection into two different scenarios. Results show that the proposed procedures
might be a viable means to implement early detection and track initiation of weak moving
targets. In [23], a number of new algorithms are proposed for adaptive detection and
tracking based on spatial-time data. The possible spillover of target energy to adjacent
range cells is taken into account at the design stage. The research proposed in [24] gives
application of TBD processing against airborne radar surveillance data. The sensitivity of
TBD processing to the choice of clutter model is examined through processing of real and
simulated data containing non-coherent radar returns of a small maritime targets in sea
clutter. The results confirm the good detection and tracking performance.

Leaving aside the TBD approach for the moment, we recall here that a radar system
illuminates a given area and attempts to detect prospective targets present in its field of view
by also estimating their locations and reflectivity. This task is accomplished by partitioning
the region of interest into range, azimuth, and elevation bins. Remarkably, the prospective
targets occupy only few bins as shown in Figure 1 and hence, if we neglect the interference,
the 3D data matrix representing the observed scenario is sparse as most of its entries are
approximately zero. Remarkably, it is important to highlight that considering multiple
radar scans over time, the data sparsity increases even more. In [25], the authors exploit
such features to devise radar processors based on compressed sensing techniques [26–28].
As a matter of fact, the exploitation of sparsity, originally proposed in statistics, signal
processing, and machine learning communities, can improve the performance of radar
systems under certain conditions and is therefore of considerable practical value.

Compressed sensing based methods have been applied to radar systems [29–39] to
recover the target scene from a fewer number of measurements than traditional methods.
In [29], it is demonstrated that compressed sensing can eliminate the need for matched
filter at the receiver and has the potential to reduce the required sampling rate. Specifi-
cally, the authors present an adaptive clutter suppression method for airborne random
pulse repetition interval radar by using prior knowledge of clutter boundary in Doppler
spectrum. The research developed in [30] focuses on monostatic chaotic multiple-input-
multiple-output radar systems and investigates the performance of sparsity-exploiting
algorithms for the parameter estimation of targets with low-SINR. Remarkably, in the con-
text of TBD, compressed sensing provides an effective means to address the case of multiple
targets allowing to solve the nonlinear problem encountered in the traditional TBD algo-
rithms. In [32] the authors propose an innovative, computational efficient TBD algorithm
which exploits the sparse nature of measured data. They propose a two-step approach:
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the first step discards unreliable measurements, i.e., those with likelihood ratio below a
preassigned thresholds; the second step, instead, uses the correlation among observations
taken at different time instants to makes the final decision. In [33] a novel compressed
sensing based TBD algorithm is devised. The latter reconstructs the whole radar scenario
(direction of arrival (DOA)-Doppler plane) for each range gate at consecutive scans using
an improved stagewise orthogonal matching pursuit (StOMP) algorithm, resulting in a
three-dimensional range-DOA-Doppler space. The improved StOMP algorithm together
with the temporal tracking, can effectively distinguish true targets from false targets and
clutter based on information from multiple illuminations. In the context of synthetic aper-
ture radar (SAR), refs. [34–39] present compressed sensing based data acquisition and
imaging algorithms.

Figure 1. A particular 3D view of the radar datacube to highlight its data sparsity. It is important to
note that the three targets occupy only three bins of the entire definition domain.

With the above remarks in mind, in this paper we propose a TBD strategy in the
context of air surveillance radar that exploits the sparsity of measured data. The main
technical contribution is represented by the development of a multiple target detection ar-
chitecture comprising three processing stages using a monostatic array-antenna. More pre-
cisely, the first processing stage relies on the Sparse Learning via Iterative Minimization
(SLIM) [40–42]. This choice is dictated by the fact that SLIM exhibits a good trade off
between low computational cost and reconstruction performance, to estimate targets in-
formations, i.e., position and speed, in the scene under consideration. More importantly,
SLIM allows to avoid the nonlinear problem in the search space retrieval. The next step
in the receiving chain is the formation of target tracks. To this end, the second stage is
aimed at clustering the estimates provided by SLIM with each cluster representing a target
trajectory. This stage connects the target information over time to create a trajectory. In the
third and last stage, an ad hoc detector is derived resorting to a likelihood ratio test (LRT)
that relies on the estimates provided by the clustering stage. The performance of the entire
processing chain is assessed through simulated data accounting for different scenarios of
practical interest. In addition, we compare the proposed technique with two compressed-
sensing-based TBD algorithms exploiting the Orthogonal Matching Pursuit (OMP) [43] and
the Compressive Sampling Matching Pursuit (CoSaMP) [44] algorithms, which represent
the main benchmarks for compressive sensing recovery algorithms. Finally, the numerical
analyses show the superiority of the proposed approach over the considered competitors.

The remainder of the paper is organized as follows. In Section 2, we formulate the TBD
highlighting its sparse nature, then we provide a full description of the receiver architecture
and the data processing framework. In Section 3 we assess the performance of the proposed
architecture by means of numerical examples, while in Section 4 we analyse in detail the
obtained results. Conclusions and future developments are provided in Section 5.
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Notations

Vectors and matrices are denoted by boldface lower-case and upper-case letters,
respectively. The (k, l)th entry of a generic matrix A is denoted using A(k, l) and, similarly,
the lth entry of a generic vector a with a(l). Symbol (·)T denotes transpose operation,
(·)† denotes complex conjugate transpose operation, | · | denotes cardinality for a set
while modulus for complex number, ⊗ denotes the Kronecker product, vec(·) refers to
the vectorization operation (e.g., stacking the columns of a matrix on top of each others),
diag(·) denotes the diagonalization operation, det(·) and tr(·) denote the determinant and
the trace of a square matrix, respectively. I and 0 represent the identity matrix and the null
vector or matrix of suitable dimensions, respectively. As to the numerical sets, R is the
set of real numbers, RN×M is the set of (N ×M)-dimensional real matrices (or vectors if
M = 1), C is the set of complex numbers, and CN×M is the set of (N ×M)-dimensional
complex matrices (or vectors if M = 1). Finally, the imaginary unit is denoted by j.

2. Material and Methods
2.1. Problem Formulation

The considered scenario involves a transmitter and a receiver, at the same location,
equipped with an array of sensors, one or more point-like targets at a certain distance from
the array in its far zone, and a narrowband signal that travels the round-trip between the
radar and the target [45]. Specifically, we assume an uniform linear array of Ns identical
sensors with inter-element spacing h. The array illuminates the surveillance area by
transmitting M coherent pulse trains, each consisting of Np rectangular pulses, before
deciding whether or not a target is present. We denote by PRI the Pulse Repetition Interval,
PRF = 1/PRI the Pulse Repetition Frequency and SRT the Scan Repetition Time. The signal
collected by the ith sensor is amplified, filtered, and down converted. Then, as customary,
a discrete form for the signal received at the ith sensor is obtained by properly sampling
the output of a filter matched to the transmitted pulse. For a fixed angle of view, the radar
collects N = Ns × Np samples from the rth range cell at mth scan; we denote by zm,r the
received N-dimensional complex vector of noisy returns obtained by stacking up the Np
vectors collected by the Ns antenna sensors.

Let us assume that an unknown number L of point-like targets are present in the
considered scenario at each scan with L ∈ {1, · · · , NT}. Moreover, the number of range
bins under test is NR � L. In order to formulate the detection problem, we need to define
(rlm , dlm) for l = 1, . . . , L and m = 1, . . . , M, that is the position of the lth target within the
range-Doppler grid at the mth scan. The problem of detecting L multiple targets can be
formulated in terms of the following multiple hypothesis test (1):

H0 : zm,r = nm,r, r∈ΩR, m = 1, . . . , M,

H1 :

{
zm,r = αm,r,d (sd ⊗ a) + nm,r,d, (r, d)=(r1m , d1m)∈ΩR×ΩD, m=1, . . . , M,
zm,r = nm,r, (r, d)∈ΩR×ΩD\{(r1m , d1m)}, m=1, . . . , M,

H2 :

{
zm,r = αm,r,d (sd ⊗ a) + nm,r,d, (r, d)∈{(rlm , dlm), l=1, 2}∈ΩR×ΩD, m=1, . . . , M,
zm,r = nm,r, (r, d)∈ (ΩR×ΩD)\{(rlm , dlm), l = 1, 2}, m=1, . . . , M,

...

HL :

{
zm,r = αm,r,d (sd ⊗ a) + nm,r,d, (r, d)∈{(rlm , dlm), l=1, . . . , L}∈ΩR×ΩD, m=1, . . . , M,
zm,r = nm,r, (r, d)∈ΩR×ΩD\{(rlm , dlm), l = 1, . . . , L}, m=1, . . . , M,

(1)

where:

• ΩR = {1, . . . , NR} is the set of the range bins, and ΩD = {1, . . . , ND} indexes a
discrete set of Doppler values covering the unambiguous Doppler interval;

• αm,r,d ∈ C is a factor representative of the target response and channel effects;
• nm,r ∈ CN×1 for m = 1, . . . , M and r = 1, . . . , NR, denote the additive interference

components in the rth range bin at the mth scan, and are independent and identically
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distributed (iid) complex normal random vectors with zero mean and unknown
positive definite Interference Covariance Matrix (ICM) Mm ∈ CN×N ;

• sd is the temporal steering vector defined as:

sd = [1 ej2π fdPRI · · · ej2π fdPRI(Np−1)]T ∈ CNp×1, (2)

with fd = 2vd/λ and vd the prospective target radial velocity, positive if the target is
approaching the radar;

• a is the spatial steering vector defined as:

a = [1 ej2π h
λ cosθ0 · · · ej2π h

λ cosθ0(Na−1)]T ∈ CNa×1, (3)

with θ0 the fixed polar angle of target respect to the away direction. Figure 2 shows
the radar geometry problem.

Figure 2. Illustration of the radar geometry problem. The target is assumed to be far enough away that the far-field
approximation applies.

Thus, for a specific mth radar scan, the received signal matrix Zm ∈ CN×Nr for the NR
range bins and ND Doppler points can be written as:

Zm =

(
NR

∑
r=1

ND

∑
d=1

αm,r,d(sd ⊗ a)qT
r

)
+ Nm, (4)

where αm,r,d 6= 0 if a target exists in the rth range bin and at the dth Doppler point,
Nm = [n1, · · · , nNR ] and qr represents the shift vector used to describe reflected waveforms
from different range bins, and it is defined by:

qr =
[

0 0 · · · 0 1︸ ︷︷ ︸
rth position

0 · · · 0
]T
∈ CNR×1. (5)

In order to recast (4) in vector form, we define:

zm = vec(Zm) = Aαm + nm, (6)

where A is the space-time steering matrix defined as:

A =
[
v1,1 v1,2 · · · vNR ,ND

]
∈ CNNR×NR ND , (7)

with:
vr,d = vec

(
(sd ⊗ a)qT

r

)
∈ CNNR×1, (8)
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αm is signal vector:

αm =
[
αm,1,1 αm,1,2 · · · αm,NR ,ND

]T
∈ CNR ND×1, (9)

and nm = vec(Nm) is a NNR × 1 complex normal random vector with zero mean and
covariance matrix I ⊗Mm.

As L� NRND, it follows that vector αm in the linear model in (6) is sparse, i.e., most of
its elements are zeros. Moreover, it is clear that with a limited number of measurement,
sparsity constraints is required since, without it, the linear system has infinite solutions.

Furthermore, following the compact vector notation defined in (6), the problem (1)
can be reformulated as follows:{

H0 : zm ∼ CN (0, I ⊗Mm), m = 1, . . . , M,

H1 : zm ∼ CN (Aαm, I ⊗Mm), m = 1, . . . , M,
(10)

where αm accounts for the unknown number of targets.

2.2. Proposed TBD Framework

The detection architecture is composed of three stages and its schematic overview is
shown in Figure 3. Specifically, the first stage is aimed at estimating the sparse vector αm
exploiting the SLIM algorithm, the second stage is responsible for the track formation and
is based on the k-means clustering method, and, finally, the third stage implements an ad
hoc detector, obtained through the LRT approach.

Buffer
Sparse 

learning

Ad hoc

detector

Track

formation

ICM 

estimation

1st STAGE 2nd STAGE 3rd STAGE

Figure 3. The three-stage detection architecture.

2.2.1. Sparse Learning

As stated before, the main objective of the first stage is to estimate the sparse vector
αm defined in the linear model (6). To this end, we apply the SLIM framework [40,42]
assuming that αm is a random complex vector ruled by a sparsity promoting prior [46,47].
It follows that:

zm|αm ∼ CN (Aαm, I ⊗Mm), (11)

whereas the prior of αm is:

f (αm; q) ∝
NR ND

∏
i=1

e−
2
q (|αm,i |q−1), (12)

where q ∈ (0, 1] is a parameter controlling the sparsity level. In fact, when q = 1, the prior
becomes Laplacian which has a finite peak at 0 while when q→ 0 it has an infinite peak
at 0. Note, also, Mm is not known and, hence, must be estimated from data. Specifically,
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we assume that a set of training data collected in the spatial proximity of the range under
test is available and use them to obtain the following ICM estimate:

M̂m =
1
K

K

∑
k=1

zm,kz†
m,k, (13)

where zm,1, · · · , zm,K are the training data at the mth scan. Thus, we can estimate αm
as follows:

max
αm

f (zm; I ⊗ M̂m|αm) f (αm; q), (14)

where:

f (zm; I ⊗ M̂m|αm) =
1

πNNR det(I ⊗ M̂m)
e[−(zm−Aαm)†(I⊗M̂m)−1(zm−Aαm)], (15)

is the conditional probability density function (pdf) of zm given αm. By taking the negative
logarithm it is equivalent to

min
αm

{
‖ym − Vαm‖2

2 +
NR ND

∑
i=1

2
q
(| αm,i |q −1)

}
︸ ︷︷ ︸

gq(αm)

, (16)

where ym =
(

I ⊗ M̂m
)−1/2zm and V =

(
I ⊗ M̂m

)−1/2 A. Note that the the first addendum
of gq(αm) corresponds to a fitting term, whereas the second term promotes the sparsity.

Setting to zero the first derivative of gq(αm) with respect to αm leads to:

d
dx

[gq(αm)] = V†Vαm − V†ym + P−1
q αm = 0, (17)

where Pq = diag(pq), with pq = [| αm,1 |2−q, | αm,2 |2−q, · · · , | αm,Nr Nd |
2−q]T . Supposing

that an initial estimate of αm is available, it is possible to apply a cyclic optimization
procedure as in [40,42], and the step at the nth iteration can be expressed as:

α
(n)
m,q = P(n−1)

q V †
(

VP(n−1)
q V† + I

)−1
ym, (18)

where P(n−1)
q = diag(pn−1

q ) comes from the (n− 1)th iteration. The optimization procedure
can terminate after a fixed number of iterations or when the following convergence criterion
is satisfied: ∥∥∥α

(n)
m,q − α

(n−1)
m,q

∥∥∥
2∥∥∥α

(n)
m,q

∥∥∥
2

< ∆SLIM, (19)

with ∆SLIM a user defined suitable small positive number to obtain the desired estimation
accuracy. Specifically, as described in [40] SLIM algorithms converges quickly and in most
cases it shows no improvements after 15 iterations. For the SLIM initialization, we apply
the same condition based on matched filter as defined in [40,42]:

α
(0)
m,i =

v†
i
(

I ⊗ M̂m
)−1ym

v†
i
(

I ⊗ M̂m
)−1vi

, (20)

for i = 1, 2, . . . , Nr Nd and vi is the ith column of A. To automate the estimation of q, so that
SLIM can essentially become user parameter free, the Bayesian Information Criterion
(BIC) [48], a model selection tool, is applied [40]:

BICq = 2‖ym − Vαm‖2 + 4h(q)× ln(NNR), (21)
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where h(q) represents the number of peaks in the SLIM result for a particular value of q.
The first term in (21) represents a fitting term for the estimate α̂m, the second term denotes
a penalty term, which increases as the number of peaks in the estimate increases and hence
is larger for values of q approaching 1. The coefficient 4 in (21) represents the number
of unknowns target parameters: complex amplitude, range bin and Doppler shift. It is
important to observe that from a practical point of view, after this first stage a data buffer
is necessary to temporarily store all the estimated signal vector during the M scans so that
it collects Γ = [α̂1, · · · , α̂M] ∈ CNNR×M.

2.2.2. Track Formation

The second processing stage is devoted to the extraction of target trajectories from the
estimated matrix Γ. This task is accomplished by means of two consecutive steps. The first
one concerns the estimation of the target number (i.e., L). This value is automatically
computed supposing that, for a specific radar scan, a target cannot be located in more than
one range-Doppler grid. Therefore, L is computed by searching column-wise the maximum
number of non-zero element in Γ. More precisely, let Ym the set of non-zero element for the
estimated vector α̂m:

Ym = {α̂m,r,d ∈ α̂m : α̂m,r,d 6= 0, m = 1, . . . , M}, (22)

therefore, the estimation of maximum target number is computed as:

L = max
m=1,...,M

(
|Ym|

)
(23)

The target to track association is carried out by the application of a clustering algo-
rithm to a dataset containing the information about target positions during radar scanning.
Specifically, the k-means clustering algorithm, which can be considered one of the simplest
and popular unsupervised machine learning algorithms, is applied [49–51]. This algo-
rithm works iteratively, starting from an initial dataset and given the number of clusters,
to produce dataset partitions representing the tracks. The iterative refinement clustering
is based on a well-defined objective function, also called error-function. In this context,
the k-means algorithm converges at least to local optimum (i.e., not necessarily the best
possible outcome) [51].

For the case at hand, the number of clusters corresponds to the number of targets L,
and the dataset, namely X, to be clustered is formed starting from Γ matrix, as follows:

X =

{ ⋃
m,r,d

xm,r,d

}
, (24)

where xm,r,d = [m, r, d, α̂m,r,d]
T , for all α̂m,r,d ∈ Ym, with m = 1, . . . , M. The k-means algo-

rithm starts with initial estimates for the centroids, which in general can either be randomly
generated or randomly selected from the dataset, then it iterates between two steps:

1. data assignment step: each centroid defines one cluster, therefore each vector data
is assigned to its nearest centroid. This association in based on the Euclidean metric
which is defined as objective function to be locally minimized:

arg min
µ(k)

|X|

∑
l=1

L

∑
k=1

∥∥∥Wxl − µ(k)
∥∥∥2

2
⇒ xl = x(k)l : X(k) =

{⋃
k

x(k)
}

, (25)

where W = diag(w) is a weight matrix, µ(k) represents the kth cluster centroid; x(k)l
stands for the assignment of the generic vector xl to k-cluster, and X(k) indicates the
kth cluster;



Remote Sens. 2021, 13, 662 9 of 19

2. centroid update step: the centroids are recomputed by taking the mean of all vector
data assigned to that cluster centroid:

µk =
1
|X(k)| ∑

x(k)∈X(k)

x(k). (26)

The above steps are repeated until a stopping criteria is met (i.e., no data points change
clusters, the sum of the distances is minimized, or some maximum number of iterations is
reached). The output of interest of the k-means algorithm, that is also the output for this
processing stage, is the final L-partitioning of the starting dataset: X = {X(1), · · · , X(L)}.
Each partition contains the range-Doppler point coordinates, that combined in time through
the radar scanning information they make the target track.

2.2.3. Ad Hoc Detector

The last stage performs the validation of the tracks formed in the previous stages
by comparing a suitable statistics exploiting such tracks to a threshold that allows to
control the probability of false track detection. To this end, we resort to the LRT where
the unknown parameters are replaced by the previously obtained estimated. Specifically,
such decision scheme has the following expression:

f1(Z1, · · · , ZM; Γ, Ω̂(L)
1 , · · · , Ω̂(L)

M , M̂1, · · · , M̂M)

f0(Z1, · · · , ZM; Ω̂(L)
1 , · · · , Ω̂(L)

M , M̂1, · · · , M̂M)

H1
≷
H0

η, (27)

where:

f1(Z1, · · · , ZM; Γ, Ω̂(L)
1 , · · · , Ω̂(L)

M , M̂1, · · · , M̂M) =
M

∏
m=1

∏
(r,d)∈Ω̂(L)

m

f (zm,r; α̂m,r,d(sd ⊗ a), M̂m),

f0(Z1, · · · , ZM; Ω̂(L)
1 , · · · , Ω̂(L)

M , M̂1, · · · , M̂M) =
M

∏
m=1

∏
(r,d)∈Ω̂(L)

m

f (zm,r; 0, M̂m),

with Ω̂(L)
m the set of integers indexing the range bins and Doppler points corresponding to

the estimated target position at the mth scan, and

f (zm; α̂m,r,d(sd ⊗ a), M̂m) =
1

πNdet(M̂m)
e{−[zm,r−α̂m,r,d(sd⊗a)]† M̂−1

m [zm,r−α̂m,r,d(sd⊗a)]},

f (zm; 0, M̂m) =
1

πNdet(M̂m)
e{−z†

m,r M̂−1
m zm,r}.

It is interesting to note that the LRT under the noise only assumption is readily
obtained from the above formulations as well. Once the likelihoods of the states are
evaluated, a state estimate can be obtained according to the ratio test. In the event that
this state is the null state, then the detector reports that there are no targets, otherwise a
detection is reported.

3. Results

Numerical simulation are performed following the specifications of the Lockheed
Martin FPS-117 surveillance radar [52]. FPS-117 is a 3-D solid-state radar designed to
provide long-range accurate aircraft identification and position data for air defence, nav-
igational assistance and tactical control for both close air support and counter air opera-
tions [53]. All simulations refer to a radar system with Ns = 4, Np = 4, carrier frequency
fc = 1.388 GHz, PRF equal to 917 Hz and SRT = 0.68 s calculated considering a mechanical
rotation scanning with an horizontally array-antenna with a 3 dB beamwidth equal to 2.3◦.
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We consider three specific scenarios, with two moving targets, to analyse how the
sparse learning and the track formation stages work. These scenarios involves NR = 15
range bins located in the far field of the radar with spatial resolution Rmin = 30 m.
The Doppler interval considered, according to the unambiguous frequency Doppler con-
dition | fd |= PRF/2, is taken from −458.5 Hz to +458.5 Hz, with 18.34 Hz separation
between Doppler points (thus Nd = 51). The SINR is defined after pulse integration
considering the actual steering vector at the mth scan:

SINR =| αm,r,d |2 v†
r,d M−1

m vr,d. (28)

In each considered scenario, targets move according to a constant velocity dynamic model,
that is positive if target is approaching the radar. Neglecting the edge effects between
adjacent range cells, Q accounts for the maximum number of range bins transitions of the
target between two successive scans:

Q =

⌈
| vl | SRT

Rmin

⌉
, (29)

where vl for l = 1, . . . , L is the target velocity. Thus, according to the frequency Doppler
definition, the maximum target velocity is | vl,max |= 49.5 m/s so that it results Qmax = 2.

Both SLIM and clustering are iterative algorithms, so it is essential to set some con-
vergence criteria. For both algorithms, a convergence threshold is set equal to ∆SLIM =
∆k-means = 10−3, that means the estimation performed can be accepted because it doesn’t
vary significantly between two consecutive iterations. Moreover, the SLIM maximum
number of iterations is 25.

Since closed-form expression of probability of detection and tracking (Pdt), defined as
the probability to detects the targets and to estimate their tracks correctly in range-Doppler
domain, and the desired false track detection probability (Pf t) are not available, we resort
to Monte Carlo counting technique. More precisely, in order to evaluate the threshold
necessary to ensure a preassigned value Pf t, we resort to 100/Pf t and 104 independent trials,
respectively. Finally, we compute also the Root Mean Square Error (RMSE) defined as:

RMSE =

√√√√√ 1
n

M

∑
m=1

∑
(r,d)∈Ω̂(L)

m

(∆r2
r + ∆d2

d), (30)

where n is the number of the Monte Carlo trials, ∆rr and ∆dd are the range and Doppler
error respectively between the true and the estimated range-Doppler target coordinates.

As natural competitors for the proposed TBD algorithm, we consider two compressed-
sensing-based TBD algorithms obaitined by exploiting OMP and CoSaMP which are
referred to in the following as OMP-based and CoSaMP-based TBD algorithms, respectively.
This choice is dictated by the fact OMP and CoSaMP are considered the main benchmark
in the context of compressed sensing [54].

For the sake of clarity, Table 1 lists the simulation parameters used in the three test
cases and performance analysis, and a detailed discussion can be found in Sections 3 and 4
respectively.
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Table 1. Main simulation parameters. In bold italics are indicated values adopted in Monte Carlo
simulation for performance analysis as described in Section 4.

Parameter Value

Number of antenna sensors (Ns) 4
Antennas inter-element spacing (h) λ/2
Number of pulses (Np) 4
Carrier frequency ( fc) 1.388 GHz
Pulse Repetition Frequency (PRF) 917 Hz
Number of range bins (NR) 15, 12
Range spatial resolution (Rmin) 30 m
Doppler interval | fd |≤ PRF/2
Number of Doppler points (ND) 51, 25
Azimuth view angle (θ0) π/2
Number of targets (L) 2
Maximum radial target velocity 49.5 m/s
SLIM convergence threshold (∆SLIM) 10−3

Maximum SLIM iterations 25
k-means convergence threshold (∆k-means) 10−3

Number of radar scans (M) 5, 4
Scan Repetition Time (SRT) 0.68 s
Indipendent Monte Carlo trials (n) 1000

3.1. Case Study 1

In the first test case, we consider the two separate targets approaching the radar with
different and constant velocities. At the beginning of the radar scanning, the first target
is located in the range bin r11 = 6 (starting from a relative position of 15 m) with velocity
v1 = +25.76 m/s while the second target in the range bin r21 = 12 (starting from a relative
position of 15 m) with velocity v2 = +41.62 m/s. Considering the carrier frequency value
and according to the velocity-frequency Doppler relationship, the velocities of the targets
correspond to the Doppler frequency fd1 = +238.42 Hz (Doppler point d11 = 39) and
fd2 = +385.14 Hz (Doppler point d21 = 47) for the first and the second target respectively.
Figure 4 shows the outputs of interest obtained for a single Monte Carlo trial at a fixed
SINR = 9 dB according to the definition given in (28). In detail, Figure 4a shows the
output of the matched filter at the receiver, that is the input of the overall processing chain.
In Figure 4b the output of the SLIM algorithm is presented. By this figure, it is evident
that the estimated signal vector (i.e., α̂m) during the scanning is sparse, in fact most of its
value are zeros. However, non-zero values are representative of the range-Doppler target
coordinate and its amplitude. This concept is better highlighted in Figure 4c where the
Doppler points are stacked over the correspondent range bin. Thanks to this particular
representation, is evident in an intuitive way the target paths during the radar scanning, but
it is important to remark that this kind of representation is useful for a visual understanding
and it is not used in the next stage of data processing, the track formation, because it leads
to a loss of informations in the Doppler domain. Figure 4d–f illustrate in different ways
the output obtained by the track retrieval stage. In particular, Figure 4d,e show the range
bins and the Doppler point estimated for the detected targets during the radar scanning
compared to true target positions. In this specific simulation no errors occur in range bins
estimation (Figure 4d), while from Figure 4e is possible to identify some errors in Doppler
point estimations attributable to the SLIM algorithm. Finally, Figure 4f summarizes the
range-Doppler bin estimation or each targets, highlighting the spatial targets’ movements
during the radar scanning.
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Figure 4. Sparse Learning via Iterative Minimization (SLIM)-based Track-Before-Detect (TBD) for the first test case. The radar
scenario provides two distant targets in range and Doppler approaching the radar. Simulation is performed for a single
Monte Carlo trial at Signal-to-Interference-plus-Noise ratio (SINR) = 9 dB.
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3.2. Case Study 2

In the second test case we consider again the two targets approaching the radar
with an intersection between their trajectories. Specifically, at the beginning of the radar
scanning, the first target is located in the range bin r11 = 10 (starting from a relative
position of 25 m) and the second one in the range bin r21 = 8 (starting from a relative
position of 15 m). First target velocity is v1 = +47.56 m/s (corresponding to frequency
Doppler fd1 = +440.16 Hz and Doppler point d11 = 50), while for the second target it is
v2 = +7.92 m/s (corresponding to the frequency Doppler fd2 = +73.36 Hz and Doppler
point d21 = 30) so that during the M radar scans the first target overtakes the second one.
This test case is quite interesting because, being the targets spatially close, it is possible
to understand some limitations of the proposed processing chain. As in the previous test
case, Figure 5 shows the specific results obtained for a fixed SINR = 9 dB. In particular,
in Figure 5d is shown the correct range bin trajectory for each detected target while from
Figure 5e it is possible to notice some errors, due to the SLIM algorithm, in determining
the correct Doppler position. Regarding range bins track estimation, it is also interesting to
note that the first target has a double range bin transition between the second and the third
scans. This test case is equivalent to which one where targets are spatially distant but with
comparable velocities.

3.3. Case Study 3

For the third test case, we consider the two targets moving in opposite directions that
means the first target moves approaching the radar while the second one moves away from
it. In detail, at the beginning of the radar scanning, the first target is located in the range
bin r11 = 10 (starting from a relative position of 15 m) with velocity v1 = +39.63 m/s
(corresponding to the frequency Doppler fd1 = +366.80 Hz and Doppler point d11 = 46)
while the second target is in the range bin r21 = 6 (starting from a relative position
of 15 m) and moves with velocity v2 = −25.76 m/s (corresponding to the frequency
Doppler fd2 = −238.42 Hz and Doppler point d21 = 13). According this configuration
targets trajectories cross during the radar scans. Figure 6 shows the specific results for
SINR = 9 dB. In Figure 6d is shown the correct Range bins retrieval for both targets during
radar scans while Figure 6e reveals the Doppler points estimation during scanning. It is
possible to note a single error occurring in Doppler point retrieval only for the first target
in the fist scan.
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Figure 5. SLIM-based TBD for the second test case. The radar scenario provides two targets approaching the radar with
overlapping trajectories. Simulation is performed for a single Monte Carlo trial at SINR = 9 dB.
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Figure 6. SLIM-based TBD for the third test case. The radar scenario provides two targets that move in different directions
overlapping trajectories. Simulation is performed for a single Monte Carlo trial at SINR = 9 dB.
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4. Discussion

In the previous Section, three different scenarios are presented to show the tracking
performance of the proposed SLIM-based TBD method. Here, we focus on the performance
of the overall proposed processing chain compared with other TBD strategies based on
alternative compressive sensing algorithms. More precisely, we resort to the OMP and
CoSaMP [43,44,54] the main benchmarks in the context of the compressed sensing. In what
follows, we refer to these competitors as OMP-based TBD and CoSaMP-based TBD al-
gorithm. The performance evaluation of the proposed processing chain is carried out
resorting to Monte Carlo simulation with 1000 independent trials for each algorithm.

We take into account the scenario as defined in the first test case and, to avoid long
simulation times, some parameter intervals are suitably reduced without losing in gen-
erality. Specifically, in this numerical simulations we consider NR = 12, ND = 25 and
M = 4.

Simulation results are shown in Figure 7. More precisely, in Figure 7a we plot the Pdt
versus SINR, while in Figure 7b we plot RMSE versus the SINR, for the three algorithm
respectively. By inspecting Figure 7a, it can be seen that the proposed SLIM-based TBD
algorithm obtains unity probability of track detection at the lowest SINR (15 dB) compared
with the OMP-based TBD and CoSaMP-based TBD algorithms which is almost the same
(21 dB). This means that TBD strategy based on SLIM guarantees a significant of gain
of 6 dB respect to the matching pursuit approaches. This also shows that the proposed
SLIM-based TBD algorithm is resilient to the measurement noise. It can be seen from
Figure 7b that the proposed algorithm obtains the lowest RMSE compared with the other
two algorithms. The proposed TBD strategy can perform perfect detection of targets with
measurement noise when the SINR is above 15 dB.

Finally, we describe the software and the hardware to do used for the numerical
results and performance analysis. Specifically, we use a workstation equipped with an
Intel® Xenon® CPU E-5-1620 v2 @ 3.70 GHz and 16 GB RAM. MATLAB® scripts are
implemented and developed to simulate the overall processing chain.
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Figure 7. Probability of detection and correct track estimation versus SINR in subplot (a), and RMSE versus SINR in subplot
(b) computed resorting to Monte Carlo simulation.

5. Conclusions

In this paper we have proposed a novel approach to multiple targets TBD for air
surveillance radar applications based on sparse data processing. In the first part of the
paper we have presented the problem formulation, then we have proposed the relative
processing chain. This is based on three stages: the sparse learning, the track formation, and
the ad hoc detector. To test it, we have analysed initially three operating scenarios which
differ for targets configuration in terms of relative positions and velocities. The adopted
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radar parameters refer to the Lockheed Martin FPS-117, a military radar system currently in
use. The performance assessment has highlighted that the proposed detection architecture
exhibits satisfactory performances and, more importantly, the SLIM-based detector guar-
antees significant gain in terms of detection probability and track estimation, compared
with the natural competitors OMP-based and CoSaMP-based TBD algorithms. Moreover,
simulation results show that the proposed processing chain can track and detect multiple
targets successfully.

Regarding future developments, considerations could be, firstly, the extension of the
present work to the range-azimuth-Doppler domain. Furthermore, particular configura-
tions could be taken into consideration, such as targets with different scattering properties
or that change their trajectory. Improvements in the processing chain mainly concern the
clustering algorithm for the track formation. In fact, specific constraints could be adopted
in the k-means algorithm application to achieve better clustering capabilities, or, in addi-
tion, it could be useful to investigate other different clustering or path finding algorithms,
such as Viterbi.
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