Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Airborne Imagery and Processing
2.3. Relationship with Fire Severity Field Data
2.4. Spectral Index Optimality
2.5. Analysis
3. Results
3.1. Relationships between Field and Airborne Data
3.2. Optimality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildl. Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Westerling, A.L.R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef]
- Stavros, E.N.; Abatzoglou, J.T.; McKenzie, D.; Larkin, N.K. Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States. Clim. Chang. 2014, 126, 455–468. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Eitel, J.U.H.; Hudak, A.T. Spectral analysis of charcoal on soils implications. Int. J. Wildl. Fire 2010, 19, 976–983. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildl. Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Hammill, K.A.; Bradstock, R.A. Remote sensing of fire severity in the Blue Mountains: Influence of vegetation type and inferring fire intensity. Int. J. Wildl. Fire 2006, 15, 213–226. [Google Scholar] [CrossRef]
- Chafer, C.J. A comparison of fire severity measures: An Australian example and implications for predicting major areas of soil erosion. Catena 2008, 74, 235–245. [Google Scholar] [CrossRef]
- Chafer, C.J.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildl. Fire 2004, 13, 227–240. [Google Scholar] [CrossRef]
- González-Alonso, F.; Merino-De-Miguel, S.; Roldán-Zamarrón, A.; García-Gigorro, S.; Cuevas, J.M. MERIS full resolution data for mapping level-of-damage caused by forest fires: The Valencia de Alcántara event in August 2003. Int. J. Remote Sens. 2007, 28, 797–809. [Google Scholar] [CrossRef]
- Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M. Classifying and Mapping Wildfire Severity: A Comparison of Methods. Photogramm. Eng. Remote Sens. 2005, 71, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- Jain, T.B. Tongue-Tied: Confused meanings for common fire terminology can lead to fuels mismanagement. Wildfire 2004, 22–26. [Google Scholar]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildl. Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildl. Fire 2010, 19, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Key, C.H. Remote sensing sensitivity to fire severity and fire recovery. In Proceedings of the 5th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, Zaragoza, Spain, 16–18 June 2005; pp. 29–39. [Google Scholar]
- Jakubauskas, M.E.; Lulla, K.P.; Mausel, P.W. Assessment of vegetation change in a fire-altered forest landscape. PE&RS Photogramm. Eng. Remote Sens. 1990, 56, 371–377. [Google Scholar]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. Int. J. Wildl. Fire 2005, 14, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ. 2004, 92, 397–408. [Google Scholar] [CrossRef]
- García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildl. Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Pereira, J.M.C.; Peres, L.F. Retrieving middle-infrared reflectance for burned area mapping in tropical environments using MODIS. Remote Sens. Environ. 2010, 114, 831–843. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Pereira, J.M.C.; Peres, L.F. Retrieving middle-infrared reflectance using physical and empirical approaches: Implications for burned area monitoring. IEEE Trans. Geosci. Remote Sens. 2012, 50, 281–294. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Pereira, J.M.C.; Peres, L.F. On a new coordinate system for improved discrimination of vegetation and burned areas using MIR/NIR information. Remote Sens. Environ. 2011, 115, 1464–1477. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Slutsker, I.; Setzer, A. Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia. J. Geophys. Res. Atmos. 1998, 103, 31865–31878. [Google Scholar] [CrossRef]
- Pereira, J.M.C. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans. Geosci. Remote Sens. 1999, 37, 217–226. [Google Scholar] [CrossRef]
- Casas, Á.; García, M.; Siegel, R.B.; Koltunov, A.; Ramírez, C.; Ustin, S. Burned forest characterization at single-tree level with airborne laser scanning for assessing wildlife habitat. Remote Sens. Environ. 2016, 175, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Stavros, E.N.; Coen, J.; Peterson, B.; Singh, H.; Kennedy, K.; Ramirez, C.; Schimel, D. Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction. Remote Sens. Appl. Soc. Environ. 2018, 11, 41–50. [Google Scholar] [CrossRef]
- Tane, Z.; Roberts, D.; Veraverbeke, S.; Casas, Á.; Ramirez, C.; Ustin, S. Evaluating endmember and band selection techniques for multiple endmember spectral mixture analysis using post-fire imaging spectroscopy. Remote Sens. 2018, 10, 389. [Google Scholar] [CrossRef] [Green Version]
- Stavros, E.N.; Tane, Z.; Kane, V.R.; Veraverbeke, S.; McGaughey, R.J.; Lutz, J.A.; Ramirez, C.; Schimel, D. Unprecedented remote sensing data over King and Rim megafires in the Sierra Nevada Mountains of California. Ecology 2016, 97, 3244. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Illumination effects on the differenced Normalized Burn Ratio’s optimality for assessing fire severity. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 60–70. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Chuvieco, E. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 2009, 113, 554–562. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA) Sampling and Analysis Methods. Available online: https://www.fs.usda.gov/treesearch/pubs/24066 (accessed on 20 January 2021).
- Veraverbeke, S.; Stavros, E.N.; Hook, S.J. Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities. Remote Sens. Environ. 2014, 154, 153–163. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B. Designing optimal spectral indexes for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1254–1265. [Google Scholar] [CrossRef]
- Hall, R.J.; Freeburn, J.T.; De Groot, W.J.; Pritchard, J.M.; Lynham, T.J.; Landry, R. Remote sensing of burn severity: Experience from western Canada boreal fires. Int. J. Wildl. Fire 2008, 17, 476–489. [Google Scholar] [CrossRef]
- Murphy, K.A.; Reynolds, J.H.; Koltun, J.M. Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. Int. J. Wildl. Fire 2008, 17, 490–499. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Hook, S.J.; Harris, S. Synergy of VSWIR (0.4–2.5 μm) and MTIR (3.5–12.5 μm) data for post-fire assessments. Remote Sens. Environ. 2012, 124, 771–779. [Google Scholar] [CrossRef]
- García, M.; North, P.; Viana-Soto, A.; Stavros, N.E.; Rosette, J.; Martín, M.P.; Franquesa, M.; González-Cascón, R.; Riaño, D.; Becerra, J.; et al. Evaluating the potential of LiDAR data for fire damage assessment: A radiative transfer model approach. Remote Sens. Environ. 2020, 247. [Google Scholar] [CrossRef]
NDSIs | Pre- and Post-Fire Differences | ||
---|---|---|---|
NBR1 = (Band 9 + Band 21)/(Band 9 − Band 21), | (1a) | dNBR1 = NBR1,pre − NBR1,post, | (1b) |
NBR2 = (Band 9 + Band 22)/(Band 9 − Band 22), | (2a) | dNBR2 = NBR2,pre − NBR2,post, | (2b) |
NBR3 = (Band 9 + Band 23)/(Band 9 − Band 23), | (3a) | dNBR3 = NBR3,pre − NBR3,post, | (3b) |
NDVIMID,1 = (Band 9 + Band 28)/(Band 9 − Band 28), | (4a) | dNDVIMID,1 = NDVIMID,1,pre − NDVIMID,1,post, | (4b) |
NDVIMID,2 = (Band 9 + Band 29)/(Band 9 − Band 29), | (5a) | dNDVIMID,2 = NDVIMID,2,pre − NDVIMID,2,post, | (5b) |
NDVIMID,3 = (Band 9 + Band 30)/(Band 9 − Band 30), | (6a) | dNDVIMID,3 = NDVIMID,3,pre − NDVIMID,3,post | (6b) |
Scheme | Fire Severity Scale | ||||||
---|---|---|---|---|---|---|---|
No Effect | Low Effect | Moderate Effect | High Effect | ||||
0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | |
Substrates | FCOV | FCOV | |||||
Litter (l) or light fuel (lf) consumed | 0% | - | 50% (l) | - | 100% (l) | >80% (lf) | 98% (lf) |
Duff | 0% | - | Light char | - | 50% | - | Consumed |
Medium or heavy fuel | 0% | - | 20% | - | 40% | - | >60% |
Soil and rock cover–colour | 0% | - | 10% | - | 40% | - | >80% |
Herbs, low shrubs and trees less than 1 m | FCOV | FCOV | |||||
Percentage foliage altered | 0% | - | 30% | - | 80% | 95% | 100% |
Frequency percentage living | 100% | - | 90% | - | 50% | <20% | 0% |
New sprouts | Abundant | - | Moderate-high | - | Moderate | - | Low-none |
Tall shrubs and trees 1 to 5 m | FCOV | FCOV | |||||
Percentage foliage altered | 0% | - | 20% | - | 60–90% | >95% | Branch loss |
Frequency percentage living | 100% | - | 90% | - | 30% | <15% | <1% |
LAI change percentage | 0% | - | 15% | - | 70% | 90% | 100% |
Intermediate trees 5 to 20 m | FCOV | FCOV | |||||
Percentage green (unaltered) | 100% | - | 80% | - | 40% | <10% | None |
Percentage black or brown | 0% | - | 20% | - | 60–90% | >95% | Branch loss |
Frequency percentage living | 100% | - | 90% | - | 30% | <15% | <1% |
LAI change percentage | 0% | - | 15% | - | 70% | 90% | 100% |
Char height | None | - | 1.5 m | - | 2.8 m | - | >5 m |
Big trees 4 to 20 m | FCOV | FCOV | |||||
Percentage green (unaltered) | 100% | - | 80% | - | 50% | <10% | None |
Percentage black or brown | 0% | - | 20% | - | 60–90% | >95% | Branch loss |
Frequency percentage living | 100% | - | 90% | - | 30% | <15% | <1% |
LAI change percentage | 0% | - | 15% | - | 70% | 90% | 100% |
Char height | None | - | 1.8 m | - | 4 m | - | >7 m |
Sample Plot | Description |
---|---|
High fire severity GeoCBI rating: 3.00 Large portions of downed fuels are consumed. Substantial soil exposure and soil colour change. Shrubs are absent and only few resprouts are present. The overstorey is mostly consumed, some brown needles have remained. | |
Moderate fire severity GeoCBI rating: 1.25 Moderate char and minor fuel consumption. Most of the herbs and shrubs are still present. Some tree crowns are blackened, and a substantial amount of green canopy remains. | |
Low fire severity GeoCBI rating: 0.56 Light char and minor consumption of downed fuels. Most of the understory plants have remained unaltered, some shrubs show mortality. Canopy tops are almost unaltered. |
Rim Fire | King Fire | Overall | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | RMSE | a | b | R2 | RMSE | a | b | R2 | RMSE | |
dNBR1(a) | −0.71 | 6.75 | 0.52 | 0.33 | −5.70 | 19.83 | 0.81 | 0.65 | −3.42 | 13.82 | 0.67 | 0.45 |
dNBR2(b) | −0.39 | 5.80 | 0.50 | 0.32 | −5.00 | 17.81 | 0.80 | 0.60 | −2.95 | 12.43 | 0.66 | 0.44 |
dNBR3(c) | −0.56 | 6.21 | 0.52 | 0.33 | −5.80 | 20.16 | 0.82 | 0.66 | −3.47 | 13.94 | 0.68 | 0.45 |
dNDVIMID,1(d) | −19.58 | 67.53 | 0.60 | 0.25 | −19.16 | 63.11 | 0.57 | 6.60 | −15.70 | 54.40 | 0.55 | 0.29 |
dNDVIMID,2(e) | −7.62 | 28.33 | 0.60 | 0.33 | −14.58 | 47.07 | 0.67 | 6.65 | −10.71 | 36.60 | 0.61 | 0.48 |
dNDVIMID,3(f) | −6.02 | 22.60 | 0.55 | 0.39 | −15.15 | 48.17 | 0.68 | 7.54 | −10.57 | 35.48 | 0.61 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Gerrevink, M.J.; Veraverbeke, S. Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio. Remote Sens. 2021, 13, 695. https://doi.org/10.3390/rs13040695
van Gerrevink MJ, Veraverbeke S. Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio. Remote Sensing. 2021; 13(4):695. https://doi.org/10.3390/rs13040695
Chicago/Turabian Stylevan Gerrevink, Max J., and Sander Veraverbeke. 2021. "Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio" Remote Sensing 13, no. 4: 695. https://doi.org/10.3390/rs13040695
APA Stylevan Gerrevink, M. J., & Veraverbeke, S. (2021). Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio. Remote Sensing, 13(4), 695. https://doi.org/10.3390/rs13040695