
remote sensing  

Article

Crop Type and Land Cover Mapping in Northern Malawi Using
the Integration of Sentinel-1, Sentinel-2, and PlanetScope
Satellite Data

Daniel Kpienbaareh 1,* , Xiaoxuan Sun 1, Jinfei Wang 1,2 , Isaac Luginaah 1 , Rachel Bezner Kerr 3 ,
Esther Lupafya 4 and Laifolo Dakishoni 4

����������
�������

Citation: Kpienbaareh, D.; Sun, X.;

Wang, J.; Luginaah, I.; Bezner Kerr, R.;

Lupafya, E.; Dakishoni, L. Crop Type

and Land Cover Mapping in Northern

Malawi Using the Integration of

Sentinel-1, Sentinel-2, and PlanetScope

Satellite Data. Remote Sens. 2021, 13,

700. https://doi.org/10.3390/

rs13040700

Academic Editor: Feng Ling

Received: 28 December 2020

Accepted: 10 February 2021

Published: 14 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geography and Environment, Social Science Centre, Western University, London,
ON N6A 5C2, Canada; xsun324@uwo.ca (X.S.); jfwang@uwo.ca (J.W.); iluginaa@uwo.ca (I.L.)

2 Institute for Earth and Space Exploration, Western University, London, ON N6A 3K7, Canada
3 Department of Global Development, College of Agriculture and Life Sciences, Cornell University,

Ithaca, NY 14853, USA; rbeznerkerr@cornell.edu
4 Soils, Food and Healthy Communities (SFHC), P.O. Box 36 Ekwendeni, Malawi; elupafya@gmail.com (E.L.);

dakishoni@gmail.com (L.D.)
* Correspondence: dkpienba@uwo.ca

Abstract: Mapping crop types and land cover in smallholder farming systems in sub-Saharan Africa
remains a challenge due to data costs, high cloud cover, and poor temporal resolution of satellite
data. With improvement in satellite technology and image processing techniques, there is a potential
for integrating data from sensors with different spectral characteristics and temporal resolutions to
effectively map crop types and land cover. In our Malawi study area, it is common that there are
no cloud-free images available for the entire crop growth season. The goal of this experiment is
to produce detailed crop type and land cover maps in agricultural landscapes using the Sentinel-1
(S-1) radar data, Sentinel-2 (S-2) optical data, S-2 and PlanetScope data fusion, and S-1 C2 matrix
and S-1 H/α polarimetric decomposition. We evaluated the ability to combine these data to map
crop types and land cover in two smallholder farming locations. The random forest algorithm,
trained with crop and land cover type data collected in the field, complemented with samples
digitized from Google Earth Pro and DigitalGlobe, was used for the classification experiments.
The results show that the S-2 and PlanetScope fused image + S-1 covariance (C2) matrix + H/α
polarimetric decomposition (an entropy-based decomposition method) fusion outperformed all
other image combinations, producing higher overall accuracies (OAs) (>85%) and Kappa coefficients
(>0.80). These OAs represent a 13.53% and 11.7% improvement on the Sentinel-2-only (OAs < 80%)
experiment for Thimalala and Edundu, respectively. The experiment also provided accurate insights
into the distribution of crop and land cover types in the area. The findings suggest that in cloud-dense
and resource-poor locations, fusing high temporal resolution radar data with available optical data
presents an opportunity for operational mapping of crop types and land cover to support food
security and environmental management decision-making.

Keywords: crop classification; data fusion; food security; random forest classification; PlanetScope;
Sentinel-1; Sentinel-2

1. Introduction

Mapping agricultural landscapes to identify crop types, analyze the spatial distri-
bution of crops and cropping systems, and document land cover types in countries in
the Global South is critical for guiding agricultural and environmental planning decision-
making, especially in areas experiencing rapid climate change and chronic food insecurity.
The type of crops and land cover on the landscape contribute to preventing soil degra-
dation and maintaining soil health [1–3]. The diversity of crops on the landscape also
contributes to weed control on farmlands and yield improvements by reducing the ability
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of some pests and diseases to propagate and spread [4–6]. Further, a diverse landscape that
comprises different crop cultivars and varying plant species supports ecosystem services,
including pollination and water quality [7]. Smallholder agriculture is responsible for
84% of the 570 million farms worldwide [8], sustains the food needs of about two-thirds
of the more than 3 billion rural inhabitants globally [9], and produces one-third of all
food consumed worldwide [10,11]. Moreover, the types of crops and their diversity in the
landscape reflects nutrition diversity and food security more broadly [12]. Despite the
global significance of smallholder agriculture, there are information gaps on the types of
crops cultivated and where the crops are grown, with a paucity of crop inventory data.
Yet, information on the types and distribution of crops is essential for monitoring crop
yield progress, understanding management practices, prioritizing agrarian policies, and
guiding environmental management decisions [13,14]. Due to limited government-led
efforts, however, the responsibility has been on researchers and scholars to lead the process
of mapping crop and land cover types in such complex landscapes. Many governments
in sub-Saharan Africa (SSA) are unable to keep up-to-date crop inventory maps because
of the limited infrastructure and resources needed to conduct regular field surveys [15].
Additionally, in countries where the government successfully sponsors such data collection
efforts, the data are often not collected in real time to guide within-season decision-making.
In SSA countries where crop inventories are available, the lack of resources for conducting
routine detailed surveys leads to the data being aggregated at the regional or national scale
or covering only parts of a given country [16,17].

Remote sensing has emerged as a low-cost near-real-time technique for large scale
operational mapping of agricultural landscapes [18,19]. Advancements in data storage
and satellite technology have improved crop type and land cover mapping tremendously
over the last few decades. In many countries, crop inventory maps are based on such
satellite data. For instance, in the United States, the Department of Agriculture, National
Agricultural Statistics Service, generates annual Cropland Data Layer using Landsat and
other satellite data, while Agriculture and Agri-Food Canada applies synthetic aperture
radar (SAR) data for operational crop inventory mapping. The development of image clas-
sification algorithms including machine learning, convolutional neural networks, and deep
learning has further improved the accuracy of crop type maps at the field scale in many
parts of the world [20–22]. In resource-poor settings in SSA where climate change is pre-
dicted to have more severe impacts, the advancements in satellite remote sensing and
algorithms present an opportunity to develop crop type maps as decision support and
resilience-building to food insecurity. Wang et al. [23] contend that remote sensing can
aid with crop type mapping if field-level ground data are collected using field surveys to
train and validate models to help identify crop types. Even with detailed ground truth
data, mapping crop types in the context of smallholder agriculture remains complex be-
cause farmlands are smaller, farm-level species are more diverse, agricultural practices
are more variable, and intercropping and crop rotations are predominant [8,24,25]. These
complexities, coupled with the inadequate reference data (such as crop inventories), imply
that identifying and mapping crop types using the regular remote sensing classification
methods and moderate resolution data may fail to help identify crop types. The improve-
ment in accuracy of spatial data collection devices including Global Positioning System
(GPS) devices and some smartphones can be harnessed for large-scale ground truth data
collection for mapping accurate crop types and land cover in smallholder farming systems.

Increasingly, the integration of data from remote sensors with different characteristics
(e.g., optical and radar) has gained prominence due to their superior ability to separate
different crop and land cover classes in heterogeneous landscapes. Previous studies have
applied such an integrative approach to improving classification accuracies. For instance,
Wang et al. [23] used crowdsourced ground truth data with Sentinel-1 and Sentinel-2 data
and applied a deep learning classification technique to identify rice and cotton crops in
India. Wang, Azzari, and Lobell [26] used Landsat data to map crop types in the US
Midwest. In terms of land cover type mapping, Kaplan and Avdan [27] fused Sentinel-1
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and Sentinel-2 data to map wetlands in Turkey while Slagter et al. [28] fused Sentinel-1 and
Sentinel-2 data to map wetlands in South Africa. Kannaujiya et al. [29] integrated electrical
resistivity tomography and ground-penetrating radar to map landslides in Kunjethi, while
Yan et al. [30] integrated Landsat-8 optical data and Sentinel-1A to detect underground
coal fires in China. Venter et al. [31] assessed the efficacy of mapping hyperlocal Tair over
Oslo in Norway by integrating Sentinel, Landsat, and light detection and ranging (LiDAR)
data with crowdsourced Tair measurements.

In this study, the overall goal is to examine how the integration of multitemporal dual-
polarized Sentinel-1 SAR data and multispectral Sentinel-2 and PlanetScope optical data
can be used for crop type and land cover mapping in complex heterogeneous agricultural
landscapes using a machine learning classification algorithm. The objective is to explore
the potential of several possible integrations of Sentinel-1 SAR, Sentinel-2 optical, and high-
resolution PlanetScope optical data with diverse data processing techniques for accurate
mapping of crop types and land cover in a smallholder agricultural system. Specifically,
we compare the results of classifying (i) Sentinel-1-only images, (ii) Sentinel-2-only images,
(iii) the fusion of Sentinel-2 and PlanetScope images, (iv) Sentinel-2 and PlanetScope fused
image + Sentinel-1 C2 matrix, and (v) Sentinel-2 and PlanetScope fused image + Sentinel-1
C2 matrix + H/α polarimetric decomposition image. The experiments did not consider
PlanetScope-only analysis because our goal was to use the PlanetScope image to sharpen
the Sentinel-2 images which have more bands, including the red edge band that is more
useful for identifying the biophysical variables in vegetation [32]. The experiments are
focused on two smallholder agricultural landscapes in rural northern Malawi. The hilly
topography in the study locations means that cropping types and land cover characteristics
tend to vary over short distances. Our final map, therefore, shows crop types and land cover
categories and their distribution. Understanding the distribution of crop and land cover
types in these two locations will provide a good overview of the agricultural landscape in
the entire region since cropping patterns are generally similar.

2. Materials and Methods
2.1. Study Area Description

The study was conducted in the Edundu village area (land area = ~29 km2) with
center location of latitude 11◦22.545′ S, longitude 33◦46.982′ E, and Thimalala village area
(land area = ~22 km2) with center location of latitude 11◦16.736′ S, longitude 33◦50.995′ E,
in northern Malawi (Figure 1). A village area comprises several smaller communities predom-
inantly engaged in smallholder agriculture. The study locations are in the Mzimba district
in northern Malawi. Soils in the district are moderately fertile, generally medium- to light-
textured, mostly sandy-loam and loamy, with moderate to good drainage [33]. The climatic
type in the area is semi-humid, with average monthly maximum temperatures ranging from
27 to 33 ◦C in the summer (November to April), and from 0 to 10 ◦C during the winter months
(May to August). Annual rainfall amounts range from 800 to 1000 mm [34] which, in a good
rainy season, makes the area suitable for the cultivation of a wide variety of crops, includ-
ing cereals, legumes, and tobacco. The main economic activities in the area are subsistence
agriculture and commercial tobacco cultivation [33]. As these smallholders predominantly
rely upon rainfed agriculture, the growing season coincides with a rainy season that begins
in November or December and ends in April. Maize is the most important subsistence crop
cultivated in much of Malawi and is often intercropped with soybeans, groundnuts, beans,
and pumpkins in the two study locations. In the last few decades, the district has often been
impacted by extreme climate events such as floods and droughts, with predictions that these
extremes will worsen as global climate change intensifies [33]. Understanding the dominant
crop types and land cover and their distribution in the area will facilitate decision-making to
build resilience to these current and projected changes in the climate. Dry season farming
(dimba gardening) in valleys contributes significantly to household food security and income
in the area for households that have access to the wetlands [35]. This research was part of
a broader participatory interdisciplinary research project aimed at understanding the rela-
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tionship between farm management practices, wild biodiversity, and ecosystem services, to
develop scenarios for community action plans.
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2.2. Data Acquisition
2.2.1. Satellite Data

A combination of radar (Sentinel-1) and optical (Sentinel-2 and PlanetScope) satellite
images were used in this study. The sensor specifications of the data used are presented in
Table 1. The Sentinel-1 constellation has two satellites—Sentinel-1A and Sentinel-1B, which
were launched in April 2014 and April 2016, respectively. Sentinel-1 Single Look Complex
(SLC) products, provided by the European Space Agency (ESA), consist of SAR data in the
C-band and capture 5–20 m spatial resolution imagery. The two satellites have a combined
revisit period of 6 days [36]. SAR images contain coherent (interferometric phases) and
incoherent (amplitude features) information. The interferometric wide (IW) swatch mode,
which acquires images with dual-polarization (vertical transmit, vertical receive (VV) and
vertical transmit, horizontal receive (VH)), was used [36]. Abdikan et al. [37] investigated
the efficiency of Sentinel-1 SAR images in land cover mapping over Turkey and found
that the dual polarimetric Sentinel-1 SAR data can be used to produce accurate land cover
maps. SAR products are mostly used in combination with optical images to improve crop
classification accuracy [38] and class discrimination [39] since they are not affected by
clouds, haze, and smoke.

Table 1. Comparison of sensor specifications for Sentinel-1, Sentinel-2, and PlanetScope.

Sentinel-1 Sentinel-2 PlanetScope

Resolution 5 × 20 m 10, 20, and 60 m 3-m

Band type C-band Coastal aerosol, Blue,
Green, Red, NIR, and SWIR Red, Green, Blue, and NIR

Revisit time 6 days 5 days Daily
Orbit Height 693 km 786 km 475 km

Orbit inclination 98.18◦ 98.62◦ ~98◦

Spectral range 3.75–7.5 cm 0.44–2.19 µm 0.45–0.67 µm
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The Sentinel-2 data used in this study were also acquired from the ESA. The Sentinel-
2A (launched in June 2015) and 2B (launched in March 2017) satellites have a combined
revisit period of 5 days, making them suitable for monitoring crop growth compared to
other satellites, such as the Landsat, that have a lower temporal resolution. Both Sentinel-2A
and Sentinel-2B satellites carry a single multispectral instrument with 13 spectral bands. We
used a top of the atmosphere (TOA) reflectance product (Level-1C) provided freely by the
ESA for this study. A higher-level surface reflectance product (Level-2A) can be obtained
from the Level-1C using the Sentinel Application Platform (SNAP) toolbox version 7.0 [40].
Spectral bands of the Level-1C products used in this study are bands 2, 3, 4, and 8, at 10-m
spatial resolution, and bands 5, 6, 7, and 8A, at 20-m spatial resolution. All the 20-m spatial
resolution bands were resampled to 10-m resolution to make them comparable with the
10 m bands. The relatively higher 10-m resolution produces improved crop and land cover
classification accuracy. Several previous studies have shown that Sentinel-2 data can be
used to identify crop types [21,23,41].

The PlanetScope constellation of satellites presently has about 130+ CubeSats (4-kg
satellites) operated by Planet Labs [42]. The majority of these CubeSats are in a sun-
synchronous orbit with an equator crossing time between 9:30 and 11:30 (local solar
time) [42]. PlanetScope images have four spectral bands—blue (455–515 nm), green
(500–590 nm), red (590–670 nm), and near-infrared (NIR) (780–860 nm). We used the Level-
3B surface reflectance products that were atmospherically corrected by Planet Labs using
the 6S radiative transfer model with ancillary data from Moderate Resolution Imaging
Spectroradiometer (MODIS) [42,43]. Due to its high spatial resolution, the application of
PlanetScope images includes change detection [44], crop monitoring [45], and vegetation
detection [46]. Unlike the other data used in this study, PlanetScope data are not free,
but through the Education and Research program of Planet Labs, special permission was
given for free download. All the optical images used in this study were selected based on
availability as there is dense cloud cover over the study locations during the rainy season.

Table 2 describes the dates of acquisition of time series satellite data used in this study.
As intimated earlier, only very few cloud-free optical images were found for the study
area during the growing season, a situation that affected the complexity of classification
in our study and the number of experiments to be conducted. Altogether, we acquired
three Sentinel-2 images captured on 7th January and 23rd February 2020, two PlanetScope
images from 23rd February (Thimalala) and 1st April 2020 (Edundu), and six Sentinel-1
radar time-series images between 18th January and 13th February 2020.

Table 2. List of satellite data used in this study.

Source
Imaging dates

Thimalala Edundu

Sentinel-1

18/01/2020
20/01/2020
30/01/2020
01/02/2020
11/02/2020
13/02/2020

Sentinel-2 07/01/2020 07/01/2020
23/02/2020

PlanetScope 23/02/2020 01/04/2020

2.2.2. Field Data Collection

Field data on crop types and land cover were collected, starting in late November
2019 up to the end of April 2020. A team of trained farmer researchers went to farmlands
in the two village areas with GPS devices. On each field, the coordinates of the center
and the boundaries of each farm were recorded in the GPS device and on a predesigned
datasheet. The type of crop(s) and the cropping system (monocrop or mixed/intercrop)
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of each field were also recorded. The coordinates of landcover data were also recorded in
the predesigned datasheets. The location of ancillary data, including vegetation, anthills,
and buildings within each farm was also recorded. Figure 2 shows photographs of crops
in the study locations captured during the field data collection. In all, 1668 ground truth
samples of different crop and land cover types were collected. These included cereals,
legumes, tubers, and vegetables, as well as roads, settlements, forests, and bare lands.
The coordinates of the samples were exported from the GPS devices and the .gpx file
converted to feature datasets in a geodatabase in ArcGIS Pro 2.6.3. More land cover
samples were digitized from Google Earth Pro and DigitalGlobe images to complement
the field data. Seventy percent (70%) of ground truth data were used as training samples,
and the remaining thirty (30%) were used for validation.
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2.3. Data Processing
2.3.1. Radar Data Processing

The Sentinel-1 IW images were preprocessed in twelve steps (Figure 3) using the SNAP
toolbox. The data were first split into sub-swaths to focus on the two study locations and
reduce the size of the image to improve processing efficiency. Due to the reduced sensitivity
to displacement gradient when the Sentinel-1 satellite is scanning, split-bandwidth interfer-
ometry also allows for more multilooking than is possible with standard interferometric
phase in highly deformed areas such as the hilly landscape in northern Malawi. Splitting
the images further improves accuracy in low coherence areas [36]. The orbit state vectors
provided in the metadata of an SAR product are generally not accurate and can be refined
with the precise orbit files. These files are available days-to-weeks after the generation of
the product [47]. The orbit file operator in the SNAP toolbox automatically downloads
the latest released orbit file and applies it to the image so that the image can be geocoded
more precisely.
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Figure 3. Major preprocessing steps for the Sentinel-1 synthetic aperture radar images.

The next preprocessing step was to calibrate the images. SAR calibration produces im-
agery with pixel values that correlate with the radar backscatter of the captured scene [48].
Applying the radiometric correction operator also produces images that can be compared
with other SAR images acquired with different sensors or acquired from the same sensor
but at different times, in different orbits, or processed by different processors. Calibrating
the images used in this study is thus relevant, since a multitemporal analysis is to be
performed [47]. Creating the multitemporal multiband image requires stacking several
Sentinel-1 data collected over the growing season and fusing them with optical data. The
calibration process was followed by debursting. Sentinel-1 IW SLC products consist of
one image per swath per polarization. The IW products that were used have three swaths.
Each sub-swath image consists of a series of bursts. Each burst was processed as a unique
SLC image. To merge all these bursts into a single SLC image, the TOPSAR Deburst and
Merge operator in the SNAP toolbox was applied. The polarimetric matrix generation
process was used to generate a covariance matrix from the Sentinel-1 C-band SAR data [49].
Dual polarimetric SAR sensors collect half of the total polarimetric information involved
in fully polarimetric imagery or quad polarization [50]. This implies that the resolution
cell at each time point is defined by a 2 × 2 covariance (C2) matrix that is obtained from
C3 (representing the average polarimetric information extracted from a set of neighboring
pixels). The resulting C2 matrix is represented by Equation (1).

C2 =

[
C11
C21

C12
C22

]
(1)

Dual polarization imagery has only diagonal elements. As such, the matrix with
off-diagonal components were set to zero and do not follow a complex Wishart distribution;
but, the two diagonal blocks (1 by 1) follow a complex Wishart distribution [51,52].
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Multilooking and polarimetric speckle filtering were applied to reduce speckle noise.
The presence of speckle intensity fluctuations in SLC SAR imagery is the result of the
nature of coherent image formation during SAR data collection [47]. Each radar resolution
cell contains multiple scatters, each of which contributes to the overall signal returned from
the resolution cell. The phase obtained from each scatter is effectively random because
the radar wavelength is normally much smaller than the size of the resolution cell. The
signals from each scatter may be summed according to the principle of superposition,
resulting in constructive and destructive interference [53]. Low reflectivity occurs in cells
where destructive interference dominates, while constructive interference dominates in
cells where high reflectivity prevails. Consequently, the phenomenon of speckle occurs
on the image. Multilooking, which is achieved by dividing the signal spectrum and then
incoherently averaging the recovered sub-images of an SAR image, is widely used to
reduce these speckles in conventional SAR signal processing [54]. The Boxcar polarimetric
speckle filtering method with a 5 × 5 window size was used to further reduce speckle
noise in the image while preserving the complex information of all the bands, enhancing
interpretation, and improving their ability for quantitative analysis. The Boxcar filter is
the simplest filter that locates similar pixels by a moving window with the predefined size.
The filter reduces the speckle phenomenon while producing a blurring visual effect [55].

Polarimetric decomposition was used to separate different scattering contributions
and provide information about the scattering process [56]. Polarimetric decompositions
are techniques used to generate polarimetric discriminators that can be used for analysis,
interpretation, and classification of SAR data [57]. The H/α dual-polarized decomposition
of VV–VH dual-polarization with the window size of 5 × 5 was performed. H/α polari-
metric decomposition is an entropy-based method based on the theory that the polarization
scattering characteristics can be represented by the space of the entropy and the averaged
scattering angle α employing the eigenvalue analysis of Hermitian matrices [52]. The H/α
polarimetric decomposition method proposed by Cloude and Pottier [52] is widely used
for land cover classification and object recognition. The method has good properties such
as rotation invariance, irrelevance to specific probability density distributions, and covers
the whole scattering mechanism space [58]. Only the 2 × 2 covariance matrix was derived,
because the Sentinel-1 product is dual-polarized. The entropy and alpha images were
derived from the H/α dual-polarized decomposition and used for the present analysis.

During range-Doppler terrain correction [59], a Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM) was downloaded automatically from the SNAP
toolbox to fulfill orthorectification [60]. Terrain-correcting the images is important because
the discrepancies in topographical variations of a scene and the tilt of the satellite sensor
distort distances in SAR images. Applying terrain correction compensates for these distor-
tions and make features appear as close as possible to real-world features [59]. The final
image was resampled into 3-m to conform with the optical PlanetScope data. A subset of
all the images is clipped and a stack was then made of all the layers.

2.3.2. Optical Data Processing

For the Sentinel-2 and PlanetScope data, we applied atmospheric correction, topo-
graphic correction, resampling, band stacking, seamless mosaicking, and image sub-setting
as preprocessing steps. The Sentinel-2 Level-2A bottom-of-atmosphere (BOA) products
we acquired are already atmospherically corrected. Examples of preprocessed natural
color and grayscale images of the radar and optical data of the study locations are shown
in Figure 4.

2.4. Image Fusion

Images from different spectral bands have the same geometric information [61]. Based
on this principle of satellite images, Gašparović et al. [62] developed an image fusion
method known as the P + XS fusion, in which an image is perceived as a function whose
sampling corresponds to the discrete matrix form of the image [63]. The P + XS method
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introduces the geometry information of a higher resolution image by aligning all edges
of the higher resolution image with each lower resolution multispectral band. To obtain
the spectral information for the fused image, the method assumes that images captured
in different spectral bands share common geometric information and that the higher
resolution image can be approximated as a linear combination of the high-resolution
multispectral bands [64,65]. Guided by this principle, each Sentinel-2 band was fused with
the corresponding high spatial resolution PlanetScope band that shares similar spectral
characteristics. He et al. [65] observed that using the P + XS method can better preserve
sharp discontinuities such as edges and object contours on an image. The objective of the
fusion was to produce higher resolution Sentinel-2 multispectral fused images from the
original low-resolution Sentinel-2 and high-resolution PlanetScope images.
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The smoothing filter-based intensity modulation (SFIM) [66] was used to fuse the
Sentinel-2 and PlanetScope images. The SFIM aims to produce fused images that have the
highest spatial resolution in the same multispectral bands of the original low-resolution
images. The lower spatial resolution Sentinel-2 bands were fused with the higher spatial
resolution PlanetScope bands based on the principles of the P + XS method. The corre-
sponding bands of the PlanetScope were alternatively used as the high spatial resolution
band in place of panchromatic bands (Table 3). The SFIM technique improves spatial details
while keeping the spectral properties of the images. The digital number (DN) value of the
fused band is defined as:

FUSi =
Xi·Y

Y
, (i = 1, 2, 3, . . . . .) (2)

where FUSi is the DN value of the fused band i, Xi is the corresponding lower spatial-
resolution band I, resampled to the same high resolution as Y, Y represents the high spatial
resolution panchromatic band, and Y represents the Y band being averaged by the low-pass
filtering.

Table 3. Fusion pairs of Sentinel-2 and PlanetScope bands.

Resolution Sentinel-2 Band PlanetScope Band

10 m

Band 2 Band 1
Band 3 Band 2
Band 4 Band 3
Band 8 Band 4

Band 8A Band 4
20 m Band 5,6,7 S = B3+B4

2

For Thimalala, the Sentinel-2 images acquired on 07/01/2020 were fused with the
PlanetScope images on 23/02/2020. For Edundu, the Sentinel-2 images acquired on
07/01/2020 and 23/02/2020 were fused with the PlanetScope images taken on 01/04/2020
separately. Figure 5 shows examples of subset image cropped from the originally prepro-
cessed Sentinel-2 images and the fused (Sentinel-2 + PlanetScope) image. It can be observed
from the images that the fused data are clearer than the original (Figure 5).

2.5. Image Classification

Fourteen (14) crop types in total and eight (8) land cover classes identified in the
two study locations were used as the schema of the classification. The crop type classes
were identified through field data collection. The land cover types were identified based
on field observations during ground truth data collection, as well as from very high
resolution Google Earth Pro and DigitalGlobe images. The supervised random forest
(RF) machine learning algorithm [67] in ENVI 5.3 was used for the classification. As a
non-parametric method, RF benefits from including categorical and continuous datasets
based on well-developed rules and does not require training data to come from a unimodal
distribution [68]. An RF is generated through the creation of a series of decorrelated
decision trees using bootstrapping, thus solving the problem of overfitting and producing
accurate results [67]. Tuning parameters, such as the number of trees and the number of
split candidate predictors, are generally chosen based on the out-of-bag (OOB) prediction
error. RF uses the OOB samples for cross-validation, and once the OOB errors stabilize at
a reasonably large number of trees, training can be concluded. In this study, the model
we used in each experiment consisted of 500 trees and the number of features to split the
nodes was set to half of the features within the corresponding input dataset. Accuracy
of RF classification is often very high, even when based on many input features such as
multitemporal images [69].
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2.6. Post-Classification Processing

A 3 × 3 filter with the majority vote was applied to remove the salt-and-pepper
effect in the classified images. Accuracy assessment was performed to evaluate the
performance of each classification experiment using the ground truth data acquired
from fieldwork, Google Earth Pro, and DigitalGlobe images based on Congalton [70].
The overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and the
Kappa coefficients were computed for each of the five experiments to determine the best-
performing model for identifying crop types and land cover categories. The OA describes
the proportion of pixels correctly classified, with 85% or more generally accepted as
the threshold for a good classification. The PA is the map accuracy from the point of
view of the map producer. It explains how often features on the ground are correctly
shown on the classified map, or the probability that a certain land cover type on the
ground is classified as such [71]. The UA, on the other hand, is the accuracy from the
point of view of a map user. It describes how often the features identified on the map
will be present on the ground [71]. The Kappa coefficient is the ratio of the agreement
between the classifier output and reference data, and the probability that there is no
chance agreement between the classified and the reference data [70].
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3. Results

Table 4 presents the results of the accuracy assessment for all five experiments. For the
Sentinel-1-only experiment, the overall accuracies of both locations were lower than 50%.
For the Sentinel-2-only experiment, the accuracies increased significantly to 72% and 74%,
respectively, but were still lower than expected for an ideal classification. The water class
was better extracted in the Sentinel-2-only experiment, compared with the Sentinel-1-only
experiment. When using the fused image of Sentinel-2 and PlanetScope, the introduction
of the relatively higher spatial resolution image of 3 m added more detail to the classes,
though it failed to accurately identify groundnut crops. The overall accuracy increased to
76.03% for Thimalala and 84.12% for the Edundu location.

Table 4. Comparison of the accuracy assessment results of the random forest classification.

No. Data Combination
Thimalala Edundu

Overall Accuracy (%) Kappa Coefficient Overall Accuracy (%) Kappa Coefficient

1 Sentinel-1 only
(C2 matrix) 48.77 0.40 47.12 0.37

2 Sentinel-2 only 72.08 0.68 74.08 0.70

3
Fused

(Sentinel-2 and
PlanetScope)

76.03 0.72 84.12 0.81

4

Full stack I
(Sentinel-2 and

PlanetScope + Sentnel-1
C2 matrix)

81.51 0.79 84.54 0.82

5

Full stack II
(Sentinel-2 and
PlanetScope +

Sentinel-1 C2 matrix +
H/α polarimetric
decomposition)

85.61 0.83 85.78 0.83

In the fourth experiment, we made a stack of the fused Sentinel-2 and PlanetScope
images and the Sentinel-1 C2 matrix (Sentinel-2 and PlanetScope fused image + Sentinel-1
C2 matrix). The addition of the Sentinel-1 C2 matrix generated minor improvements on the
Sentinel-2 + PlanetScope experiment in experiment (iii), as observed in the improved accu-
racy statistics (Table 4). The combination of optical and SAR data resulted in a slightly better
increment (5%) in the overall accuracy for the Thimalala site, compared to the Edundu site
(0.42%), but the accuracies were still lower than the accepted value for a good classification.

In the final experiment, a multiband image was created comprising the fused image
from the fourth experiment and the H/α polarimetric decomposition (i.e., the fusion of
Sentinel-2 + PlanetScope + Sentinel-1 C2 matrix + H/α polarimetric decomposition). This
final experiment produced results that outperformed all the other integration of images. The
overall accuracies from this final experiment exceeded 85% in both locations, which is the
threshold for a good classification. Overall, the accuracies improved by 13.53% and 11.7%
for Thimalala and Edundu, respectively, compared with the Sentinel-2-only classification.

Table 5 shows the PA and UA accuracies for the experiment (v). Crops such as bambara
nuts (100%), groundnuts (90%), maize (100%), tobacco (87.5%), and tomato (100%) had
high PAs with equally high UAs, meaning the method accurately identified the crops. The
corresponding UAs also showed that the maps are useful for identifying these common
crops on the landscape from the user’s perspective. Crops including banana, onion, and
sweet potato were very few in the landscape and only a few samples were obtained. As
such, our model could not adequately assess these classes. This explains the nature of the
PAs and UAs for these crop classes (Table 5). Land cover classes such as forest, shrubland,
untarred road, and water also had high PAs, compared to settlement, bare rock, and tarred
roads, which had low PAs. Corresponding UAs were within a similar range to the PAs.
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Table 5. Summary of classification accuracies of Thimalala using the fused image of Sentinel-2 and
PlanetScope, Sentinel-1 C2 matrix, and H/α polarimetric decomposition.

Land Cover and Crop Class Producer’s Accuracy (%) User’s Accuracy (%)

Bambara nut 100.0 100.0
Banana 0.0 0.0

Bare rock 42.9 33.3
Beans 50.0 100.0

Cassava 50.0 66.7
Finger millet 66.7 100.0

Forest 70.8 89.5
Groundnut 90.0 81.8

Maize 100.0 25.0
Mixed crop 93.8 62.5

Onion 0.0 0.0
Pepper 50.0 100.0

Settlement 16.0 88.9
Shrubland 87.9 75.5

Soya 66.7 57.1
Sweet potato 0.0 0.0

Tobacco 87.5 100.0
Tomato 100.0 100.0

Untarred road 74.3 88.1
Water 95.2 80.0

Tarred road 50.0 50.0

Figures 6 and 7 show the maps generated for the various experiments for the two
locations. Figures 6a and 7a show results for the Sentinel-1-only experiment for Thimalala
and Edundu, respectively, while Figures 6b and 7b show the results for the Sentinel-2-only
experiment for the two village areas. The results reflect the poor accuracies generated from
the experiments (see Tables 4 and 5). Results presented in Figures 6c and 7c show that the
various classes are more identifiable than in the foregoing experiments in both locations,
while Figures 6d and 7d reflect the minor improvement of accuracies when moving from the
experiment (iii) to (iv) (see Table 4). It can be seen in Figures 6e and 7e that the classification
improved with the introduction of the H/α decomposition layer. In terms of the distribution
and dominance of crop types, both Figures 6 and 7 show that maize is the dominant crop
type in both study locations. Tobacco crops are also common in both areas and are observed
to have, on average, larger sizes than most food croplands. Intercropped farmlands, which
are mainly maize intercropped with other legumes and pumpkins, are also prominent on
the landscape in both locations. Though the classification was able to identify intercropped
fields, most likely maize with other crops that are equally tall, such as pigeon pea or cassava,
it was, however, not able to identify which specific crop combinations (e.g., maize/bean
and maize/soybean) constitute each intercropped farm. Croplands that were not classified
into any of the individual categories were grouped into the mixed/intercropped class. As
expected, croplands are mostly in low-lying valley areas. Shrublands and forests are the
most dominant land cover types on hills and hillslopes in both locations. The forests are
mostly surrounded by shrublands interspersed with some farmlands, especially in the
Thimalala area.

Overall, the results show that the fused images outperformed the single images
in identifying crop types and land cover categories in both study locations. The OAs
improved as the number of image combinations increased. The image fused with the
Sentinel-1 H/α polarimetric decomposition outperformed all the other fused image
experiments. The optical data (Sentinel-2 only) outperformed the radar data (Sentinel-1-
only) in identifying crop types and land cover in both study locations by a wide margin.
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4. Discussion

The study reveals useful observations about crop type and land cover identification
in heterogenous smallholder agricultural landscapes. The experiments provide evidence
that to effectively identify crop types, cropping systems, and land cover using pixel-
based classification, a combination of multitemporal satellite data from different sensors
can be used. We show that the fusion of Sentinel-2 and PlanetScope optical images
integrated with Sentinel-1 C2 matrix and Sentinel-1 H/α polarimetric decomposition
was the most effective in generating high-accuracy crop type and land cover maps
(Table 4). The degree of accuracy increased from the experiment (i) as the number of
images integrated for the classification increased. Using only the Sentinel-1 images pro-
duced OAs lower than 50% for both locations, similar to observations made by Mercier
et al. [72]. When the Sentinel-1 C2 matrix was fused with Sentinel-2, the accuracies
improved for both study locations. Fusing the two optical images further improved
the classification results of the Sentinel-2-only by 3.95% and 10.04% for Thimalala and
Edundu, respectively. Orynbaikyzy et al. [73] noted similarly that fusing Sentinel-1 and
Sentinel-2 data improved the results of crop classification in Northern Germany, as did
Mercier et al. [72] in Paragominas (Brazil). Gašparović et al. [62] observed a similar
improvement when they integrated Sentinel-2 with PlanetScope for vegetation mapping
and monitoring. There were only a few banana, onion, and sweet potato samples in the
validation data because these crops are generally scarce in the agricultural landscape
of both study locations. They are also often planted on relatively smaller plot sizes.
A such, the PAs and UAs for these crop classes show that the assessment might have
been less inaccurate (Table 5). The foregoing explanation is one of the main limitations
of classifying crop types in complex heterogeneous smallholder agriculture landscapes,
as highlighted in other studies [8]. At the same time, the observation presents an oppor-
tunity for future studies to explore other approaches to capturing such rare crops using
image classification.

The observation that fusing Sentinel-1 and the optical data improved crop type map-
ping is also consistent with findings of other studies that have combined radar and optical
data for crop and land cover type mapping [22,65]. The finding provides further evidence
of the contribution of dual-polarized Sentinel-1 data for accurate crop and land cover
classification. We conclude that the 13.53% (Thimalala) and 11.7% (Edundu) improvements
in overall accuracy on the Sentinel-2-only classification is because of the integration of the
multitemporal datasets from all the various sensors with the Sentinel-1 H/α polarimet-
ric decomposition. This finding suggests that adding more multitemporal images could
further improve the OAs, PAs, and UAs, and using only a unitemporal image produces
underwhelming results. Previous studies have also found that integrating the H/α polari-
metric decomposition information with other data achieves better accuracy in complex
agricultural landscapes than other classical methods [74–76]. Dual-polarized data such as
Sentinel-1 are a valuable data resource for decomposing radar data to map crop types [73].
The poor accuracy from the Sentinel-1-only experiment (i) is, therefore, likely the result of
the design of our experiment (i). The two bands of the Sentinel-1 IW mode compared to
the several bands available from Sentinel-2 and PlanetScope and the use of the random
forest algorithm may explain the poor accuracy from the Sentinel-1-only classification [77].
Quad-polarized data are known to perform better in identifying crop types when integrated
with other data [78]. Future crop type mapping in the study locations should, therefore,
integrate time series quad-polarized H/α polarimetric decomposition, if available, with
available time series optical data to achieve better accuracies.

The combination of multitemporal, multispectral, and multisensor data to map crops
in such heterogeneous landscapes suggests that in areas of high cloud cover where opti-
cal data collection is not feasible, combining data with different spectral characteristics,
including radar and optical data, holds the potential for reliable mapping of crop types
and land cover for building crop type inventories. The classification outcomes indicate
that the multitemporal routine of fusing the quality high-resolution optical images (Plan-
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etScope) with radar data and the random forest classification approach outperformed the
Sentinel-1-only data. Malawi, similar to many other locations in the tropics, has dense
cloud cover during critical stages of crop growth but has limited coverage of high temporal
resolution remote sensing satellites. This makes it difficult to acquire time series optical
data for monitoring crop growth and mapping crop diversity. Clouds are often cited as the
main advantage of using radar for mapping land cover. Being able to routinely map the
landscapes in such resource-poor contexts using a combination of images from different
sensors is critical to creating crop inventory maps by local officials to facilitate food security
and environmental management decision-making [79]. The timing and quality of satellite
observations play a crucial role in the accuracy of classification to identify crops [77]. Even
though the seasonal satellite data we used contributed to the overall accuracy, only a few
of the cloud-free optical images were obtained for the start of the growing season due to
heavy cloud cover. As such, it was difficult for our optimal model to effectively separate the
different crop combinations on intercropped farms, even though some intercropped fields
were identified. The experiment (v) was able to identify the distribution of crops, with
maize being the most common crop, a finding consistent with the maizification of Malawi
narrative found in other studies, a phenomenon attributed to government agricultural
policies [79]. Future studies can overcome the challenge of inaccurate identification of
intercropped fields by using images acquired at the start of the growing season when the
specific crop combinations on intercropped fields are visible to satellite sensors and can be
captured and separated by image classification algorithms.

A combination of field ground truth data and samples from Google Earth Pro and
DigitalGlobe images, as well as ancillary information, was used to train and validate
the random forest algorithm to attain more than 85% accuracy in the experiment (v)
(Table 4). The accuracy attained suggests that using reference data from diverse sources
can improve classification results, as observed in other studies [23,74]. This observation
implies that the level of accuracy obtained in our experiments can be further improved
with more training and validation samples. In future, crowdsourcing should be used to
collect more field samples by training farmers to use smartphones and other spatial data
collection applications and tools to geolocate and record farm and ancillary information
for training and validating classifiers. Using crowdsourcing to collect crop type samples
has been experimented with in other contexts and found to have contributed to getting
large volumes of training data for mapping crop types more accurately [23]. Adding more
training samples will also allow classification algorithms to identify the specific crops in
intercropped fields.

5. Conclusions

The outcomes of the experiments conducted in this study highlight the importance of
exploiting the capabilities of various satellite sensors to create high temporal resolution
images for mapping crop types and land cover in smallholder agriculture areas where
the landscapes tend to be more heterogeneous. Both individual Sentinel-1 and Sentinel-
2 images failed to produce high-accuracy crop type and land cover maps. The overall
accuracy and Kappa coefficients of the classification improved as the number of images
increased and the spatial resolution improved. The fusion of Sentinel-1 C2 matrix, Sentinel-
2, and PlanetScope optical data with the Sentinel-1 H/α polarimetric decomposition
outperformed all other combinations of images. Fusing the images created high temporal
resolution data, with Sentinel-1 contributing the greatest number of images due to the
ability of SAR to penetrate cloud cover. Though processing time may increase due to the
high volume of data being integrated, the fact that acceptable accuracies were achieved is
crucial. In the tropical areas of SSA where cloud cover is often dense during the growing
season, this study demonstrates that computing the H/α polarimetric decomposition from
cloud-penetrating radar data and fusing it with other high- and moderate-resolution optical
data can be very cost-effective for developing large-scale crop inventory data. Several
studies have shown how these current and emerging sensors can be harmonized to map
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crop types and land cover for use as decision support tools to facilitate food security
decision-making. Our study makes a valuable contribution to the literature on image
fusion for crop type mapping. Intercropping is predominant in most smallholder contexts
in SSA, but our experiments could not adequately identify the individual crops on such
intercropped fields due to data constraints. Since the H/α polarimetric decomposition
image contributed to the improved accuracy of the experiments, future studies should
apply H/α polarimetric decomposition from quad-polarized data, if available, with early-
season optical data and more ground truth samples to better identify the mix of crops on
intercropped farms. Given the current fast pace of sensor and image processing algorithm
development, it is possible to apply the method explored in this study on an operational
basis to develop crop inventory data at larger scales to guide decision-making for improved
food security and environmental management in cloud-dense, resource-poor locations.
The approach used in this study can be used by local agriculture decision-makers to map
and monitor cropping patterns and land cover change dynamics over time to build land
cover inventory datasets.
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