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Abstract: Small-scale placer mining in Colombia takes place in rural areas and involves excavations
resulting in large footprints of bare soil and water ponds. Such excavated areas comprise a mosaic
of challenging terrains for cloud and cloud-shadow detection of Sentinel-2 (S2A and S2B) data
used to identify, map, and monitor these highly dynamic activities. This paper uses an efficient
two-step machine-learning approach using freely available tools to detect clouds and shadows in
the context of mapping small-scale mining areas, one which places an emphasis on the reduction of
misclassification of mining sites as clouds or shadows. The first step is comprised of a supervised
support-vector-machine classification identifying clouds, cloud shadows, and clear pixels. The second
step is a geometry-based improvement of cloud-shadow detection where solar-cloud-shadow-sensor
geometry is used to exclude commission errors in cloud shadows. The geometry-based approach
makes use of sun angles and sensor view angles available in Sentinel-2 metadata to identify potential
directions of cloud shadow for each cloud projection. The approach does not require supplementary
data on cloud-top or bottom heights nor cloud-top ruggedness. It assumes that the location of
dense clouds is mainly impacted by meteorological conditions and that cloud-top and cloud-base
heights vary in a predefined manner. The methodology has been tested over an intensively excavated
and well-studied pilot site and shows 50% more detection of clouds and shadows than Sen2Cor.
Furthermore, it has reached a Specificity of 1 in the correct detection of mining sites and water ponds,
proving itself to be a reliable approach for further related studies on the mapping of small-scale
mining in the area. Although the methodology was tailored to the context of small-scale mining in
the region of Antioquia, it is a scalable approach and can be adapted to other areas and conditions.

Keywords: cloud; cloud shadow; classification; multispectral; small-scale mining

1. Introduction

Informal small-scale alluvial gold mining, also known as placer mining, has major
social and environmental impacts and has been at the heart of complicated armed conflicts
in various parts of the world. It is distinct from subsistence mining as it utilizes large
machinery to excavate soil and river sediment [1]. When carried out on the riverbanks, it
leaves large footprints of bare soil along with ponds of water that are utilized for on-site
processing [2,3]. Such ponds are required to pump ore slurry and wash it through sluice
boxes under pressure where the gold particles are collected. Prior to the 2018 mercury
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ban [4], amalgamation was intensively used to improve the capture of the finest gold
particles leading to major health hazards [5]. This law was implemented for the mining
sector, but it has not been well enforced, resulting in illegal mercury markets that supply
illegal/informal mining [6].

A small-scale placer mining activity is considered formal/legal when the operator
obtains a mining title and a program of works (Programa de Trabajos y Obras—PTO).
Accordingly, the small-scale mining activities are required to be less than 150 hectares and
need strict measures of land recovery [1]. Unfortunately, it is estimated that more than 70%
of the gold production in Colombia is extracted from informal small- and medium-scale
activities where the operators have not obtained legal permissions to do so [7–9]. This
situation has worsened with the increase in gold prices since the year 2000. Despite the
major environmental and social impacts of these activities, the fact remains that traditional
land surveys are very challenging for such remote and harsh areas as they lack suitable
spatial or temporal coverage. Earth observation techniques can be an improved method to
detect, map, and monitor these extractive activities and assess their impacts [5,10–12].

When utilizing optical spaceborne data, cloud coverage can be a hindering factor
for analysis methods where cloud and cloud-shadow detection is essential prior to using
the imagery. Unfortunately, the footprints of bare excavated areas are of relatively high
reflectance; and along with water ponds, they comprise a mosaic of challenging terrains for
cloud and cloud-shadow detection [13,14]. There are three major categories of clouds that
affect imagery in different manners, namely cumulus, stratus, and cirrus clouds. Cumulus
and stratus clouds, often referred to as dense clouds, are the lowest clouds. They have
relatively high reflectance and can be easier to detect in satellite imagery than higher cirrus
clouds that appear as detached filaments [15]. Approaches to detect these dense clouds
and their shadows can vary. For example, each satellite scene can be studied separately, i.e.,
a mono-temporal approach [16–25], or a time series of images is used to identify clouded
pixels of relatively higher reflectance, i.e., a multi-temporal methodology [26,27]. On the
other hand, any cloud shadows depicted in an image are projections of corresponding
clouds, and thus, the direction of observations plays a large role in the location and
geometry of the shadows [28]. This cause-and-effect relationship between a cloud and
its shadow is to be considered essential in their detection [22]. Various cases have been
reported regarding the challenges of relying only on spectral information in detecting cloud
shadows where false positive detection can easily occur due to topographical features
or water bodies [13]. Accordingly, thermal data, textural characteristics, or geometric
characteristics of cloud shadows have been utilized for improved detection [23,28–30].
Other approaches to monitor clouded areas involve the use of synthetic aperture radar
(SAR) data, i.e., not affected by clouds, such as the data acquired by Sentinel-1 of the
Copernicus program [31,32].

The advantage of using the Copernicus Sentinel-2 constellation of two satellites (S2A
and S2B) is that its data are freely available and have a 10m resolution for various bands.
The Multispectral Instruments (MSIs) are the sensors on-board of the satellites, with the
first data acquisitions dating to 2016. The combined use of the two platforms allows a high
revisit time, with an image over Colombia obtained every 5 days. MSIs provide images
with thirteen bands. The central wavelength (λ) and bandwidth of each band per sensor
are detailed in Table 1. Depending on the band (B), Sentinel-2 data can have a spatial
resolution of 10m, 20m, or 60m [33].

A popular source of atmospherically corrected Sentinel-2 (S2) data for Colombia is the
Copernicus hub (https://scihub.copernicus.eu/) that utilizes Sen2Cor, a semi-empirical
mono-temporal model for radiometric and atmospheric correction. Using Sen2Cor, the
L1C level of the data, i.e., the top of the atmosphere radiance, is transformed into Level
L2A, which corresponds to surface reflectance. Cloud (dense and cirrus clouds) and
shadow detection are available for L1C and L2A products [19,34,35]. For L1C data, dense
cloud detection utilizes B2 (490nm) and with the help of shortwave infra-red (SWIR) B10
(1375 nm), B11 (1610 nm), and B12 (2190 nm), the false inclusion of snow is avoided. B10
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is also used for the detection of cirrus clouds as their high altitude can be detected using
a band with high atmospheric absorption. Finally, filters applied on detected clouds are
used to remove isolated pixels and to fill gaps within clouds [35]. On the other hand,
cloud detection for L2A products utilizes several steps of threshold filtering using indices
that involve land cover to avoid detecting false cloud pixels in regions of possible false
detection, such as areas of bare soil [36]. Unfortunately, the cloud detection approach of
Sen2Cor has been reported to result in the unsatisfactory detection of dense clouds and
their shadows [14,24,37], and has been shown to result in false positives in small-scale
mining areas [12].

Table 1. Wavelengths and bandwidths of the two MSI sensors on board the Sentinel-2 twin satellites.

Band Spatial Resolution (m)
S2A S2B

Central Wavelength
(nm) Bandwidth (nm) Central Wavelength

(nm) Bandwidth (nm)

B1 60 442.7 21 442.2 21
B2 10 492.4 66 492.1 66
B3 10 559.8 36 559 36
B4 10 664.6 31 664.9 31
B5 20 704.1 15 703.8 16
B6 20 740.5 15 739.1 15
B7 20 782.8 20 779.7 20
B8 10 832.8 106 832.9 106
B8a 20 864.7 21 864 22
B9 60 945.1 20 943.2 21
B10 60 1373.5 31 1376.9 30
B11 20 1613.7 91 1610.4 94
B12 20 2202.4 175 2185.7 185

This paper aims to provide improved cloud and shadow detection in an approach
that is simple, efficient, and based on freely available tools. It aims at improving cloud
and cloud shadow detection in the context of mapping small-scale mining where the areas
of interest are bare soil and water ponds. This procedure consists of two consecutive
machine-learning steps. First, a supervised classification detects candidate clouds and
shadows; second, the solar-cloud-shadow-sensor geometry and a causality effect between
cloud shadows and clouds are considered to reduce shadow commission error. There
have been already various methods developed that include the reduction of cloud-shadow
false positives. One “universal” method that can be used for Sentinel-2 data considers
an object-based image analysis approach for shape spatial-matching of cloud and cloud–
shadows [22]. Another approach developed for MODIS data considers a geometry-based
tool to detect potential shadows followed by classification to match the two outputs [13].
Other geometry-based approaches have been tailored for specific sensors that include
thermal bands [28,38].

This paper proposes a simple pixel-based approach that provides a high-quality
identification of clouds and their shadows for Sentinel-2 in the context of small-scale
mining in Colombia. This work aims to efficiently provide a suitable tradeoff between
omission errors leading to failure in excluding contaminated pixels and commission errors
that result in masking out clear pixels. Although the methodology was tailored for the
setting of the study area in the context of small-scale mining, it is scalable and can be
a solid basis to develop a more generalized approach. The methodology is tested over
an intensively excavated region through a mono-temporal approach due to the highly
dynamic characteristics of the excavated areas and the rapid landcover change that needs
to be depicted. A validation of the results using images acquired in different seasons was
carried out on a well-studied pilot site in the vicinity of the town of El Bagre [5]. The
success of this approach is a milestone for time series analysis of land cover around mining
sites that will lead to an early warning system about the sprawl of excavations, especially
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in the vicinity of protected or sensitive areas. Such important output is to be shared with
stakeholders through MapX (https://mapx.org), an online information and engagement
platform that would allow the consolidation of data, analysis, and spatial visualization [39].
MapX was developed by the United Nations Environment Program (UNEP) and UNEP/
GRID-Geneva (https://unepgrid.ch).

2. Study Area

The study area is in the department of Antioquia along the path of the Nechí river.
This department is the main producer of gold in Colombia, and the abundance of placer
mining in the area makes it an optimal site to test remote sensing applications. Figure 1a
shows the location of the study area with respect to Antioquia and Colombia and (b) a
Red-Green-Blue (RGB) view of the area using a Sentinel-2 (S2B) image acquired on 18 June
2019, with an indication of the pilot-site location around the town of El Bagre at latitude
7◦36’17.88”N and longitude 74◦48’32.32”W. The area includes water bodies (rivers, isolated
bodies, etc.), non-vegetated regions (built-up areas, mining areas, bare soil, etc.), and
vegetated regions (forests, shrubs, agriculture, etc.). Figure 1c shows the topography of the
area using a Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission
(SRTM) (1 arc-second resolution), freely available through the United States Geological
Survey (http://earthexplorer.usgs.gov/). The elevation ranges from 30 m to 500 m and is
relatively smooth along the river with slightly rugged areas limited to the southern part.
The average elevation along the riverbanks where the land excavations take place does
not exceed 60 m. The study area has a tropical warm-humid climate with frequent cloud
coverage. The region experiences a dry season from December to March and a rainy season
the rest of the year. It has a relatively spatially homogeneous climate with an average
annual temperature around 28 ◦C and seasonal temperature variability of approximately
5 ◦C (Figure 2). The closest weather station within consistent topography and providing
data through WeatherUnderground.com is at Los Garzones International Airport Station,
about 175 km from the town of El Bagre and at 15 m of elevation (Figure 2).
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Figure 1. An overview of the study area (a) The location and extent of the study area in Colombia
and Antioquia; (b) Sentinel-2 (S2B) RGB image (18 June 2019) of the study area with the white
oval locating the pilot site (around the town of El Bagre at latitude 7◦36’17.88”N and longitude
74◦48’32.32”W) that is used for the validation of the methodology, (c) DEM SRTM.
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Figure 2. (a) Mean temperature and (b) Seasonal temperature variability of the study area (boundary
shown as black rectangle) and its surroundings (Antioquia’s administrative boundaries shown as
dotted polygon). The data source is WorldClim (30 arc-second resolution), a global gridded historical
dataset (1960 to 1991) that has been vital for various environmental studies. The data were obtained
through Google Earth Engine (https://earthengine.google.com/:collection WORLDCLIM-V1-BIO).

3. Methodology
3.1. Classification for Dense Cloud and Shadow Detection

Dense clouds have high reflectance in the visible part of the spectrum. This can cause
misclassification of land-cover of high brightness as clouds [14,40]. In fact, this has been
observed in the study area where bare soil and highly turbid shallow ponds of small-
scale mining have been misidentified. On the other hand, areas shadowed by clouds are
relatively dark due to lower irradiance, and thus can be misclassified as water bodies and
areas shaded by topographical features and vice versa [30,40]. Since the topography of the
study area is generally smooth, such topographical impacts on alluvial mining sites can
be considered minimal. Figure 3 shows examples of reflectance spectra, whereby it shows
the mean spectrum (± standard deviation) of a selected cloud and its shadow along with
a nearby mining site and water body. These spectra were extracted from the Sentinel-2
(S2B) image of the study area acquired on 18 June 2019. The reflectance of cloud and mine
bare-soil pixels is relatively high with distinction depicted at band 1 and band 9 located
in the water vapor absorption regions [19]. On the other hand, water and shadow pixels
show low reflectance throughout the spectrum.

A supervised classification approach is used to identify three classes: clouds, cloud
shadows, and clear pixels. The Sentinel-2 image acquired on 18 June 2019 (Figure 1) is
used to extract reference spectra because it includes clouds and shadows over various
landcovers along the western and southern regions (Table 2). These reference spectra
are available as Supplementary Materials data with this manuscript. A Support-Vector-
Machine (SVM) classifier is used as it has proven its suitability for landcover classification
in diverse areas [41–43], for small-scale mining detection at the pilot site [5], and for cloud-
shadow detection [13]. SVM is implemented using “Scikit-learn: Machine Learning in
Python” [44] where it aims to find an optimal hyperplane separating the data into the
pre-specified classes, and “kernels” can be used to introduce new variables that improve
class separability [45]. The commonly used kernel functions include Linear and Radial
Basis Function (RBF-Gaussian) kernels, and they require optimization parameters. Both
types of kernels use “C” (penalty for misclassification) that allows for modification in the
rigidity of training data. The RBF kernel also requires “gamma” (reflecting the spread
of the kernel) that impacts the smoothing of the hyperplane shape [42]. Larger values
of “C” may lead to an over-fitting model, whereas increasing “gamma” will affect the
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shape of the class-dividing hyperplane, which may affect the classification accuracy. To
identify the most suitable parameters, the grid-search method is used, where “gamma” ∈
[1, 0.1, 0.01] and “C” ∈ [1, 50, 100, 200]. The parameter values are tested using a three-fold
cross-validation approach, and those resulting in the highest classification accuracy are
selected. Classification accuracy is reported as precision value Pr = T/(T + F), where T is
the number of true positives and F the number of false positives.

Table 2. Overview of reference spectra.

Class Number of Reference Spectra

Clouds 18,547
Cloud Shadows 17,610

Clear Pixels 18,273

As SVM can handle the dimensionality of the Sentinel-2 data, the use of all 12 bands
is possible. Furthermore, as water bodies are of concern in the analysis, the indices that
have been proven to be powerful in the detection of water and distinguishing it from other
landcovers are tested. The features include the Normalized Difference Vegetation Index
(NDVI) (B8-B4)/(B8+B4) and Modified Normalized Difference Water Index (MNDWI)
(B3-B11)/(B3+B11) [46–48]. As B1 and B9 reflectance is relatively higher for clouds than for
mining areas, one more test is considered where features are reduced to only bands 1 and 9
along with NDVI and MNDWI,
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with water and bare soil mining pixels; (a) A selection of the region of interest on an RGB Sentinel-2
(S2B) (18 June 2019); (b) Mean spectra ± 1 standard deviation of selected regions plotted using the
Semi-Automated Classification plugin (SCP) [49].
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3.2. Geometry-Based Improvement of Cloud Shadow Detection
3.2.1. Direction of Cloud Shadow with Respect to Cloud Projection

Sentinel-2’s orbit is sun-synchronous where the twin satellites follow the same orbit at
a mean altitude of 786 km but 180 degrees apart. They acquire the data at Mean Local Solar
Time of 10:30 a.m. at the descending mode [50]. Cloud shadow locations with respect to
cloud projection in imagery are dependent on the direction of solar radiation represented
by solar zenith and azimuth angles, and by the sensor viewing geometry along with cloud
top and bottom height [28,29,40,46,51]. Except for cloud height, all parameters are available
in the Sentinel-2 image metadata. Accordingly, the direction of cloud shadow (Figure 4),
referred to as Apparent Solar Azimuth (ϕa) can be estimated [40,51]:

tan(ϕa) = (sinϕstanθs − sinϕvtanθv) / (cosϕstanθs − cosϕvtanθv)

where ϕs and θs are the solar azimuth and zenith angles, respectively; ϕv and θv are the
sensor’s view azimuth and zenith angles, respectively. As ϕa can have two possible angles
with a difference of π radians, the angle is selected to be the one opposite to the sun’s mean
azimuth location on the image. As the images are acquired before noon, it is expected that
ϕa ∈ [180, 360]. Sentinel-2 metadata provide mean ϕs and mean θs. Yet, the view angles are
reported per detector of the bushbroom sensor MSI along with their mean values per cell
of a grid with a 5 km spacing.
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Figure 4. An illustration of cloud and cloud shadow geometry.

3.2.2. Location of Shadow with Respect to Cloud Projection

To estimate the distance (d) between a pixel of a cloud projection on the image plane
and its corresponding shadow (Figure 4), sun and viewing angles along with cloud height
(h) are needed. As h is not available with the data, d/h [40] can be calculated to test possible
locations of shadows depending on scenarios of cloud height.

d/h = [(sinϕstanθs − sinϕvtanθv)2 + (cosϕstanθs − cosϕvtanθv)2]0.5 (2)

As the top and base cloud height and cloud-top ruggedness are not available, it is
essential to utilize an approach that does not require these important cloud characteristics.
The approach considered in this work assumes that cloud-top and cloud-base height can
vary in a predefined manner, an assumption that has been utilized successfully for cloud
and shadow detection in MODIS data [12,28]. Various types of clouds develop in tropical
areas and are expected at specific heights, with a maximum height of approximately
2 km assumed for the lower dense clouds (e.g., Cumulus, Cumulonimbus, Stratus, and
Stratocumulus) [52,53] and 8 km for higher dense clouds (Nimbostratus, Altostratus, and
Altocumulus) [53]. As cloud height is not available, a range of values is considered aiming
to match clouds with their corresponding shadows.
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Clouded scenes in tropical areas are highly likely to be dominated by low cumulus and
cumulonimbus clouds that appear both in groups and as isolated entities [54]. Depending
on meteorological conditions, such clouds are located at different heights above the ground
surface [55,56]. A simplified approach to estimate the height of the base of a cumulus cloud
in aviation has been as follows [57]:

hmet(m) = [(To
s − To

dew)/2.5] × 1000 × 0.3048 (3)

where hmet is the cloud-base height estimated using meteorological data, Ts is the surface
temperature, and Tdew is the dew point. Thus, for the entire study area, it is expected
that a major part of cumulus clouds would be at a similar height from the ground surface
due to the area’s relatively homogenous topography and climate. As meteorological data
at acquisition time are not available for the study area, measures such as hmet cannot be
used to guide the cloud-shadow detection. Thus, an iterative approach is used, aiming to
empirically capture representative cloud heights.

3.2.3. Implementation of the Geometry-Based Improvement

Images of potential ϕa and d/h are calculated using the 10m pixel size of view and
sun angle data of each image using the SNAP–ESA Sentinel Application Platform (http:
//step.esa.int). These images, in addition to the classification results, are the main input
to the geometry-based improvement of the classified shadows that in turn is carried out
using the python libraries Rasterio [58], Rasterstats [59], Shapely [60], Geopandas [61]
along with Numpy, Pandas, and their dependencies. Figure 5 shows an overview of the
geometry-based approach.
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As the terrain topography is mainly smooth, the distance (d) between a cloud projec-
tion and its shadow is expected to be consistent for small and sparse clouds (Figure 6, Case
A). Yet, once the clouds and their shadows are adjacent due to large cloud geometry, the
shadow geometry in the image is restricted (Figure 6, Case B and Case C). Furthermore,
with the presence of neighboring or contiguous clouds, shadows can also be restricted
(Figure 6, Case C).
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A first clean-up of the classification results is carried out; the classified image is sieved
with a 60m2 threshold (i.e., 6x10m pixels), and holes are closed in clouds and shadow
geometry. This removes any speckles resulting from the pixel-based classification and
reduces the computational needs for the geometry-based process. Then, for each cloud
projection, zonal statistics of ϕa and d/h are calculated and a mean value of each, per cloud,
is provided to guide the matching between each cloud projection and its shadow.

A first iteration considers low and dense clouds corresponding to case A (individual
isolated clouds) and certain scenarios of case B, described in Figure 6. A range of h is tested,
and the height corresponding to the maximum number of detected shadows is considered
the most representative empirically derived cloud height (hemp). Assuming a Euclidian plane
<2 and N detected cloud projection geometries by SVM, for each cloud Ci where i ∈ [1, N],
mean potential cloud shadow characteristics are extracted using zonal statistics (ϕai and (d/h)i).
The centroid of each cloud (ci) is determined and is translated to (c′i,j) using potential cloud
shadow geometry parameters at intervals j of 50 m such that hj ∈ [200, 2000]:

→
c′i,j =

→
ci +

 hj.
(

d
h

)
i
. cos(ϕa)i

hj.
(

d
h

)
i
. sin(ϕa)i

 (4)

A spatial query of cloud shadow geometries containing the translated centroids at each
hj is carried out and the number of resulting cloud shadows is calculated. hj corresponding
to the maximum number cloud shadows is considered hemp. The use of the cloud centroid
to match clouds to their corresponding shadows provides computational efficiency and
does not require cloud shape matching, as cloud shadow footprints can vary from the cloud
projection footprints. The clouds and their shadows corresponding to hemp are considered
as the first correctly identified set and are retained. Figure 7a–c shows an illustration of
this process.



Remote Sens. 2021, 13, 736 10 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 7. An illustration of the cloud and cloud-shadow detection procedure: (a) RGB view of an 
image acquired on 27 August 2018; (b) the results of the supervised classification of the Support-
Vector-Machine SVM) with detected clouds (white) and cloud shadows (black stripes); (c) the re-
tained cloud shadows of low dense clouds detected by the first iteration; (d) the retained and ex-
cluded cloud shadows by the end of the second iteration where the excluded clouds are relabeled 
as clear pixels. 

3.3. Cirrus Clouds  
Band 10, the cirrus band, was designed to aid in the detection of cirrus clouds [20]. 

The L2A Sentinel-2 data provides a cirrus cloud mask using B10, detected using threshold 
filtering tests by Sen2Cor [36]. As the elevation in the area is relatively low, i.e., less than 
2km [62], this mask is can be considered suitable for the detection of cirrus clouds. In fact, 
Sen2Cor has been reported to perform much better in the detection of cirrus clouds than 
low clouds due to its high reliance on the B10 in the cloud detection procedure [14]. 

3.4. Assessment with Images from Different Seasons and Diverse Cloud Cover 
The pilot site (location shown in Figure 1) has been intensively studied using cloud-

free imagery obtained from Sentinel-2 from 2016 to 2019, accompanied by field visits that 
took place on 28 November 2018 and 18 February 2019 [5]. Continuously excavated areas 
from 2016 to 2019 were detected along with areas that were consistently classified as water 
bodies. These are used for validation of the results considering images acquired in differ-
ent seasons, i.e., with different solar angles, ambient temperature, and cloud coverage. 
Figure 8 shows the pilot site and its location in the vicinity of the town of El Bagre in the 
department of Antioquia and a view of the areas affected by placer mining throughout 
the study period, revealing bare soil and water ponds used in the processing of the ex-
tracted material. 

Figure 7. An illustration of the cloud and cloud-shadow detection procedure: (a) RGB view of an image
acquired on 27 August 2018; (b) the results of the supervised classification of the Support-Vector-Machine
SVM) with detected clouds (white) and cloud shadows (black stripes); (c) the retained cloud shadows of
low dense clouds detected by the first iteration; (d) the retained and excluded cloud shadows by the end
of the second iteration where the excluded clouds are relabeled as clear pixels.

For the second iteration, only non-retained clouds and shadows in the first iteration are

considered. The centroid of each remaining cloud is translated, where h = 8000 m (
→
c
′
i,8000).

A line geometry connects (
→
c
′
i) and (

→
c
′
i,8000), and each polygon classified as shadow that

intersects with the line geometry is retained. All the rest of the polygons are excluded and
considered as false positives (Figure 7d).

3.3. Cirrus Clouds

Band 10, the cirrus band, was designed to aid in the detection of cirrus clouds [20].
The L2A Sentinel-2 data provides a cirrus cloud mask using B10, detected using threshold
filtering tests by Sen2Cor [36]. As the elevation in the area is relatively low, i.e., less than
2 km [62], this mask is can be considered suitable for the detection of cirrus clouds. In fact,
Sen2Cor has been reported to perform much better in the detection of cirrus clouds than
low clouds due to its high reliance on the B10 in the cloud detection procedure [14].

3.4. Assessment with Images from Different Seasons and Diverse Cloud Cover

The pilot site (location shown in Figure 1) has been intensively studied using cloud-
free imagery obtained from Sentinel-2 from 2016 to 2019, accompanied by field visits that
took place on 28 November 2018 and 18 February 2019 [5]. Continuously excavated areas
from 2016 to 2019 were detected along with areas that were consistently classified as water
bodies. These are used for validation of the results considering images acquired in different
seasons, i.e., with different solar angles, ambient temperature, and cloud coverage. Figure 8
shows the pilot site and its location in the vicinity of the town of El Bagre in the department
of Antioquia and a view of the areas affected by placer mining throughout the study period,
revealing bare soil and water ponds used in the processing of the extracted material.
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3.5. Input Uncertainty and Error Sources

The approach aims to make use of readily available atmospherically corrected imagery
of the Copernicus Open Access Hub. The correction is carried out using Sen2Cor. The fact
that Sen2Cor has limitations in cloud and shadow detection along with misclassification
of mining sites and water, it can lead to uncertainty in the reflectance data used in this
work. An assessment of such uncertainty could be empirically carried out in the future
through analyzing L1C and L2A data considering areas of high and low classification
accuracy by Sen2Cor. Since this is not within the scope of this paper, it is not addressed.
This topic has nonetheless been discussed in the 2017 ESA workshop Uncertainty in Remote
Sensing, where the need “to improve characterization of the error induced by undetected
cloud, cloud-shadows and adjacency effects at the cloud edges” was identified [63]. This
uncertainly could contribute to error in the classification procedure. If this error is in the
classification of shadows where false positives result in the process, these issues would
be addressed through the procedure described in the paper where the classified shadows
are improved. Yet, if the error is in the clouds class, this would not be corrected by the
procedure considered in this paper.

4. Results
4.1. Classification and Selection of Suitable Features

Using a 10m × 10m pixel size of all utilized features, the classification of clouds
and shadows was conducted. The results of the optimal three-fold grid search used to
determine the suitable parameters and features are shown in Table 3. For each combination
of features, the highest classification accuracy of the reference spectra is shown, identifying
the optimal combination of parameters. The RBF kernel provides the best results, with this
outcome being consistent with a previous study on cloud shadow detection [13]. Sentinel-2
bands with no additional indices provide one of the best classification results.

Table 3. Optimal SVM Kernel parameters and classification accuracy.

Features Kernel C Gamma Pr

B1 to B9 and B11 to B12 RBF 100 1 0.995 ±0.008
B1 to B9 and B11 to B12, NDVI RBF 200 1 0.995 ±0.008

B1 to B9 and B11 to B12, MNDWI RBF 50 1 0.995 ±0.009
B1 to B9 and B11 to B12, NDVI, MNDWI RBF 100 1 0.995 ±0.008

B1, B9, NDVI, and MNDWI RBF 1 1 0.976 ±0.005
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4.2. Cloud-Shadow and Cloud Geometry Illustration for Various Seasons and Cloud Cover

Let us now consider the reference image acquired on 18 June 2019. The mean viewing
angle per tile over all channels ranged from θv, from 1 to 10 degrees and ϕv from 19 to
232 degrees while the sun angles varied in a much smaller range (Figure 9). Accordingly,
potential ϕa was calculated and ranged between 212 and 223 degrees while potential d/h
ranged between 0.39 and 0.47 (Figure 10). The SVM results are shown in Figure 10b, where
a large area of false-positive cloud shadows can be identified on the eastern part of the
image. For the first iteration of cloud shadow improvement, the most representative cloud
height hemp from the ground level was 1050 m and confirmed the shadows of 156 low
dense clouds. The second iteration retained 42 other polygon geometries as shadows. All
remaining geometrical features in the Shadow class were discarded. Figure 10e shows the
improved cloud shadows using the geometry-based approach.
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Three images of different seasons and various cloud cover were used to assess the
methodology with diverse cloud cover and solar and view angle conditions. The SVM
classification model built by the reference spectra of 18 June 2019 was used to classify the
three images. An overview of parameters needed for potential shadow locations are shown
in Table 4. A range of h and the corresponding retained shadow polygons is shown in
Figure 11 where the value corresponding to the highest number of detected shadows hemp
is considered and shown in Table 4. Figure 12 shows the results of the three images.

Table 4. Parameters of potential cloud-shadow direction and location.

Date Platform ϕa [degrees] d/h [-] hemp [m]

24 January 2019 S2A 321–328 0.61–0.68 1050
18 June 2019 S2B 212-223 0.39-0.47 1050

27 August 2019 S2B 248–260 0.25–0.33 800
5 December 2019 S2B 332–340 0.60–0.67 600
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5), with temperature measured around image acquisition time. Even though the station is 
not located in the study area, it is at similar topography, climate, and without topograph-
ical obstruction from the study site. Thus, it is used for demonstration purposes. The esti-
mated hmet values are consistently lower that corresponding hemp, where the latter consid-
ers cloud projection on the image, and thus is affected by cloud-top and cloud-top rug-
gedness. Thus, cloud thickness could play an essential role in the difference between these 
two measures. This thickness has been shown to rapidly increase with increasing diameter 
for small cumulus tropical clouds, while increasing more slowly for larger clouds [64]. 

Table 4. Parameters of potential cloud-shadow direction and location. 

Date Platform φa [degrees] d/h [-] hemp [m] 
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18 June 2019 S2B 212-223 0.39-0.47 1050 
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Figure 10. Cloud and cloud shadow detection for the sentinel-2 image acquired
on 18 June 2019 (a) RGB view of the image over the study area, (b) SVM classification
results of clouds and cloud shadows, (c) ϕa [degrees], (d) d/h [–], (e) geometry-based
improved cloud shadows.
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Figure 12. Sentinel-2 RGB view of the three images and their corresponding detected dense clouds, and cloud shadows,
along with cirrus cloud provided by Sen2Cor (a) 24 January 2019, (b) 27 August 2019, and (c) 5 December 2019.

From Weather Underground (www.weatherunderground.com), data from the Los Gar-
zones International Airport Station are used to estimate cloud-base height, hmet
(Table 5), with temperature measured around image acquisition time. Even though the
station is not located in the study area, it is at similar topography, climate, and without
topographical obstruction from the study site. Thus, it is used for demonstration pur-
poses. The estimated hmet values are consistently lower that corresponding hemp, where
the latter considers cloud projection on the image, and thus is affected by cloud-top and
cloud-top ruggedness. Thus, cloud thickness could play an essential role in the difference
between these two measures. This thickness has been shown to rapidly increase with
increasing diameter for small cumulus tropical clouds, while increasing more slowly for
larger clouds [64].

Figure 13. shows a close-up to a region of one of the classified images and shows
a visual comparison between the results of the current approach and those of Sen2Cor.
An illustration of shadow omission by Sen2Cor can be clearly viewed and is consistent
with literature reporting low detection reaching lower than 30% of cloud shadows in
imagery [65]. Furthermore, the cloud commission error Sen2Cor can be recognized through
the river pattern classified as “cloud medium probability” (Figure 13c).

www.weatherunderground.com


Remote Sens. 2021, 13, 736 15 of 20

Table 5. Estimated height of low dense clouds using meteorological data at the Los Garzones
International Airport Station.

Date Time Ts [degrees] Tdew [degrees] hmet [m]

24 January 2019 10:29 a.m. 30.8 24.2 806
18 June 2019 10:29 a.m. 33.2 27.7 671

27 August 2019 10:00 a.m. 32.2 27.2 610
5 December 2019 09:53 a.m. 29.6 27.2 294
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4.3. Validation over the Pilot Site

The data from the pilot site shown in Figure 8 were used to assess the results and
compare them to those of Sen2Cor’s clouds of high and medium probability and cloud
shadow detection. Figure 14 shows the correct characterization (true positives) of visually
identified dense clouds and shadows over the pilot site subset where there were only
two images with visually detected clouds over the site. The results show an improved
detection to the major omission of both clouds and shadows by Sen2Cor. In fact, Sen2Cor
reached as low as 50% and 35% of cloud and cloud-shadow detection, respectively.

Even though clouds contaminated the pilot site on only two dates, the possible false
positive detection of clouds and shadows can be present on all four images. As the interest
is also in the reduction of misclassification of water bodies and mining sites as clouds and
shadows, Tables 6 and 7 show the “total negative” mining and water pixels (clear pixels)
and detail any false positive detection by the current approach or by Sen2Cor. Specificity is
reported in Figure 15 where Specificity = Neg/(Neg + F), where Neg is the number of total
negatives, and F is the number of false positives. Specificity using the current approach
reaches 1 for most cases and is constantly higher than Sen2Cor’s detection (considering
high and medium probability clouds), even with Sen2Cor’s low detection rate.
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Table 6. Overview of clear reference mining bare soil pixels (number of total negatives, Neg) in each image and the number
of false positives (F), (prob. is an abbreviation of probability).

Neg Mining Pixels Date F Sen2Cor F Current Approach

Shadow High Prob. Medium Prob. Shadow Clouds

2916 24 January 2019 0 6 12 0 0
2947 18 June 2019 0 20 30 0 0
2667 27 August 2019 0 0 11 0 0
2916 5 December 2019 0 0 3 0 0

Table 7. Overview of clear reference water pixels (number of total negatives, Neg) in each image and the number of false
positives (F), (prob. is an abbreviation of probability)}.

Neg Water Pixels Date F Sen2Cor F Current Approach

Shadow High Prob. Medium Prob. Shadow Clouds

2947 24 January 2019 0 3 14 0 0
2947 18 June 2019 0 0 70 0 0
2835 27 August 2019 200 4 35 170 0
2947 5 December 2019 128 0 29 0 0
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5. Limitations and Future Work

While cloud dilation is not considered in this work, it can be a suitable approach for
Sentinel-2 data to include fuzzy cloud pixels in cloud masks and to overcome parallax
errors [14]. An automated cloud dilation approach will be considered in the future to
obtain an improved exclusion of pixels affected by clouds.

The approach illustrated an efficient improvement to cloud and cloud-shadow de-
tection for Sentinel-2 using freely available tools. However, the approach also has its
limitations. When a true shadow is located in a relatively dark area and is classified as
a shadow along with its surroundings in one geometry, the entire geometry is retained
as a shadow after the geometry-based improvement. Thus, those commissions cannot be
excluded. Furthermore, the matching in the second iteration can result in commission
errors in the shadows when candidate shadows are located in between a couple of matching
cloud and shadow. Yet, all these potential drawbacks occur around areas where true cloud
and shadow contamination exist, thus limiting the area of uncertainty in the results and
leaving room for localized refinement of the methodology.

Another limitation of the presented methodology is that it is intended for relatively
non-rugged terrain and relatively spatially homogeneous meteorological conditions where
one representative hemp for cumulus clouds is considered. As such, additional considera-
tions are needed for topography and potential micro-climates that can impact the cloud
height with respect to the ground surface. However, the approach is scalable as it can be
adjusted to allow the search for multiple representative hemp through considering local
maxima for hemp when considering heterogenous areas. These aspects can be considered in
the future when needed for other study areas.

As hemp is an empirical measure based on surface reflectance values, it is of great
interest to analyze its correspondence to physical cloud characteristics. A future prospect
of the work is to assess this measure’s link to cloud-top and cloud-base heights (thickness)
at various scenarios of cloud-top ruggedness. This would require carrying out an analysis
around areas where meteorological data are available or through the use of satellite data
that allows for the extraction of cloud 3D geometry, such as geostationary data.

6. Conclusions

This paper addresses the important topic of cloud and cloud shadow detection over
areas of Colombia where small-scale mining activities frequently occur. It presents a
workflow of pixel-based classification followed by refinement of classes using solar-cloud-
shadow-sensor geometry. The approach results in an improved detection of clouds and
their shadows along with a reduction in commission errors. It makes use of freely available
tools and does not require supplementary data on cloud-top or bottom heights nor cloud-
top ruggedness. The geometry-based approach makes use of sun angles and sensor view
angles available in Sentinel-2 metadata to identify potential directions of shadows for each
pixel. For each cloud, this potential shadow direction is extracted using zonal statistics. An
iterative approach is utilized for the exclusion of false positive shadows, given that cloud
height is not available. In the first iteration, the focus is on low and dense clouds such as
cumulus clouds where an empirical representative cloud height at the time of acquisition is
obtained. A second iteration considers shadows and clouds not retained in the first iteration
and considers higher cloud elevations. Non-retained shadows from the second iteration are
relabeled as clear pixels and excluded from the cloud shadow mask. Compared to Sen2Cor,
the semi-empirical model utilized for the atmospheric correction of Sentinel-2 data at
the Copernicus Open Access Hub, the approach has shown a better detection of cloud
and shadows. Furthermore, it has shown a reduction in the misclassification of mining
and water pixels as clouds or shadows. Thus, this approach will be used to extract valid
pixels of time-series of Sentinel-2 imagery over Antioquia for the development of an early
warning system for sensitive areas that will be potentially affected by the uncontrolled
sprawl of small-scale land-based alluvial mining.
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Author Contributions: Conceptualization, all authors; methodology, software, formal analysis, E.I.,
P.B., and J.J.; validation, E.I.; data curation, E.I. and L.L.; writing–original draft preparation, E.I.; writing–
review and editing, all authors; visualization, E.I.; supervision, E.P., P.L., G.G.; funding acquisition, E.I.,
J.J., and E.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Copernicus RawMatCop program, which is funded by EIT
RawMaterials and the European Commission DG Internal Market, Industry, Entrepreneurship and
SMEs (DG GROW). https://eitrawmaterials.eu/eit-rm-academy/rawmatcop/, as part of the scope
of projects CopX: Geospatial Mining Transparency Through Copernicus and MapX, and EOAllert:
Early-Warning to the Impacts of Alluvial Mining on Sensitive Areas Using Earth Observation (
https://www.mapx.org/projects/eo-allert/)

Acknowledgments: The authors are thankful to several persons who made this work possible, espe-
cially: (a) at UNEP Geneva Office, David Jensen and Inga Peterson, who brought the collaborations
in this paper to life, (b) at UNEP Bogota Office, Juan Bello, Juliana Ibarra, Silvio Lopez, and Ursula
Jaramillo, for their continuous support in Colombia regarding field visits and stakeholder meetings,
(c) the Secretary of Mines at El Bagre Rafael Sanchez, who helped us during data collection and for
interviews of miners, and for his continuous support of any inquiries, (d) Julie Pirard for her great
contributions to the graphics in this paper, and (e) André Muise, for his much-appreciated editing of
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ministerio de Minas y Energía, C. Decreto 1666, Bogotá. Online. 2016. Available online: https://www.minenergia.gov.co/

documents/10180/23517/37238-Decreto-1666-21Oct2016.pdf/17f4f90c-4481-47cd-a084-c7fa0319f9cf (accessed on 16 January 2021).
2. Bustamante, N.; University of Queensland; Danoucaras, N.; McIntyre, N.; Martínez, J.C.D.; Baena, O.J.R.; De Colombia, U.N.;

Mclntyre, N. Review of improving the water management for the informal gold mining in Colombia. Rev. Fac. Ing. Univ. Antioq.
2016, 79, 174–184. [CrossRef]

3. Teschner, B.; Smith, N.M.; Borrillo-Hutter, T.; John, Z.Q.; Wong, T.E. How efficient are they really? A simple testing method of
small-scale gold miners’ gravity separation systems. Miner. Eng. 2017, 105, 44–51. [CrossRef]

4. Minambiente. Entra en Vigencia Prohibición del Mercurio en la Minería de oro en Colombia. 2018. Available online: https:
//www.minambiente.gov.co/index.php/noticias/4021-entra-en-vigencia-prohibicion-del-mercurio-en-la-mineria-de-oro
(accessed on 16 February 2021).

5. Ibrahim, E.; Lema, L.; Barnabé, P.; Lacroix, P.; Pirard, E. Small-scale surface mining of gold placers: Detection, mapping, and
temporal analysis through the use of free satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102194. [CrossRef]

6. Diaz, F.A.; Katz, L.E.; Lawler, D.F. Mercury pollution in Colombia: Challenges to reduce the use of mercury in artisanal and
small-scale gold mining in the light of the Minamata Convention. Water Int. 2020, 45, 730–745. [CrossRef]

7. Rettberg, A.; Ortiz-Riomalo, J.F. Golden Opportunity, or a New Twist on the Resource–Conflict Relationship: Links Between the
Drug Trade and Illegal Gold Mining in Colombia. World Dev. 2016, 84, 82–96. [CrossRef]

8. Betancur-Corredor, B.; Loaiza-Usuga, J.C.; Denich, M.; Borgemeister, C. Gold mining as a potential driver of development in
Colombia: Challenges and opportunities. J. Clean. Prod. 2018, 199, 538–553. [CrossRef]

9. Portafolio. Producción Ilegal de Oro es Más del 70% del Mercado. 2019. Available online: https://www.portafolio.co/economia/
produccion-ilegal-de-oro-es-mas-del-70-del-mercado-528760 (accessed on 11 December 2020).

10. Hausermann, H.; Ferring, D.; Atosona, B.; Mentz, G.; Amankwah, R.; Chang, A.; Hartfield, K.; Effah, E.; Asuamah, G.Y.; Mansell,
C.; et al. Land-grabbing, land-use transformation and social differentiation: Deconstructing “small-scale” in Ghana’s recent gold
rush. World Dev. 2018, 108, 103–114. [CrossRef]

11. UNODC. Alluvial Gold Exploitation: Evidences from Remote Sensing 2016; United Nations Office of Drugs and Crime: Vienna,
Austria, 2018.

12. Gallwey, J.; Robiati, C.; Coggan, J.; Vogt, D.; Eyre, M. A Sentinel-2 based multispectral convolutional neural network for detecting
artisanal small-scale mining in Ghana: Applying deep learning to shallow mining. Remote. Sens. Environ. 2020, 248, 111970.
[CrossRef]

13. Zhang, R.; Sun, D.; Li, S.; Yu, Y. A stepwise cloud shadow detection approach combining geometry determination and SVM
classification for MODIS data. Int. J. Remote. Sens. 2012, 34, 211–226. [CrossRef]

https://www.mdpi.com/2072-4292/13/4/736/s1
https://www.mdpi.com/2072-4292/13/4/736/s1
https://eitrawmaterials.eu/eit-rm-academy/rawmatcop/
https://www.mapx.org/projects/eo-allert/
https://www.mapx.org/projects/eo-allert/
https://www.minenergia.gov.co/documents/10180/23517/37238-Decreto-1666-21Oct2016.pdf/17f4f90c-4481-47cd-a084-c7fa0319f9cf
https://www.minenergia.gov.co/documents/10180/23517/37238-Decreto-1666-21Oct2016.pdf/17f4f90c-4481-47cd-a084-c7fa0319f9cf
http://doi.org/10.17533/udea.redin.n79a16
http://doi.org/10.1016/j.mineng.2017.01.005
https://www.minambiente.gov.co/index.php/noticias/4021-entra-en-vigencia-prohibicion-del-mercurio-en-la-mineria-de-oro
https://www.minambiente.gov.co/index.php/noticias/4021-entra-en-vigencia-prohibicion-del-mercurio-en-la-mineria-de-oro
http://doi.org/10.1016/j.jag.2020.102194
http://doi.org/10.1080/02508060.2020.1845936
http://doi.org/10.1016/j.worlddev.2016.03.020
http://doi.org/10.1016/j.jclepro.2018.07.142
https://www.portafolio.co/economia/produccion-ilegal-de-oro-es-mas-del-70-del-mercado-528760
https://www.portafolio.co/economia/produccion-ilegal-de-oro-es-mas-del-70-del-mercado-528760
http://doi.org/10.1016/j.worlddev.2018.03.014
http://doi.org/10.1016/j.rse.2020.111970
http://doi.org/10.1080/01431161.2012.712231


Remote Sens. 2021, 13, 736 19 of 20

14. Baetens, L.; Desjardins, C.; Hagolle, O. Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and
FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote. Sens. 2019, 11,
433. [CrossRef]

15. Qiu, S.; Zhu, Z.; Woodcock, C.E. Cirrus clouds that adversely affect Landsat 8 images: What are they and how to detect them?
Remote. Sens. Environ. 2020, 246, 111884. [CrossRef]

16. Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with
MODIS. J. Geophys. Res. Space Phys. 1998, 103, 32141–32157. [CrossRef]

17. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote. Sens. Environ. 2012, 118,
83–94. [CrossRef]

18. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow
detection for Landsats 4–7, 8, and Sentinel 2 images. Remote. Sens. Environ. 2015, 159, 269–277. [CrossRef]

19. Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 SEN2COR: L2A
processor for users. European Space Agency (Special Publication); SP-740; ESA SP: Paris, France, 2016; pp. 9–13.

20. Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow,
Water and Clear Sky Pixels in Sentinel-2 MSI Images. Remote. Sens. 2016, 8, 666. [CrossRef]

21. VITO. iCOR Plugin for SNAP Toolbox, Software User Manual, Version 1.0 Contents; Technical Report for VITO Remote Sensing Unit;
VITO: Mol, Belgium, 2017.

22. Baraldi, A.; Tiede, D. AutoCloud+, a “Universal” Physical and Statistical Model-Based 2D Spatial Topology-Preserving Software
for Cloud/Cloud–Shadow Detection in Multi-Sensor Single-Date Earth Observation Multi-Spectral Imagery—Part 1: Systematic
ESA EO Level 2 Product Generation at the Ground Segment as Broad Context. ISPRS Int. J. Geo-Inf. 2018, 7, 457. [CrossRef]

23. Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote
sensing imagery. ISPRS J. Photogramm. Remote. Sens. 2018, 144, 235–253. [CrossRef]

24. Nazarova, T.; Martin, P.; Giuliani, G. Monitoring Vegetation Change in the Presence of High Cloud Cover with Sentinel-2 in a
Lowland Tropical Forest Region in Brazil. Remote. Sens. 2020, 12, 1829. [CrossRef]

25. Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marujo, R.; Simões, R.E.O.;
Ferreira, K.R.; et al. Comparison of Cloud Cover Detection Algorithms on Sentinel–2 Images of the Amazon Tropical Forest.
Remote. Sens. 2020, 12, 1284. [CrossRef]

26. Hagolle, O.; Huc, M.; Desjardins, C.; Auer, S.; Richter, R. MAJA ATBD Algorithm Theoretical Basis Document; Technical Report
for CNES+CESBIO and DLR. 2017. Available online: https://www.theia-land.fr/wp-content-theia/uploads/sites/2/2018/12/
atbd_maja_071217.pdf (accessed on 16 February 2021).

27. Mateo-García, G.; Gómez-Chova, L.; Amorós-López, J.; Muñoz-Marí, J.; Camps-Valls, G. Multitemporal Cloud Masking in the
Google Earth Engine. Remote. Sens. 2018, 10, 1079. [CrossRef]

28. Wang, T.; Shi, J.; Husi, L.; Zhao, T.; Ji, D.; Xiong, C.; Gao, B. Effect of Solar-Cloud-Satellite Geometry on Land Surface Shortwave
Radiation Derived from Remotely Sensed Data. Remote. Sens. 2017, 9, 690. [CrossRef]

29. Luo, Y.; Trishchenko, A.; Khlopenkov, K. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites
at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote. Sens. Environ. 2008,
112, 4167–4185. [CrossRef]

30. Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine. Neurocomputing 2015, 169, 34–42.
[CrossRef]

31. Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted
by Landsat-8 and PALSAR-2. Remote. Sens. 2017, 9, 119. [CrossRef]

32. Talema, T.; Hailu, B.T. Mapping rice crop using sentinels (1 SAR and 2 MSI) images in tropical area: A case study in Fogera
wereda, Ethiopia. Remote. Sens. Appl. Soc. Environ. 2020, 18, 100290. [CrossRef]

33. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al.
Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote. Sens. Environ. 2012, 120, 25–36.
[CrossRef]

34. Müller-Wilm, U. Sentinel-2 MSI—Level 2A Products Algorithm Theoretical Basis Document. ref s2pad-atbd-0001 Issue 2.0; European
Space Agency: Paris, France, 2012; 2p.

35. ESA. European Space Agency Technical Guide: Cloud Masks (L1C). 2020. Available online: https://sentinel.esa.int/web/
sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks (accessed on 4 November 2020).

36. ESA. European Space Agency Technical Guide: Cloud Masks (L2A). 2020. Available online: https://sentinel.esa.int/web/
sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (accessed on 4 November 2020).

37. Debouny, T.; Deprez, R.; Ibrahim, E.; Buydens, G.; Pirard, E. Assessing the discrepancy in open-source atmospheric correction
of Sentinel-2 acquisitions for a tropical mining area in New Caledonia. In Proceedings of the Sixth International Conference
on Remote Sensing and Geoinformation of the Environment (RSCy2018), Paphos, Cyprus, 26–29 March 2018; Volume 10773,
p. 107730F.

38. Sun, L.; Liu, X.; Yang, Y.; Chen, T.; Wang, Q.; Zhou, X. A cloud shadow detection method combined with cloud height iteration
and spectral analysis for Landsat 8 OLI data. ISPRS J. Photogramm. Remote. Sens. 2018, 138, 193–207. [CrossRef]

http://doi.org/10.3390/rs11040433
http://doi.org/10.1016/j.rse.2020.111884
http://doi.org/10.1029/1998JD200032
http://doi.org/10.1016/j.rse.2011.10.028
http://doi.org/10.1016/j.rse.2014.12.014
http://doi.org/10.3390/rs8080666
http://doi.org/10.3390/ijgi7120457
http://doi.org/10.1016/j.isprsjprs.2018.07.006
http://doi.org/10.3390/rs12111829
http://doi.org/10.3390/rs12081284
https://www.theia-land.fr/wp-content-theia/uploads/sites/2/2018/12/atbd_maja_071217.pdf
https://www.theia-land.fr/wp-content-theia/uploads/sites/2/2018/12/atbd_maja_071217.pdf
http://doi.org/10.3390/rs10071079
http://doi.org/10.3390/rs9070690
http://doi.org/10.1016/j.rse.2008.06.010
http://doi.org/10.1016/j.neucom.2014.09.102
http://doi.org/10.3390/rs9020119
http://doi.org/10.1016/j.rsase.2020.100290
http://doi.org/10.1016/j.rse.2011.11.026
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm
http://doi.org/10.1016/j.isprsjprs.2018.02.016


Remote Sens. 2021, 13, 736 20 of 20

39. Lacroix, P.; Moser, F.; Benvenuti, A.; Piller, T.; Jensen, D.; Petersen, I.; Planque, M.; Ray, N. MapX: An open geospatial platform to
manage, analyze and visualize data on natural resources and the environment. SoftwareX 2019, 9, 77–84. [CrossRef]

40. Fisher, A. Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated Morphological Feature Extraction.
Remote. Sens. 2014, 6, 776–800. [CrossRef]

41. Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite
reflectance. Int. J. Remote. Sens. 2002, 23, 1741–1748. [CrossRef]

42. Noi, P.T.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover
Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [CrossRef]

43. Zafari, A.; Zurita-Milla, R.; Izquierdo-Verdiguier, E. Evaluating the Performance of a Random Forest Kernel for Land Cover
Classification. Remote. Sens. 2019, 11, 575. [CrossRef]

44. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

45. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote. Sens. 2011,
66, 247–259. [CrossRef]

46. Li, P.; Jiang, L.; Feng, Z. Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus
(ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors. Remote. Sens. 2013, 6, 310–329. [CrossRef]

47. Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat
Imagery. Remote. Sens. 2014, 6, 4173–4189. [CrossRef]

48. Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized
Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote. Sens. 2016, 8, 354. [CrossRef]

49. Congedo, L. Semi-Automatic Classification Plugin Documentation Release 7.0.0.1. 2020. Available online: https:
//semiautomaticclassificationmanual.readthedocs.io/fr/latest/introduction.html (accessed on 16 February 2021).

50. ESA. European Space Agency Technical Guide: Sentinel-2 Orbit. 2020. Available online: https://sentinel.esa.int/web/sentinel/
missions/sentinel-2/satellite-description/orbit (accessed on 4 November 2020).

51. Le Hégarat-Mascle, S.; André, C. Use of Markov Random Fields for automatic cloud/shadow detection on high resolution optical
images. ISPRS J. Photogramm. Remote. Sens. 2009, 64, 351–366. [CrossRef]

52. Hughes, M.J.; Hayes, D.J. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural
Networks and Spatial Post-Processing. Remote. Sens. 2014, 6, 4907–4926. [CrossRef]

53. Candra, D.S.; Phinn, S.; Scarth, P. Automated Cloud and Cloud-Shadow Masking for Landsat 8 Using Multitemporal Images in a
Variety of Environments. Remote. Sens. 2019, 11, 2060. [CrossRef]

54. Johnson, R.H.; Rickenbach, T.M.; Rutledge, S.A.; Ciesielski, P.E.; Schubert, W.H. Trimodal Characteristics of Tropical Convection.
J. Clim. 1999, 12, 2397–2418. [CrossRef]

55. Duarte, R.P.; Gomes, A.J. Real-time simulation of cumulus clouds through SkewT/LogP diagrams. Comput. Graph. 2017, 67,
103–114. [CrossRef]

56. Pancel, L.; Köhl, M. Tropical Forestry Handbook; Springer: Berlin/Heidelberg, Germany, 2016.
57. FAA. Pilot’s Handbook of Aeronautical Knowledge, Chapter 12: Weather Theory. 2020. Available online: https://www.faa.gov/

(accessed on 16 February 2021).
58. Gillies, S. Rasterio: Geospatial Raster I/O for Python Programmers. 2018. Available online: https://github.com/mapbox/rasterio

(accessed on 16 February 2021).
59. Perry, M.T. Rasterstats. 2017. Available online: https://github.com/perrygeo/python-rasterstats/blob/master/docs/manual.rst

(accessed on 4 November 2020).
60. Gillies, S. Shapely: Manipulation and Analysis of Geometric Objects. 2007. Available online: https://github.com/Toblerity/

Shapely (accessed on 16 February 2021).
61. Jordahl, K.; den Bossche, J.V.; Wasserman, J.; McBride, J.; Gerard, J.; Tratner, J.; Perry, M.; Farmer, C.; Cochran, M.; Gillies, S.; et al.

Geopandas/Geopandas: V0.4.1. 2019. Available online: https://https://zenodo.org/record/2585849#.YC3BB3kRWUk
(accessed on 16 February 2021).

62. Schläpfer, D.; Richter, R.; Reinartz, P. Elevation-Dependent Removal of Cirrus Clouds in Satellite Imagery. Remote. Sens. 2020, 12,
494. [CrossRef]

63. ESA. Recommendations of the Workshop Uncertainty in Remote Sensing. 2017. Available online: https://earth.esa.int/
eogateway/events/workshop-on-uncertainties-in-remote-sensing (accessed on 16 February 2021).

64. Benner, T.C.; Curry, J.A. Characteristics of small tropical cumulus clouds and their impact on the environment. J. Geophys. Res. Space Phys.
1998, 103, 28753–28767. [CrossRef]

65. Zekoll, V.; Main-Knorn, M.; Alonso, K.; Louis, J.; Frantz, D.; Richter, R.; Pflug, B. Comparison of Masking Algorithms for
Sentinel-2 Imagery. Remote. Sens. 2021, 13, 137. [CrossRef]

http://doi.org/10.1016/j.softx.2019.01.002
http://doi.org/10.3390/rs6010776
http://doi.org/10.1080/01431160110106113
http://doi.org/10.3390/s18010018
http://doi.org/10.3390/rs11050575
http://doi.org/10.1016/j.isprsjprs.2010.11.001
http://doi.org/10.3390/rs6010310
http://doi.org/10.3390/rs6054173
http://doi.org/10.3390/rs8040354
https://semiautomaticclassificationmanual.readthedocs.io/fr/latest/introduction.html
https://semiautomaticclassificationmanual.readthedocs.io/fr/latest/introduction.html
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/satellite-description/orbit
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/satellite-description/orbit
http://doi.org/10.1016/j.isprsjprs.2008.12.007
http://doi.org/10.3390/rs6064907
http://doi.org/10.3390/rs11172060
http://doi.org/10.1175/1520-0442(1999)012&lt;2397:TCOTC&gt;2.0.CO;2
http://doi.org/10.1016/j.cag.2017.06.005
https://www.faa.gov/
https://github.com/mapbox/rasterio
https://github.com/perrygeo/python-rasterstats/blob/master/docs/manual.rst
https://github.com/Toblerity/Shapely
https://github.com/Toblerity/Shapely
https://https://zenodo.org/record/2585849#.YC3BB3kRWUk
http://doi.org/10.3390/rs12030494
https://earth.esa.int/eogateway/events/workshop-on-uncertainties-in-remote-sensing
https://earth.esa.int/eogateway/events/workshop-on-uncertainties-in-remote-sensing
http://doi.org/10.1029/98JD02579
http://doi.org/10.3390/rs13010137

	Introduction 
	Study Area 
	Methodology 
	Classification for Dense Cloud and Shadow Detection 
	Geometry-Based Improvement of Cloud Shadow Detection 
	Direction of Cloud Shadow with Respect to Cloud Projection 
	Location of Shadow with Respect to Cloud Projection 
	Implementation of the Geometry-Based Improvement 

	Cirrus Clouds 
	Assessment with Images from Different Seasons and Diverse Cloud Cover 
	Input Uncertainty and Error Sources 

	Results 
	Classification and Selection of Suitable Features 
	Cloud-Shadow and Cloud Geometry Illustration for Various Seasons and Cloud Cover 
	Validation over the Pilot Site 

	Limitations and Future Work 
	Conclusions 
	References

