A Public Dataset for Fine-Grained Ship Classification in Optical Remote Sensing Images
Abstract
:1. Introduction
2. Motivations
3. Establishment of FGSCR-42
3.1. Images Collection
3.2. Category Selection
3.3. Crop Details
3.4. Annotation Method
3.5. Augmentation
3.6. Dataset Splits
4. Properties of FGSCR-42
4.1. Image Size
4.2. Spatial Resolution Information
4.3. Various Sizes of Categories
4.4. Various Aspect Ratios of Instances
5. Evaluations
5.1. Baseline Models
5.2. Benchmark Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 23–26 October 2018; pp. 3974–3983. [Google Scholar]
- Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geosci. Remote. Sens. Lett. 2016, 13, 1074–1078. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Fan, H.; Gui-Song, X.; Jingwen, H.; Liangpei, Z. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar]
- Di, Y.; Jiang, Z.; Zhang, H.; Meng, G. A public dataset for ship classification in remote sensing images. In Proceedings of the SPIE 11155, Image and Signal Processing for Remote Sensing XXV, Strasbourg, France, 9–12 September 2019; pp. 111551M–1–111551M–7. [Google Scholar]
- Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-UCSD Birds-200-2011 Dataset. Number CNS-TR-2011-001. Available online: http://www.vision.caltech.edu/visipedia/CUB-200-2011.html (accessed on 26 October 2011).
- Krause, J.; Stark, M.; Deng, J.; Fei-Fei, L. 3D Object Representations for Fine-Grained Categorization. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2–8 December 2013; pp. 554–561. [Google Scholar]
- Khosla, A.; Jayadevaprakash, N.; Yao, B.; Fei-Fei, L. Novel Dataset for Fine-Grained Image Categorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 554–561. [Google Scholar]
- Nilsback, M.; Zisserman, A. Automated Flower Classification over a Large Number of Classes. In Proceedings of the 2008 Sixth Indian Conference on Computer Vision, Graphics Image Processing, Bhubaneswar, India, 16–19 December 2008; pp. 722–729. [Google Scholar]
- Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; Vedaldi, A. Fine-Grained Visual Classification of Aircraft. arXiv 2013, arXiv:1306.5151. [Google Scholar]
- Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [Google Scholar] [CrossRef]
- Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [Google Scholar] [CrossRef]
- Ross, T.D.; Worrell, S.W.; Velten, V.J.; Mossing, J.C.; Bryant, M.L. Standard SAR ATR evaluation experiments using the MSTAR public release data set. In Algorithms for Synthetic Aperture Radar Imagery V; International Society for Optics and Photonics: Washington, WA, USA, 1998; Volume 3370, pp. 566–574. [Google Scholar]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote. Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN Models for Fine-grained Visual Recognition. In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Fu, J.; Zheng, H.; Mei, T. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4476–4484. [Google Scholar]
- Chen, Y.; Bai, Y.; Zhang, W.; Mei, T. Destruction and Construction Learning for Fine-Grained Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5152–5161. [Google Scholar]
- Zheng, H.; Fu, J.; Zha, Z.J.; Luo, J. Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-grained Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5012–5021. [Google Scholar]
Dataset | Categories | Total Images | Images per Class | Image Width (Pixels) |
---|---|---|---|---|
CUB-200-2011 [6] | 200 | 11,788 | 200 | ∼500 |
Stanford Dogs [8] | 120 | 20,580 | 8500 | ∼1000 |
Stanford Cars [7] | 196 | 8144 | 8041 | 128 |
102 Category Flower Dataset [9] | 102 | 8189 | 40∼258 | 256 |
FGVC-Aircraft [10] | 102 | 10,200 | 100 | 512 |
FGSCR-42 | 42 | 9320 | ∼200 | 50∼1500 |
Dataset | Main Categories | Images | Per Category | Image Width |
---|---|---|---|---|
NWPU VHR-10 [11] | 10 | 3896 | ∼400 | ∼1000 |
RSOD [12] | 4 | 7400 | ∼1800 | ∼1000 |
MSTAR [13] | 3 | 5950 | ∼2000 | 128 |
RSC11 | 11 | 1232 | 100 | 512 |
RSSCN7 [14] | 7 | 2800 | 400 | 400 |
WHU-RS19 [15] | 19 | 1005 | 50 | 600 |
FGSCR-42 | ∼200 | 50∼1500 |
Dataset | Ship Categories |
---|---|
DOTA | 1 |
NWPU VHR-10 | 1 |
HRSC2016 | 19 |
DSCR | 7 |
FGSCR-42 |
Model | Accuracy | Model | Accuracy |
---|---|---|---|
VGG19 | 77.36 | B-CNN | 89.53 |
ResNet-50 | 87.24 | RA-CNN | 91.63 |
DenseNet | 88.69 | DCL | 93.03 |
ResNext-50 | 89.16 | TASN | 93.51 |
Category | Accuracy | Category | Accuracy |
---|---|---|---|
001.Nimitz-class_aircraft_carrier | 89.77 | 022.Sacramento-class_support_ship | 80.25 |
002.KittyHawk-class_aircraft_carrier | 94.05 | 023.Crane_ship | 95.83 |
003.Midway-class_aircraft_carrier | 98.35 | 024.Abukuma-class_frigate | 88.00 |
004.Kuznetsov-class_aircraft_carrier | 93.65 | 025.Megayacht | 90.63 |
005.Charles_de_Gaulle_aricraft_carrier | 95.29 | 026.Cargo_ship | 56.84 |
006.INS_Vikramaditya_aircraft_carrier | 95.83 | 027.Murasame-class_destroyer | 88.46 |
007.INS_Virrat_aircraft_carrier | 98.06 | 028.Container_ship | 91.50 |
008.Ticonderoga-class_cruiser | 98.84 | 029.Towing_vessel | 61.70 |
009.Arleigh_Burke-class_destroyer | 93.04 | 030.Civil_yacht | 40.00 |
010.Akizuki-class_destroyer | 89.29 | 031.Medical_ship | 88.61 |
011.Asagiri-class_destroyer | 92.76 | 032.Sand_carrier | 60.95 |
012.Kidd-class_destroyer | 89.74 | 033.Tank_ship | 96.43 |
013.Type_45_destroyer | 95.60 | 034.Garibaldi_aircraft_carrier | 93.75 |
014.Wasp-class_assault_ship | 97.88 | 035.Zumwalt-class_destroyer | 91.92 |
015.Osumi-class_landing_ship | 84.50 | 036.Kongo-class_destroyer | 90.18 |
016.Hyuga-class_helicopter_destroyer | 92.59 | 037.Horizon-class_destroyer | 93.75 |
017.Lzumo-class_helicopter_destroyer | 97.96 | 038.Atago-class_destroyer | 96.67 |
018.Whitby_Island-class_dock_landing_ship | 92.50 | 039.Maestrale-class_frigate | 87.13 |
019.San_Antonio-class_transport_dock | 97.48 | 040.Juan_Carlos_I_Strategic_Projection_Ship | 88.24 |
020.Freedom-class_combat_ship | 95.54 | 041.Mistral-class_amphibious_assault_ship | 94.25 |
021.Independence-class_combat_ship | 91.67 | 042.San_Giorgio-class_transport_dock | 98.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, Y.; Jiang, Z.; Zhang, H. A Public Dataset for Fine-Grained Ship Classification in Optical Remote Sensing Images. Remote Sens. 2021, 13, 747. https://doi.org/10.3390/rs13040747
Di Y, Jiang Z, Zhang H. A Public Dataset for Fine-Grained Ship Classification in Optical Remote Sensing Images. Remote Sensing. 2021; 13(4):747. https://doi.org/10.3390/rs13040747
Chicago/Turabian StyleDi, Yanghua, Zhiguo Jiang, and Haopeng Zhang. 2021. "A Public Dataset for Fine-Grained Ship Classification in Optical Remote Sensing Images" Remote Sensing 13, no. 4: 747. https://doi.org/10.3390/rs13040747
APA StyleDi, Y., Jiang, Z., & Zhang, H. (2021). A Public Dataset for Fine-Grained Ship Classification in Optical Remote Sensing Images. Remote Sensing, 13(4), 747. https://doi.org/10.3390/rs13040747