A New Coupled Elimination Method of Soil Moisture and Particle Size Interferences on Predicting Soil Total Nitrogen Concentration through Discrete NIR Spectral Band Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Major Steps of the Study
2.2. On-The-Go Detector of TN Concentration
2.3. Experimental Materials and Methods
2.4. Laboratory Measurement
2.5. Model Accuracy and Methodology
3. Results
3.1. Research on Eliminating the Interference of Soil Moisture
3.1.1. Interference of Soil Moisture on Discrete Spectral Band Data
3.1.2. Eliminating the Interference of Soil Moisture on Discrete NIR Spectral Band Data
3.2. Research on Eliminating the Interference of Soil Particle Size
3.2.1. Eliminating the Interference of Soil Moisture on Discrete NIR Spectral Band Data
3.2.2. Identification of Characteristic Wavebands of Soil Particle Size
3.2.3. Research on the Classification of Soil Particle Size
3.2.4. Eliminating the Interference of Soil Particle Size
3.3. Coupled Elimination Method of Soil Moisture and Particle Size Interferences
3.4. Evaluation of the New Coupled Elimination Method
4. Discussion
4.1. Role of New Coupled Elimination Method in Predicting TN through Discrete NIR Spectral Band Data
4.2. Comparison of the New Coupled Elimination Method to the Similar
4.3. Uncertainty in Current Work and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordoli, J.M.; Mallarino, A.P. Deep and shallow banding of phosphorus and potassium as alternatives to broadcast fertilization for no-till Corn. Agron. J. 1998, 90, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Domangue, R.J.; Mortazavi, B. Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary. Environ. Pollut. 2018, 238, 599–606. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Song, J.; Li, P.; Wang, Y.; Zhang, X. Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China. Sustain. Cities Soc. 2019, 50, 101658. [Google Scholar] [CrossRef]
- Staver, K.W.; Brinsfield, R.B. Patterns of soil nitrate availability in corn production systems: Implications for reducing groundwater contamination. J. Soil Water Conserv. 1990, 45, 318–323. [Google Scholar]
- Martins, R.N.; Sárvio, D.; Valente, M.; Tadeu, J.; Rosas, F.; Santos, F.S.; Ferreira, F.; Dos, L.; Carolina, A.; Nascimento, C. Communications in Soil Science and Plant Analysis Site-specific Nutrient Management Zones in Soybean Field Using Multivariate Analysis: An Approach Based on Variable Rate Fertilization Site-specific Nutrient Management Zones in Soybean Field Using Multivariate Analysis: An Approach Based on Variable Rate. Commun. Soil Sci. Plant. Anal. 2020, 51, 687–700. [Google Scholar]
- Yu, J.; Yin, X.; Raper, T.B.; Jagadamma, S.; Chi, D. Nitrogen Consumption and Productivity of Cotton under Sensor-based Variable-rate Nitrogen Fertilization. Agron. J. 2019, 111, 3320–3328. [Google Scholar] [CrossRef]
- Qi, J.; Tian, X.; Li, Y.; Fan, X.; Yuan, H.; Zhao, J.; Jia, H. Design and experiment of a subsoiling variable rate fertilization machine. Int. J. Agric. Biol. Eng. 2020, 13, 118–124. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B. Soil & Tillage Research On-line visible and near infrared spectroscopy for in-field phosphorous management. Soil Tillage Res. 2016, 155, 471–477. [Google Scholar]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. Adv. Agron. 2017, 143, 175–245. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Jin, X.; Yang, Z.; Liu, H. Predicting Soil organic carbon and soil nitrogen stocks in topsoil of forest ecosystems in northeastern china using remote sensing data. Remote Sens. 2020, 12, 1115. [Google Scholar] [CrossRef] [Green Version]
- Maeda, Y.; Tashiro, N.; Enoki, T.; Urakawa, R.; Hishi, T. Effects of species replacement on the relationship between net primary production and soil nitrogen availability along a topographical gradient: Comparison of belowground allocation and nitrogen use efficiency between natural forests and plantations. For. Ecol. Manag. 2018, 422, 214–222. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, C.; Chen, X.; Hopkins, I.; Zhang, X.; Han, Z.; Jiang, F.; Billy, G. The crucial factors of soil fertility and rapeseed yield–A five year field trial with biochar addition in upland red soil, China. Sci. Total Environ. 2019, 649, 1467–1480. [Google Scholar] [CrossRef]
- Yoshida, H.; Takehisa, K.; Kojima, T.; Ohno, H.; Nakagawa, H. Modeling the effects of N application on growth, yield and plant properties associated with the occurrence of chalky grains of rice. Plant. Prod. Sci. 2016, 1008, 30–42. [Google Scholar] [CrossRef]
- Kuang, B.; Mouazen, A.M. Non-biased prediction of soil organic carbon and total nitrogen with vis-NIR spectroscopy, as affected by soil moisture content and texture Keywords. Biosyst. Eng. 2013, 114, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Nocita, M.; Stevens, A.; Toth, G.; Panagos, P.; Montanarella, L. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol. Biochem. 2014, 68, 337–347. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Zheng, L.; Qin, Q.; Suk, W. Spectral features extraction for estimation of soil total nitrogen content based on modified ant colony optimization algorithm. Geoderma 2019, 333, 23–34. [Google Scholar] [CrossRef]
- Bao, Y.; Meng, X.; Ustin, S.; Wang, X.; Zhang, X.; Liu, H. Vis-SWIR spectral prediction model for soil organic matter with diff erent grouping strategies. Catena 2020, 195, 104703. [Google Scholar] [CrossRef]
- Debaene, G.; Nied, J.; Pecio, A.; Anna, Ż. Effect of the number of calibration samples on the prediction of several soil properties at the farm-scale. Geoderma 2014, 215, 114–125. [Google Scholar] [CrossRef]
- Lin, L.; Gao, Z.; Liu, X. Estimation of soil total nitrogen using the synthetic color learning machine (SCLM) method and hyperspectral data. Geoderma 2020, 380, 114664. [Google Scholar] [CrossRef]
- Johnson, J.; Vandamme, E.; Senthilkumar, K.; Sila, A.; Shepherd, K.D.; Saito, K. Near-infrared, mid-infrared or combined diff use reflectance spectroscopy for assessing soil fertility in rice fields in sub-Saharan Africa. Geoderma 2019, 354, 113840. [Google Scholar] [CrossRef]
- Dalal, R.C.; Henry, R.J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.Z.; Zheng, L.H.; Zhao, Y.; Pei, X. Soil nitrogen content forecasting based on real-time NIR spectroscopy. Comput. Electron. Agric. 2016, 124, 29–36. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Q.; Wang, X.; Wu, Y.; Yang, X.; Liu, F. Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy: Effects of spiking on model applicability. Geoderma 2017, 293, 54–63. [Google Scholar] [CrossRef]
- Conforti, M.; Matteucci, G.; Buttafuoco, G. Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties. J. Soils Sediments 2018, 18, 1009–1019. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Hummel, J.W. Portable, Near-infrared spectrophotometer for rapid soil analysis. Trans. ASAE 1993, 36, 185–193. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Alhwaimel, S.A.; Kuang, B.; Waine, T. Multiple on-line soil sensors and data fusion approach for delineation of water holding capacity zones for site specific irrigation. Soil Tillage Res. 2014, 143, 95–105. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Maleki, M.R.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil properties using a VIS–NIR sensor. Soil Tillage Res. 2007, 93, 13–27. [Google Scholar] [CrossRef]
- Zhou, P.; Li, M.; Yang, W.; Ji, R.; Meng, C. Development of vehicle-mounted in-situ soil parameters detector based on NIR diffuse reflection. Spectrosc. Spect. Anal. 2020, 40, 2856–2861. [Google Scholar]
- Zhou, P.; Zhang, Y.; Yang, W.; Li, M.; Liu, Z.; Liu, X. Development and performance test of an in-situ soil total nitrogen-soil moisture detector based on near-infrared spectroscopy. Comput. Electron. Agric. 2019, 160, 51–58. [Google Scholar] [CrossRef]
- An, X.; Li, M.; Zheng, L.; Liu, Y.; Sun, H. A portable soil nitrogen detector based on NIRS. Precis. Agric. 2014, 15, 3–16. [Google Scholar] [CrossRef]
- Tang, N.; Li, M.Z.; Sun, J.Y.; Zheng, L.H.; Pan, L. Development of soil-organic-matter fast-determination instrument based on spectroscopy. Spectrosc. Spectr. Anal. 2007, 27, 2139. [Google Scholar]
- Li, M.; Yao, X.; Yang, W.; Zhou, P.; Hao, Z.; Zheng, L. Design of New Portable Detector for Soil Total Nitrogen Content Based on High-power Tungsten Halogen Lamp and “One-Six” Special Optical Fiber. Trans. Chinese Soc. Agric. Mach. 2019, 50, 169–174. [Google Scholar]
- Wang, Y.P.; Lee, C.K.; Dai, Y.H.; Shen, Y. Effect of wetting on the determination of soil organic matter content using visible and near-infrared spectrometer. Geoderma 2020, 376, 114528. [Google Scholar] [CrossRef]
- Stenberg, B. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma 2010, 158, 15–22. [Google Scholar] [CrossRef] [Green Version]
- An, X.; Li, M.; Zheng, L.; Sun, H. Eliminating the interference of soil moisture and particle size on predicting soil total nitrogen content using a NIRS-based portable detector. Comput. Electron. Agric. 2015, 112, 47–53. [Google Scholar] [CrossRef]
- Rienzi, E.A.; Mijatovic, B.; Mueller, T.G.; Matocha, C.J.; Sikora, F.J.; Castrignanò, A. Prediction of Soil Organic Carbon under Varying Moisture Levels Using Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 2014, 78, 958–967. [Google Scholar] [CrossRef]
- Kaiser, M.; Kleber, M.; Berhe, A.A. How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference. Soil Biol. Biochem. 2015, 80, 324–340. [Google Scholar] [CrossRef]
- Tekin, Y.; Tumsavas, Z.; Mouazen, A.M. Effect of moisture content on prediction of organic carbon and pH using visible and near-infrared spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 188–198. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.; Morgan, C.L. Morgan Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization. Geoderma 2016, 267, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Barthès, B.G.; Brunet, D.; Hien, E.; Enjalric, F.; Conche, S.; Freschet, G.T.; d’Annunzio, R.; Toucet-Louri, J. Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples. Soil Biol. Biochem. 2008, 40, 1533–1537. [Google Scholar] [CrossRef]
- Bogrekci, I.; Lee, W.S. Improving phosphorus sensing by eliminating soil particle size effect in spectral measurement. Trans. ASAE. 2005, 48, 1971–1978. [Google Scholar] [CrossRef]
- Lee, K.S.; Sudduth, K.A.; Drummond, S.T.; Lee, D.H.; Kitchen, N.R.; Chung, S.O. Calibration methods for soil property estimation using reflectance spectroscopy. Trans. ASABE 2010, 53, 675–684. [Google Scholar] [CrossRef]
- Yao, X.; Yang, W.; Li, M.; Zhou, P.; Chen, Y.; Hao, Z.; Liu, Z. Prediction of Total Nitrogen in Soil Based on Random Frog Leaping Wavelet Neural Network. IFAC-PapersOnLine 2018, 51, 660–665. [Google Scholar] [CrossRef]
- Yao, X.; Yang, W.; Li, M.; Zhou, P.; Liu, Z. Prediction of Total Nitrogen Content in Different Soil Types Based on Spectroscopy. IFAC-PapersOnLine 2019, 52, 270–276. [Google Scholar] [CrossRef]
- Mcdowell, W.H.; Magill, A.H.; Aitkenhead-Peterson, J.A.; Aber, J.D.; Merriam, J.L.; Kaushal, S.S. Effects of Chronic Nitrogen Amendment on Dissolved Organic Matter and Inorganic Nitrogen in Soil Solution. For. Ecol. Manag. 2004, 196, 29–41. [Google Scholar] [CrossRef]
- Jämtgård, S.; Näsholm, T.; Huss-danell, K. Soil Biology and Biochemistry Nitrogen Compounds in Soil Solutions of Agricultural Land. Soil Biol. Biochem. 2010, 42, 2325–2330. [Google Scholar] [CrossRef]
- Stark, J.M.; Hart, S.C. Diffusion Technique for Preparing Salt Solutions, Kjeldahl Digests, and Persulfate Digests for Nitrogen-15 Analysis. Soil Sci. Soc. Am. J. 1996, 60, 1846–1855. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, J.; Li, G.; Yang, X. Predicting Soil Nitrogen and Organic Carbon Using Near Infrared SpectroscopyCoupled with Variable Selection. Appl. Eng. Agric. 2014, 30, 641–647. [Google Scholar]
- Zheng, L.; Li, M.; Pan, L.; Sun, J.; Tang, N. Application of wavelet packet analysis in estimating soil parameters based on NIR spectra. Spectrosc. Spectr. Anal. 2009, 29, 1549–1552. [Google Scholar]
- Zheng, L.; Li, M.; Pan, L.; Sun, J.; Tang, N. Estimation of soil organic matter and soil total nitrogen based on NIR spectroscopy and BP neural network. Spectrosc. Spectr. Anal. 2008, 28, 1160–1164. [Google Scholar]
- Zhou, P.; Sudduth, K.A.; Veum, K.S.; Li, M. Selection of characteristic wavebands to minimize soil moisture effects with in-situ soil spectroscopy. In 2020 ASABE Annual International Virtual Meeting; ASABE: Saint Joseph, MI, USA, 2020. [Google Scholar]
- Ogen, Y.; Faigenbaum-golovin, S.; Granot, A.; Shkolnisky, Y. Removing Moisture Effect on Soil Reflectance Properties: A Case Study of Clay Content Prediction. Pedosph. An. Int. J. 2019, 29, 421–431. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Guo, L.; Fei, T.; Qi, K. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy. Remote Sens. 2016, 8, 755. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Palombo, A.; Pascucci, S.; Pignatti, S.; Santini, F. Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data. Remote Sens. 2015, 7, 15561–15582. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Asner, G.P. Moisture Effects on Soil Reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Li, M.Z.; Han, D.H.; Wang, X. Spectral Analysis and Application; Science Press: Beijing, China, 2006. [Google Scholar]
- Lu, W.Z. Modern Near Infrared Spectroscopy Analytical Technology; China Petrochemical Press: Beijing, China, 2010. [Google Scholar]
- Hu, A.Q.; Yuan, H.F.; Song, C.F.; Li, X.Y. A correction method of baseline drift of discrete spectrum of NIR. Spectrosc. Spectr. Anal. 2014, 34, 2606–2611. [Google Scholar]
- Carle, C. Comments on Smoothing and Differentiation of Data by Simplified Least Square Procedure. Anal. Chem. 1972, 44, 1906–1909. [Google Scholar]
- Savitzky, A.; Golay, M.J. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Morellos, A.; Pantazi, X.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Direct Special Issue: Proximal Soil Sensing Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Veum, K.S.; Parker, P.A.; Sudduth, K.A.; Holan, S.H. Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization. Sensor 2018, 18, 3869. [Google Scholar] [CrossRef] [Green Version]
Serial Number | Soil Moisture Content Grade | MACI | Accuracy Rate (%) | Wj |
---|---|---|---|---|
1 | Low level (0–3.0) | >9.11 | 100 | 1 |
2 | Low-medium level (3.0–6.0) | 9.11–6.05 | 88 | 0.92 |
3 | Middle level (6.0–10.0) | 6.05–2.03 | 86 | 0.86 |
4 | High-medium level (10.0–13.0) | 2.03–1.12 | 81 | 0.76 |
5 | High level (>13.0) | <1.12 | 100 | 0.68 |
Soil Particle Size | TN Level g·kg−1 | Range of TN g·kg−1 | Particle Size | TN Level g·kg−1 | Range of TN g·kg−1 |
---|---|---|---|---|---|
2.0 mm | 0 | 0.005–0.012 | 0.9 mm | 0 | 0.003–0.012 |
0.04 | 0.036–0.047 | 0.04 | 0.029–0.037 | ||
0.08 | 0.071–0.077 | 0.08 | 0.076–0.091 | ||
0.12 | 0.109–0.123 | 0.12 | 0.119–0.133 | ||
0.16 | 0.162–0.171 | 0.16 | 0.153–0.176 | ||
0.2 | 0.186–0.194 | 0.2 | 0.191–0.206 | ||
0.45 mm | 0 | 0.006–0.02 | 0.2 mm | 0 | 0.009–0.018 |
0.04 | 0.031–0.042 | 0.04 | 0.026–0.04 | ||
0.08 | 0.063–0.071 | 0.08 | 0.060–0.067 | ||
0.12 | 0.119–0.131 | 0.12 | 0.128–0.138 | ||
0.16 | 0.142–0.153 | 0.16 | 0.153–0.169 | ||
0.2 | 0.178–0.190 | 0.2 | 0.187–0.199 |
Elimination Method | RMSEP(g·kg−1) | RPD | |
---|---|---|---|
Model 1 | 0.64 | 0.278 | 1.59 |
Model 2 | 0.71 | 0.221 | 2.06 |
Model 3 | 0.73 | 0.202 | 2.12 |
Model 4 | 0.82 | 0.166 | 2.53 |
Model 5 | 0.89 | 0.121 | 2.72 |
N | Spectral Measuring Equipment | Spectral Range | Elimination Factor | Elimination Method | Calibration Algorithm | RMSEP | References | |
---|---|---|---|---|---|---|---|---|
48 | Portable detector | 940, 1050, 1100, 1200, 1300, and 1550 nm | / | / | BPNN | 0.45 | 0.215 | [36] |
48 | Portable detector | 940, 1050, 1100, 1200, 1300, 1450, and 1550 nm | Soil moisture and soil particle size | PMAI and mixed calibration set | BPNN | 0.76 | 0.030 | [36] |
90 | FT-NIR analyzer (MATRIX-I, Bruker corp., Germany) | 800–2564 nm | Soil moisture | Wavelet decompositions | SVM | 0.81 | 0.053 | [23] |
140 | AgroSpec portable VIS-NIR spectrophotometer (Tec5 Technology for Spectroscopy, Germany) | 305–2200 nm | Soil moisture and soil particle size | FD transformation with 31 smoothing points and SNV | Cubist method | 0.73 | 0.071 | [62] |
708 | Veris P4000 (Veris Technologies, Inc., Salina, KS, USA) | 343–2202 nm | Soil moisture | EPO | PLS | 0.63 | 0.024 | [63] |
108 | On-the-go detector | 1070, 1130, 1245, 1375, 1550, and 1680 nm | / | / | SVM | 0.64 | 0.278 | This study |
108 | On-the-go detector | 1070, 1130, 1245, 1361, 1375, 1450, 1550, 1680, and 1870 nm | Soil moisture and soil particle size | New coupled elimination method | SVM | 0.82 | 0.166 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Yang, W.; Li, M.; Wang, W. A New Coupled Elimination Method of Soil Moisture and Particle Size Interferences on Predicting Soil Total Nitrogen Concentration through Discrete NIR Spectral Band Data. Remote Sens. 2021, 13, 762. https://doi.org/10.3390/rs13040762
Zhou P, Yang W, Li M, Wang W. A New Coupled Elimination Method of Soil Moisture and Particle Size Interferences on Predicting Soil Total Nitrogen Concentration through Discrete NIR Spectral Band Data. Remote Sensing. 2021; 13(4):762. https://doi.org/10.3390/rs13040762
Chicago/Turabian StyleZhou, Peng, Wei Yang, Minzan Li, and Weichao Wang. 2021. "A New Coupled Elimination Method of Soil Moisture and Particle Size Interferences on Predicting Soil Total Nitrogen Concentration through Discrete NIR Spectral Band Data" Remote Sensing 13, no. 4: 762. https://doi.org/10.3390/rs13040762
APA StyleZhou, P., Yang, W., Li, M., & Wang, W. (2021). A New Coupled Elimination Method of Soil Moisture and Particle Size Interferences on Predicting Soil Total Nitrogen Concentration through Discrete NIR Spectral Band Data. Remote Sensing, 13(4), 762. https://doi.org/10.3390/rs13040762