Identification of Abandoned Jujube Fields Using Multi-Temporal High-Resolution Imagery and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Abandonment Process in Jujube
2.3. Data and Processing
2.3.1. Remote Sensing Data
2.3.2. Image Preprocessing
2.3.3. Spectral Feature Extraction
2.3.4. Texture Feature Extraction
2.3.5. Field Sample Data
2.4. Random Forest Algorithm
2.5. Accuracy Assessment
3. Results
3.1. Classification Accuracy Assessment and Results Analysis
3.2. Classification Feature Importance Evaluation
3.3. Image Date Importance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, R.; Ding, S.; Zhao, D.; Wang, Z.; Wu, J.; Hu, X. Effect of dehydration methods on antioxidant activities, phenolic contents, cyclic nucleotides, and volatiles of jujube fruits. Food Sci. Biotechnol. 2016, 25, 137–143. [Google Scholar] [CrossRef]
- Gao, Q.-H.; Wu, C.-S.; Wang, M. The Jujube (Ziziphus Jujuba Mill.) Fruit: A Review of Current Knowledge of Fruit Composition and Health Benefits. J. Agric. Food Chem. 2013, 61, 3351–3363. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Zhang, N.; Mercatoris, B.; Chen, Y. Jujube yield prediction method combining Landsat 8 Vegetation Index and the phenological length. Comput. Electron. Agric. 2019, 162, 1011–1027. [Google Scholar] [CrossRef]
- Bai, T.-C.; Wang, T.; Zhang, N.-N.; Chen, Y.-Q.; Mercatoris, B. Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model. J. Integr. Agric. 2020, 19, 721–734. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, S. Detecting abandoned farmland using harmonic analysis and machine learning. ISPRS J. Photogramm. Remote Sens. 2020, 166, 201–212. [Google Scholar] [CrossRef]
- Wu, M.; Hu, Y.; Wang, H.; Liu, G.; Yang, L. Remote sensing extraction and feature analysis of abandoned farmland in hilly and mountainous areas: A case study of Xingning, Guangdong. Remote Sens. Appl. Soc. Environ. 2020, 20, 100403. [Google Scholar] [CrossRef]
- Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J.P.A. Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sens. 2018, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.V.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Müller, D.; Prishchepov, A.V.; Schierhorn, F.; et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 2013, 8, 035035. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, G.; Zhang, D.; Guo, L. Mapping abandoned farmland in China using time series MODIS NDVI. Sci. Total Environ. 2021, 755, 142651. [Google Scholar] [CrossRef]
- Löw, F.; Fliemann, E.; Abdullaev, I.; Conrad, C.; Lamers, J.P. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl. Geogr. 2015, 62, 377–390. [Google Scholar] [CrossRef]
- Yusoff, N.M.; Muharam, F.M.; Khairunniza-Bejo, S. Towards the use of remote-sensing data for monitoring of abandoned oil palm lands in Malaysia: A semi-automatic approach. Int. J. Remote Sens. 2016, 38, 432–449. [Google Scholar] [CrossRef]
- Morell-Monzó, S.; Estornell, J.; Sebastiá-Frasquet, M. Comparison of Sentinel-2 and high-resolution imagery for mapping land abandonment in fragmented areas. Remote Sens. Basel. 2020, 12, 2062. [Google Scholar] [CrossRef]
- Zhou, Q.-B.; Yu, Q.-Y.; Liu, J.; Wu, W.-B.; Tang, H.-J. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring. J. Integr. Agric. 2017, 16, 242–251. [Google Scholar] [CrossRef]
- Chen, M.; Ke, Y.; Bai, J.; Li, P.; Lyu, M.; Gong, Z.; Zhou, D. Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: A case study in the Yellow River Delta, China. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102180. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sens. Environ. 2020, 247, 111912. [Google Scholar] [CrossRef]
- Bruzzone, L.; Carlin, L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587–2600. [Google Scholar] [CrossRef] [Green Version]
- Prishchepov, A.V.; Radeloff, V.C.; Baumann, M.; Kuemmerle, T.; Müller, D. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environ. Res. Lett. 2012, 7, 024021. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Liu, C.; Shang, J.; Vachon, P.W.; McNairn, H. Multiyear Crop Monitoring Using Polarimetric RADARSAT-2 Data. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2227–2240. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2500–2508. [Google Scholar] [CrossRef]
- Paredes-Gómez, V.; Gutiérrez, A.; Del Blanco, V.; Nafría, D.A. A Methodological Approach for Irrigation Detection in the Frame of Common Agricultural Policy Checks by Monitoring. Agronomy 2020, 10, 867. [Google Scholar] [CrossRef]
- Bruce, R.W.; Rajcan, I.; Sulik, J. Plot extraction from aerial imagery: A precision agriculture approach. Plant Phenome J. 2020, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Aplin, P.; Atkinson, P.M.; Curran, P.J. Fine Spatial Resolution Simulated Satellite Sensor Imagery for Land Cover Mapping in the United Kingdom. Remote Sens. Environ. 1999, 68, 206–216. [Google Scholar] [CrossRef]
- Arikan, M. Parcel based crop mapping through multi-temporal masking classification of Landsat 7 images in Karacabey, Turkey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 34, 12–23. [Google Scholar]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Yang, S.; Gu, L.; Li, X.; Jiang, T.; Ren, R. Crop Classification Method Based on Optimal Feature Selection and Hybrid CNN-RF Networks for Multi-Temporal Remote Sensing Imagery. Remote Sens. 2020, 12, 3119. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Ye, H.; Dong, Y.; Ma, H.; Ren, Y.; Ruan, C. Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images. Remote Sens. 2020, 12, 1419. [Google Scholar] [CrossRef]
- Kim, H.-O.; Yeom, J.-M. Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data. Int. J. Remote Sens. 2014, 35, 1–23. [Google Scholar] [CrossRef]
- Bhuyar, N.; Acharya, S.; Theng, D. Crop Classification with Multi-Temporal Satellite Image Data. Int. J. Eng. Res. 2020, 9. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; LeGates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agric. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Gilbertson, J.K.; Kemp, J.; van Niekerk, A. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 2017, 134, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kang, J.; Xu, X.; Zhang, L. Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Comput. Electron. Agric. 2020, 176, 105618. [Google Scholar] [CrossRef]
- Yusoff, N.M.; Muharam, F.M. The Use of Multi-Temporal Landsat Imageries in Detecting Seasonal Crop Abandonment. Remote Sens. 2015, 7, 11974–11991. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, C.; Huang, W.; Tang, J.; Tian, Y.; Zhang, Q. Identification of Cotton Root Rot by Multifeature Selection from Sentinel-2 Images Using Random Forest. Remote Sens. 2020, 12, 3504. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Fletcher, R.S.; Reddy, K.N. Random forest and leaf multispectral reflectance data to differentiate three soybean varieties from two pigweeds. Comput. Electron. Agric. 2016, 128, 199–206. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Ren, T.; Liu, D.; Ma, Z.; Tong, L.; Zhang, C.; Zhou, T.; Zhang, X.; Li, S. Identification of Seed Maize Fields With High Spatial Resolution and Multiple Spectral Remote Sensing Using Random Forest Classifier. Remote Sens. 2020, 12, 362. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spéc. Publ. 1974, 351, 309. [Google Scholar]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Liu, D.; Xiong, Q.; Yang, N.; Ren, T.; Zhang, C.; Zhang, X.; Li, S. Crop Mapping Based on Historical Samples and New Training Samples Generation in Heilongjiang Province, China. Sustainability 2019, 11, 5052. [Google Scholar] [CrossRef] [Green Version]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Murray, H.; Lucieer, A.; Williams, R. Texture-based classification of sub-Antarctic vegetation communities on Heard Island. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 138–149. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; Van Der Linden, S.; Perzanowski, K.; Kruhlov, I. Cross-border Comparison of Post-socialist Farmland Abandonment in the Carpathians. Ecosystems 2008, 11, 614–628. [Google Scholar] [CrossRef]
- Milenov, P.; Vassilev, V.; Vassileva, A.; Radkov, R.; Samoungi, V.; Dimitrov, Z.; Vichev, N. Monitoring of the risk of farmland abandonment as an efficient tool to assess the environmental and socio-economic impact of the Common Agriculture Policy. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 218–227. [Google Scholar] [CrossRef]
- Szostak, M.; Hawryło, P.; Piela, D. Using of Sentinel-2 images for automation of the forest succession detection. Eur. J. Remote Sens. 2018, 51, 142–149. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Cheng, Y.; Guo, B.; Jin, S. Parameters determination and sensor correction method based on virtual CMOS with distortion for the GaoFen6 WFV camera. ISPRS J. Photogramm. Remote Sens. 2019, 156, 51–62. [Google Scholar] [CrossRef]
- Gomez, V.P.; Del Blanco Medina, V.; Bengoa, J.L.; Nafría García, D.A. Accuracy Assessment of a 122 Classes Land Cover Map Based on Sentinel-2, Landsat 8 and Deimos-1 Images and Ancillary Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5453–5456. [Google Scholar] [CrossRef]
Global Observation Cycle | Repeat Observation Cycle | Wavelength (nm) | Spatial Resolution (m) | Image Dates in 2019 (Day Month) | |
---|---|---|---|---|---|
GF1, GF1 B/C/D | 41 days | 4 days | PAN: 450–900 Blue: 450–520 Green: 520–590 Red: 630–690 Infrared: 770–890 | PAN: 2 MS: 8 | 29 May, 13 June, 13 July, 11 September, 10 November |
GF6 | 41 days | 4 days | PAN: 450–900 Blue: 450–520 Green: 520–600 Red: 630–690 Infrared:760–900 | PAN: 2 MS: 8 | 05 April, 16 May, 06 August, 31 October |
Spectral Index | Calculation Formula | Related To | Reference |
---|---|---|---|
Normalized difference vegetation index (NDVI) | Vegetation status, canopy structure | [43] | |
Soil-adjusted vegetation index (SAVI) | Vegetation status, soil background | [44] | |
Enhance vegetation index (EVI) | Vegetation status, canopy structure | [45] | |
Normalized difference water index (NDWI) | Water content | [46] | |
Ratio vegetation index (RVI) | Vegetation status, canopy structure, leaf pigments | [47] |
Texture | Calculation Formula | Description |
---|---|---|
Mean | The average grey level of all pixels in the matrix. | |
Variance | The rate of change of the pixels’ values. | |
Contrast | The local variations in the matrix. | |
Entropy | The level of disorder in the matrix. | |
Correlation | The measurement of image linearity among the pixels. |
Classification Field Type | Input Variables | Training Samples | Validation Samples | ||
---|---|---|---|---|---|
Fields | Pixels | Fields | |||
Model 1 | Abandoned | 90 | 48 | 226,589 | 31 |
Alkali Draining Ditch | 38 | 44,315 | 25 | ||
In-production | 51 | 272,685 | 34 | ||
Model 2 | Abandoned | 90 | 48 | 226,589 | 31 |
Alkali Draining Ditch | 38 | 44,315 | 25 | ||
In-production | 51 | 272,685 | 34 |
Classification Field Type | Ground-Truth Class (Field) | ||||
---|---|---|---|---|---|
Abandoned | Alkali Draining Ditch | In-Production | Total | UA (%) | |
Model 1 OA: 91.1% Kappa: 0.866 | |||||
Abandoned | 26 | 2 | 0 | 28 | 92.9% |
Alkali Draining Ditch | 3 | 23 | 1 | 27 | 85.2% |
In-production | 2 | 0 | 33 | 35 | 94.3% |
Total | 31 | 25 | 34 | 90 | |
PA (%) | 83.9% | 92.0% | 97.1% | ||
Model 2 OA: 90.0% Kappa: 0.848 | |||||
Abandoned | 29 | 5 | 1 | 35 | 82.9% |
Alkali Draining Ditch | 0 | 19 | 0 | 19 | 100.0% |
In-production | 2 | 1 | 33 | 36 | 91.7% |
Total | 31 | 25 | 34 | 90 | |
PA (%) | 93.6% | 76.0% | 97.1% | ||
Ground-Truth Class (Pixel) | |||||
Traditional Pixel-Based Classification OA: 84.8% Kappa: 0.725 | |||||
Abandoned | 195,714 | 14,336 | 33,949 | 243,999 | 80.2% |
Alkali Draining Ditch | 7662 | 23,050 | 6346 | 37,059 | 62.2% |
In-production | 23,085 | 5005 | 287,150 | 315,240 | 91.1% |
Total | 229,365 | 42,948 | 323,985 | 596,298 | |
PA (%) | 85.3% | 53.7% | 88.6% |
Classification Field Type | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
Number of Fields | Area | Number of Fields | Area | |||
/ | ha | % | / | ha | % | |
Abandoned | 609 | 806.09 | 8.87 | 587 | 828.21 | 9.11 |
Alkali Draining Ditch | 226 | 78.61 | 0.86 | 145 | 47.92 | 0.53 |
In-production | 5070 | 8205.36 | 90.27 | 5173 | 8213.93 | 90.36 |
Total | 5905 | 9090.06 | 100 | 5905 | 9090.06 | 100.00 |
Image Date | Abandoned | Alkali Draining Ditch | In-Production | OA (%) | Kappa | |||
---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |||
31 October | 93.6 | 60.4 | 32.0 | 100.0 | 91.2 | 91.2 | 75.6 | 62.329 |
10 November | 90.3 | 63.6 | 40.0 | 100.0 | 94.1 | 88.9 | 77.8 | 65.792 |
05 April | 93.6 | 78.4 | 68.0 | 100.0 | 97.1 | 91.7 | 87.8 | 81.335 |
13 June | 93.6 | 82.9 | 76.0 | 100.0 | 97.1 | 91.7 | 90.0 | 84.763 |
29 May | 93.6 | 82.9 | 76.0 | 100.0 | 97.1 | 91.7 | 90.0 | 84.763 |
16 May | 93.6 | 82.9 | 76.0 | 100.0 | 97.1 | 91.7 | 90.0 | 84.763 |
13 July | 93.6 | 80.6 | 72.0 | 100.0 | 97.1 | 91.7 | 88.9 | 83.051 |
06 August | 93.6 | 82.9 | 76.0 | 100.0 | 97.1 | 91.7 | 90.0 | 84.763 |
11 September | 93.6 | 82.9 | 76.0 | 100.0 | 97.1 | 91.7 | 90.0 | 84.763 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yang, C.; Zhang, H.; Wang, P.; Tang, J.; Tian, Y.; Zhang, Q. Identification of Abandoned Jujube Fields Using Multi-Temporal High-Resolution Imagery and Machine Learning. Remote Sens. 2021, 13, 801. https://doi.org/10.3390/rs13040801
Li X, Yang C, Zhang H, Wang P, Tang J, Tian Y, Zhang Q. Identification of Abandoned Jujube Fields Using Multi-Temporal High-Resolution Imagery and Machine Learning. Remote Sensing. 2021; 13(4):801. https://doi.org/10.3390/rs13040801
Chicago/Turabian StyleLi, Xingrong, Chenghai Yang, Hongri Zhang, Panpan Wang, Jia Tang, Yanqin Tian, and Qing Zhang. 2021. "Identification of Abandoned Jujube Fields Using Multi-Temporal High-Resolution Imagery and Machine Learning" Remote Sensing 13, no. 4: 801. https://doi.org/10.3390/rs13040801
APA StyleLi, X., Yang, C., Zhang, H., Wang, P., Tang, J., Tian, Y., & Zhang, Q. (2021). Identification of Abandoned Jujube Fields Using Multi-Temporal High-Resolution Imagery and Machine Learning. Remote Sensing, 13(4), 801. https://doi.org/10.3390/rs13040801