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Abstract: Successfully applied in the carbon research area, sun-induced chlorophyll fluorescence
(SIF) has raised the interest of researchers from the water research domain. However, current works
focused on the empirical relationship between SIF and plant transpiration (T), while the mechanistic
linkage between them has not been fully explored. Two mechanism methods were developed to
estimate T via SIF, namely the water-use efficiency (WUE) method and conductance method based
on the carbon–water coupling framework. The T estimated by these two methods was compared
with T partitioned from eddy covariance instrument measured evapotranspiration at four different
sites. Both methods showed good performance at the hourly (R2 = 0.57 for the WUE method and
0.67 for the conductance method) and daily scales (R2 = 0.67 for the WUE method and 0.78 for the
conductance method). The developed mechanism methods provide theoretical support and have a
great potential basis for deriving ecosystem T by satellite SIF observations.

Keywords: transpiration; sun-induced chlorophyll fluorescence; water-use efficiency; stomatal con-
ductance

1. Introduction

Evapotranspiration (ET) is not only a pipeline of the water cycle in the air, but also an
important influence factor of energy balance as a carrier of latent heat. Total ET is mainly
composed of plant transpiration (T) and soil evaporation (E). Previous works indicated that T
occupies a dominant position in ET [1,2]. In some ecosystems, T could account for 95% of the
total ET [3]. T, the water flux from plants, is also closely coupled with the carbon assimilation
through stomata [4]. Therefore, an accurate understanding of the spatiotemporal variations
of T is crucial for understanding the mass and energy interactions between land surface and
atmosphere. However, it is still a challenge deriving T, especially at a large scale [3].

In this century, remote sensed sun-induced chlorophyll fluorescence (SIF) renewed the
gross primary production (GPP) estimation from ground to space [5,6]. Considering the
connection between GPP and T, SIF may also serve as a pertinent constrain estimate for
T [7,8]. Recently, empirical analysis based on ground and remote sensing SIF observations
showed that SIF was strongly related to T. Lu et al. [9] reconstructed the full-band SIF
and exploited the capacity of individual SIF bands and their combinations for deriving T
with empirical linear regression and Gaussian process regression model at Harvard Forest.
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Pagán et al. [10] used radiation corrected satellite SIF observations to diagnose transpiration
efficiency understood as the ratio between T and potential evaporation based on empirical
analysis. Maes et al. [11] investigated the empirical link between SIF and T using satellite
SIF and the Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) model.

However, the studies above-mentioned only related T with SIF empirically. There are two
challenges of modeling T by SIF. First, SIF is the weak light signal, about 0~4 mW/m2/nm/sr,
from the excited chlorophyll a molecules after absorption of photosynthetically active radia-
tion, while the energy related to T is about hundreds of watts per square meter. Second, the
information about the electron transport (J) from photosystem II to photosystem I contained
in SIF makes the signal a powerful tool to predict GPP [12,13], but T is part of the water cycle.
Therefore, SIF and T are not linked directly, and the essential of understanding the SIF–T
relationship lies in the coupling between the carbon and water cycles.

The trade-off between photosynthesis and water vapor loss is arguably the most central
constraint on plant function [14]. Water-use efficiency (WUE) and stomatal conductance (gs,
or canopy conductance, gc) are two key metrics of carbon–water coupling. WUE is defined
as the amount of assimilated carbon relative to water use [15]. Recently, Maes et al. [11]
reported WUE has the most important impact on the SIF–T relation. Plants take in carbon
dioxide and breathe out water through stomata simultaneously. Stomata play a key role in
the carbon–water coupling, even in the whole earth system [16]. By analyzing the empirical
link of SIF and stomatal conductance, Shan et al. [17] discovered that the empirically linear
linkage between gs and SIF data from three sites with different land covers (forest, cropland,
and grassland), and T calculated by SIF-based gs agreed well with ET observations.

Even though previous studies have empirically estimated T based on SIF observations.
It is unclear how to model T by SIF mechanistically. In this study, two carbon–water coupling
indicators (WUE and gs) were introduced to clarify the physical relevance between SIF and
T. Two mechanistic SIF–T methods were therefore built and tested based on hourly and
daily ground observations at four sites including two C4 and two C3 sites. The results will
improve our understanding of the link between SIF and T.

2. Materials and Methods
2.1. Materials

SIF and corresponding observations (e.g., meteorological variables, flux observations,
and vegetation indices) were acquired at four sites including two maize field sites (Daman,
China, DM; Huailai, China, HL), a subalpine conifer forest (Niwot Ridge, USA, NR), and
one temperate deciduous forest site (Harvard Forest, USA, HF). The characteristics of these
sites are summarized in Table 1. The SIF measurements of the DM and HL sites (760 nm)
were measured by a tower-based automatic measurement system named “SIFSpec” and
retrieved using the 3FLD method [18]. The SIF data (745 to 758 nm) were observed from a
scanning spectrometer (PhotoSpec) at the NR site [19]. The SIF data of the HF site were
retrieved from FluoSpec deployed about 5 m above the canopy on top of a tower and
extracted by spectral fitting methods at 760 nm [20].

Meteorological variables including net radiation (Rn), relative humidity (Rh), and so on
were collected. Energy flux and carbon flux were extracted from eddy covariance (EC) instru-
ments at four sites. Leaf area index (LAI) of all four sites was acquired from the MCD15A3H
dataset with 4-day and 500 m temporal-spatial resolution [21] and interpolated on Google
Earth Engine [22]. Flux observations during wet conditions (one hour before rainfall to six
hours after rainfall) were excluded to minimize the influence of canopy interception and
avoid the poor performance of eddy covariance under high relative humidity [17,23] (See
supplementary Table S1 for details of input and intermediate variables).

The underlying water-use efficiency (uWUE) was used to partition ET observations
into E and T [24]. The estimated T from the uWUE method (denoted as TZhou) was used
to evaluate T estimated from SIF. The uWUE method was developed based on data from
14 flux tower sites including the HF site, and has been successfully applied to three sites
in the Heihe River Basin [25] including the DM site. In particular, T/ET estimated by the



Remote Sens. 2021, 13, 804 3 of 13

uWUE method agreed with the isotope method well during the peak growing season at the
DM site [26]. The reference TZhou may have some uncertainty during drought conditions
as Zhou’s method assumes plants keep an optimal response (square root) to vapor pressure
deficit (VPD) [27]. Additionally, in some ecosystems, soil evaporation cannot be ignored
even during the peak growing season.

Table 1. Summary of the sites used to build the models.

Site Longitude Latitude Period Land Cover Reference

Daman (DM) 100.37◦ E 38.85◦ N Jun 2017–Sep 2017;
Jun 2018–Sep 2018 Maize (C4) [28–30]

Huailai (HL) 115.78◦ E 40.33◦ N Jul 2017–Oct 2017;
Jul 2018–Oct 2018 Maize (C4) [30–32]

Niwot Ridge (NR) 105.55◦ W 40.03◦ N Jun 2017–Jul 2018 Evergreen needle leaf forest (C3) [19,33,34]

Harvard Forest (HF) 72.17◦ W 42.54◦ N Jun 2013–Nov 2013 Mixed temperate forest (C3) [20,35]

2.2. Water-Use Efficiency (WUE) Method

SIF and GPP can both be represented in the form of light use efficiency (LUE) mod-
els [36]:

SIF = APAR×ΦF ×Ωc (1)

GPP = APAR× LUE (2)

where APAR stands for the photosynthetically active radiation absorbed by photosynthetic
pigments; ΦF is the fluorescence quantum yield; and Ωc is the probability of SIF photons
escaping from the canopy. Combining Equation (1) with Equation (2), a linear model
between SIF and GPP can be expressed as:

GPP = SIF
LUE

ΦF ×Ωc
. (3)

Based on previous works [37,38], the factor LUE
ΦF×Ωc

can be set as a constant for a specific
plant type, and GPP can be calculated by SIF directly. For the C3 and C4 plants, WUE was
relatively stable. Under this assumption, T can be calculated by SIF using simple linear
regression (SLR):

GPP = k1× SIF (4)

TSLR = k2×GPP (5)

where k1 and k2 are two parameters denoting LUE
ΦF×Ωc

and WUE, respectively. Equation (5)
is the theory base of the empirical linear relationship between SIF and T.

However, k2 is also affected by environmental factors [39], especially the dryness of
air. Previous work indicated that WUE became more stable by incorporating the effects
of VPD from diurnal to annual time scales [40,41]. Moreover, Jonard et al. [8] pointed out
that the atmospheric demand for water helps to explain a lot of variability in the SIF–T
relationship at the ecosystem scale. Here, we proposed a WUE method as:

TWUE = k3×VPDk4 ×GPP (6)

k3 is a parameter concluding information on water-use efficiency. k4 quantifies the non-
linear effect of VPD on k3. In this work, VPD is calculated from the air temperature and
relative humidity of the air.

2.3. Conductance Method

Though the linear SIF–GPP relationship (Equation (3)) looks simple, the parameter
k1 is not a constant in the real environment [42]. Previous work has also reported on the
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hyperbolic relationship between SIF and GPP [43,44]. The link between SIF and GPP is due
to the close relationship between SIF and J as above-mentioned and J can be derived by SIF
in [12]:

J = a× qL × SIF× 1
Ωc

(7)

where a is an empirical factor supposed to be a constant for a specific ecosystem; qL is the
fraction of open Photosystem II reaction centers, indicating the “traffic jam” in the electron
transport pathway from Photosystem II to Photosystem I. Note that, Equation (7) is designed
for broadband SIF from Photosystem II. Single NIR band SIF was used here instead by
assuming a linear relationship between single-band SIF and full band SIF. qL ranges from 0
to 1 and decreases with increased photosynthetically active radiation [12,45]. Here, qL is
derived by qL = exp(−β× PAR), where β is a parameter denoting the sensitivity of qL to
the illumination.

Benefiting from the carbon-pump mechanism, the GPP of C4 plants is linearly related
to J. For C4 plants, GPPgs can be derived by [12]:

GPPgs = J/4 =
a× qL × SIF

4ΩC
(8)

gs of C4 plants is derived by inserting Equation (8) into the Ball–Berry model (Equation (9)) [46],
which is consistent with the SCOPE model, then we have the conductance model of C4 plants
(Equation (10)):

gs = m
GPPgs × Rh

Ca
+ g0 (9)

gs = m
a× qL × SIF

4Ωc
Rh/Ca + g0 (10)

where m is an empirical slope parameter, which is often treated as a constant for a specific
ecosystem [47]. Ca is the ambient carbon dioxide concentration and g0 is the minimum
conductance, which is set as 0.

Lack of an efficient mechanism gathering CO2 from the air, C3 plants rely more on
stomata to absorb CO2 for the Calvin cycle. The relationship between SIF and GPP is also
affected by the dark reactions for C3 plants, which can be expressed by [12]:

GPPgs = a
Ci − Γ

4Ci + 8Γ
qL × SIF× 1

Ωc
(11)

Ci is the intercellular CO2 concentration. Γ is the CO2 compensation point in the absence
of mitochondrial respiration, which can be set as a constant for a specific plant type or
calculated by air temperature [48]. Ci is eliminated by combining Equation (12) with Fick’s
law, GPP = gs(Ca −Ci), then we have:

GPPgs = a
Ca −GPPgs/gs− Γ

4
(
Ca −GPPgs/gs

)
+ 8Γ

qL × SIF× 1
Ωc

(12)

gs and GPPgs can be solved under the constraining of the optimality theory of stomatal
behavior [48–50]. According to this theory, plants tend to adapt stomata to minimize the
cost of water while maximizing carbon assimilation:

f(gs) = GPPgs − λ× T ≈ GPPgs − 1.6λ× gs×VPD/P (13)

δf(gs)/δ(gs) = 0 (14)

λ represents the marginal water use efficiency. P is the air pressure. If we incorporate
Equations (12)–(14), gs can be expressed as the function

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 13 
 

 

GPPୱ = a Cୟ − GPPୱ/gs − Γ4൫Cୟ − GPPୱ/gs൯ + 8Γ q × SIF × 1Ωୡ (12) 

gs and GPPgs can be solved under the constraining of the optimality theory of stomatal 
behavior [48–50]. According to this theory, plants tend to adapt stomata to minimize the 
cost of water while maximizing carbon assimilation: fሺgsሻ = GPPୱ − λ × T ≈ GPPୱ − 1.6λ × gs × VPD/P (13) δfሺgsሻ/δሺgsሻ = 0 (14) λ represents the marginal water use efficiency. P is the air pressure. If we incorporate 
Equations (12)–(14), gs can be expressed as the function ऐ of SIF, qL, λ, Γ, VPD, and Ca: gs = ऐሺSIF, q, λ, Γ, VPD, Cୟሻ = − ୟ ୗ୍×୯ై× భಈౙሺସିେሻସሺଶାେሻమ + ୟ ୗ୍×୯ై× భಈౙሺଶାେିଷ.ଶ×ୈሻඥସ.଼×ୈ×ሺେିሻሺଶାେିଵ.×ୈሻ.ସ×ୈሺଶାେሻమሺଶାେିଵ.×ୈሻ . (15)

Finally, with SIF-based gs, the T of C3 plants can be calculated by the two-layer Pen-
man–Monteith method [51]: Tୱ = Δ × Ac + ρ × C୮ × VPD × gaΔ + γ ൬1 + gags൰  (16) 

Ac = Rn × ሾ1 − expሺ−0.5LAIሻ/ cosሺSZAሻሿ (17) 

Ac is the available energy of the canopy layer, which can be derived by the simple Beer’s 
law (Equation (17)). Δ is the rate of change of vapor pressure with temperature, γ is the 
psychrometric constant, Cp is the specific heat of air, ρ is the density of air, and ga is the 
aerodynamic conductance. SZA is the sun zenith angle, which is calculated by location 
and time [52] (See Supplementary Codes). Due to data restrictions, Ωୡ for the near-infra-
red band SIF is set as a constant in our study. 

2.4. Model Calibration 
Parameters of both the WUE method and the conductance method need to be cali-

brated (see supplementary Table S2). In this work, GPP and ET observed from EC meas-
urements were used here to constrain the methods. As above-mentioned, ET is composed 
of plant T and E: LE = T + E. (18) 

E was calculated by soil available energy and soil moisture [53] (see supplementary Table 
S1). Considering the nonlinearity and complicity of the methods, the shuffled complex 
evolution (SCE-UA) algorithm [54] was employed to fit the parameters by maximizing the 
cost function Jcost: Jୡ୭ୱ୲ = NSEሺGPP୭ୠୱ, GPP୫୭ୢୣ୪ሻ + NSEሺLE୭ୠୱ, LE୫୭ୢୣ୪ሻ (19) 

where NSE is the Nash–Sutcliffe efficiency coefficient. The subscript ”obs” and “model” 
mean the observed and model-derived. The flowchart of the model calibration is shown 
in Figure 1. All estimations and statistical analyses were performed with Python 3.8.3 [55–
57]. The description and calculation of all variables above-mentioned are listed in Table 
S1. 

of SIF, qL, λ, Γ, VPD, and Ca:



Remote Sens. 2021, 13, 804 5 of 13

gs =

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 13 
 

 

GPPୱ = a Cୟ − GPPୱ/gs − Γ4൫Cୟ − GPPୱ/gs൯ + 8Γ q × SIF × 1Ωୡ (12) 

gs and GPPgs can be solved under the constraining of the optimality theory of stomatal 
behavior [48–50]. According to this theory, plants tend to adapt stomata to minimize the 
cost of water while maximizing carbon assimilation: fሺgsሻ = GPPୱ − λ × T ≈ GPPୱ − 1.6λ × gs × VPD/P (13) δfሺgsሻ/δሺgsሻ = 0 (14) λ represents the marginal water use efficiency. P is the air pressure. If we incorporate 
Equations (12)–(14), gs can be expressed as the function ऐ of SIF, qL, λ, Γ, VPD, and Ca: gs = ऐሺSIF, q, λ, Γ, VPD, Cୟሻ = − ୟ ୗ୍×୯ై× భಈౙሺସିେሻସሺଶାେሻమ + ୟ ୗ୍×୯ై× భಈౙሺଶାେିଷ.ଶ×ୈሻඥସ.଼×ୈ×ሺେିሻሺଶାେିଵ.×ୈሻ.ସ×ୈሺଶାେሻమሺଶାେିଵ.×ୈሻ . (15)

Finally, with SIF-based gs, the T of C3 plants can be calculated by the two-layer Pen-
man–Monteith method [51]: Tୱ = Δ × Ac + ρ × C୮ × VPD × gaΔ + γ ൬1 + gags൰  (16) 

Ac = Rn × ሾ1 − expሺ−0.5LAIሻ/ cosሺSZAሻሿ (17) 

Ac is the available energy of the canopy layer, which can be derived by the simple Beer’s 
law (Equation (17)). Δ is the rate of change of vapor pressure with temperature, γ is the 
psychrometric constant, Cp is the specific heat of air, ρ is the density of air, and ga is the 
aerodynamic conductance. SZA is the sun zenith angle, which is calculated by location 
and time [52] (See Supplementary Codes). Due to data restrictions, Ωୡ for the near-infra-
red band SIF is set as a constant in our study. 

2.4. Model Calibration 
Parameters of both the WUE method and the conductance method need to be cali-

brated (see supplementary Table S2). In this work, GPP and ET observed from EC meas-
urements were used here to constrain the methods. As above-mentioned, ET is composed 
of plant T and E: LE = T + E. (18) 

E was calculated by soil available energy and soil moisture [53] (see supplementary Table 
S1). Considering the nonlinearity and complicity of the methods, the shuffled complex 
evolution (SCE-UA) algorithm [54] was employed to fit the parameters by maximizing the 
cost function Jcost: Jୡ୭ୱ୲ = NSEሺGPP୭ୠୱ, GPP୫୭ୢୣ୪ሻ + NSEሺLE୭ୠୱ, LE୫୭ୢୣ୪ሻ (19) 

where NSE is the Nash–Sutcliffe efficiency coefficient. The subscript ”obs” and “model” 
mean the observed and model-derived. The flowchart of the model calibration is shown 
in Figure 1. All estimations and statistical analyses were performed with Python 3.8.3 [55–
57]. The description and calculation of all variables above-mentioned are listed in Table 
S1. 

(SIF, qL, λ, Γ, VPD, Ca) = −
aSIF×qL×

1
Ωc (4Γ−Ca)

4(2Γ+Ca)
2 +

aSIF×qL×
1

Ωc (2Γ+Ca−3.2λ×VPD)
√

4.8λ×VPD×Γ(Ca−Γ)(2Γ+Ca−1.6λ×VPD)

6.4λ×VPD(2Γ+Ca)
2(2Γ+Ca−1.6λ×VPD)

(15)

Finally, with SIF-based gs, the T of C3 plants can be calculated by the two-layer Penman–
Monteith method [51]:

Tgs =
∆×Ac + ρ×Cp ×VPD× ga

∆ + γ
(

1 + ga
gs

) (16)

Ac = Rn× [1− exp(−0.5LAI)/ cos(SZA)] (17)

Ac is the available energy of the canopy layer, which can be derived by the simple Beer’s
law (Equation (17)). ∆ is the rate of change of vapor pressure with temperature, γ is the
psychrometric constant, Cp is the specific heat of air, ρ is the density of air, and ga is the
aerodynamic conductance. SZA is the sun zenith angle, which is calculated by location
and time [52] (See Supplementary Codes). Due to data restrictions, Ωc for the near-infrared
band SIF is set as a constant in our study.

2.4. Model Calibration

Parameters of both the WUE method and the conductance method need to be calibrated
(see Supplementary Table S2). In this work, GPP and ET observed from EC measurements
were used here to constrain the methods. As above-mentioned, ET is composed of plant T
and E:

LE = T + E. (18)

E was calculated by soil available energy and soil moisture [53] (see Supplementary Table S1).
Considering the nonlinearity and complicity of the methods, the shuffled complex evolution
(SCE-UA) algorithm [54] was employed to fit the parameters by maximizing the cost
function Jcost:

Jcost = NSE(GPPobs, GPPmodel) + NSE(LEobs, LEmodel) (19)

where NSE is the Nash–Sutcliffe efficiency coefficient. The subscript “obs” and “model”
mean the observed and model-derived. The flowchart of the model calibration is shown in
Figure 1. All estimations and statistical analyses were performed with Python 3.8.3 [55–57].
The description and calculation of all variables above-mentioned are listed in Table S1.
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3. Results

Scatter diagrams of modeled T ((a,d) TSLR estimated by the SLR method, (b,e) TWUE
estimated by the WUE method, and (c, f) Tgs estimated by the conductance method) versus
TZhou estimated by the uWUE method are shown in Figure 2. Both the WUE method and
conductance method showed good performance at hourly (upper row) and daily (lower
row) scales. In general, the conductance method outperformed the other two methods with
higher coefficients of determination (R2) (0.67 for the hourly scale and 0.78 for the daily
scale) and lower root-mean-square error (RMSE) (58.13 W/m2 for the hourly scale and
39.56 W/m2 for the daily scale). The SLR method and WUE method tended to overestimate
T at the high-value area, while most points of the conductance method fell near the 1:1 line.
All three methods showed better performance at the daily scale than the hourly scale, which
could be attributed to the uncertainty of input data decreased with time aggregation. The
difference in the performance of the SLR and WUE methods narrowed at the daily scale.
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Figure 2. Scatterplot of hourly (first row) and daily (second row) T estimates from the three ap-
proaches (linear method, water-use efficiency (WUE) method, and conductance method) versus
Tzhou (estimated by underlying WUE method) with the 1:1 line (black line), along with coefficients of
determination (R2) and root-mean-square error (RMSE, W/m2). Subfigures (a,d) refer to the linear
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As shown in Figure 3, we also compared the latent heat estimated by three different
methods ((a,d) LESLR estimated by the SLR method, (b,e) LEWUE estimated by the WUE
method, and (c,f) LEgs estimated by the conductance method) with latent heat observed
from eddy covariance. Three methods had R2 = 0.56, 0.61, and 0.65 (RMSE = 91.36, 88.06,
and 80.87 W/m2) at the hourly scale (upper row), and R2 = 0.52, 0.66, and 0.67 (RMSE =
75.17, 65.52, and 61.07 W/m2) at the daily scale (lower row), respectively. Likewise, two
developed methods showed better performance than the SLR method at the hourly scale,
and the leading advantage widened at the daily scale. There was also an overestimation at
the high-value area for the SLR and WUE methods. Details of the performance at four sites
are shown in supplementary Table S3.
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4. Discussion
4.1. Sensitivity Analysis of the Water-Use Efficiency (WUE) and Conductance Methods

To explore what influences the relationship between SIF and T, we analyzed the
sensitivity of variables in the WUE and conductance methods. The scatterplots between SIF
and TWUE for the four study sites are shown in Figure 4 (a, b, c, and d for hourly scale; e, f,
g, and h for daily scale). T is the product of SIF and VPD in the WUE method, which means
that SIF and VPD interact with each other closely and the effect of the SIF is modified by
the VPD. The parameters k4 at the four sites were 0.33, 0.46, 1.00, and 0.11, respectively, at
the hourly scale; and 0.10, 0.68, 1.00, and 0.25 at the daily scale. With the increase in VPD,
the slopes of SIF–T became steeper and the points became denser, while under low VPD
condition, the points were relatively sparse, which indicates that the relationship between
SIF and T is more linear under high VPD. In particular, the relationship between SIF and T
was strongly influenced by VPD at the NR site with evergreen needle leaf plants, but at the
HF site, the SIF–T relationship was less sensitive to the VPD.

Atmospheric dryness also plays an important role in modeling the stomatal behavior
by SIF. For C4 plants, relative humidity is used to describe the response of stomatal con-
ductance to air dryness in the empirical Ball–Berry model. For C3 plants, we investigated
the sensitivities of different variables in the gs model
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was sensitive
to VPD, λ, SIF, and qL (supplementary Figure S1). VPD exhibited the highest relative sensi-
tivity of 0.34, which was much higher than SIF with a value of 0.17. The marginal water-use
efficiency λ also played an important role with a sensitivity value equaling 0.32. The fraction
of open Photosynthesis II reaction centers qL is as important as SIF (relative sensitivity of
0.17), which is due to the fact that the electron transport rate J is the product of SIF and qL
(Equation (8)). Furthermore, the gs model is not sensitive to Γ and Ca.
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4.2. Uncertainty of the Developed Methods

Credible theoretical frameworks and external environmental variables were intro-
duced to the developed methods to meet the challenges of modeling T by SIF. The WUE
method links SIF and T from the carbon–water economy perspective, in which WUE is
treated as a function of VPD. The conductance method clarifies how the information about
J contained in SIF can be used to estimate gs, and the Penman–Monteith based on energy
balance further combines the gs with other meteorological variables. The conductance
method has a clearer physical meaning, which better describes the linkage between SIF and
T. However, assumptions of optimal carbon–water coupling relationship, the uncertainty
of input data, and the experimental design may also undermine the performance of the
developed methods.

Compared with the simple linear regression method, though the influence of VPD
on WUE is included in the WUE method, soil moisture, hydraulic conductance, and
other environmental variables could also influence the WUE independently [15,59,60]. It
would be helpful to incorporate the effects of these factors on WUE. For the conductance
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method, plants under stress or competition cannot keep the optimal stomatal conductance
behavior [61,62]. The carbon–water economy is also influenced by traits of plants and envi-
ronmental variables [63]. A more physiologically based water–carbon coupling framework
will improve the models from the bottom up.

Uncertainty of the input data might also introduce uncertainty to the results. First,
VPD of air above the canopy was used to assess the aridity stress by assuming the canopy
and the atmosphere were fully coupled. Ecosystems with a dense closed-canopy tend to
decouple from the air [64,65]. As both the WUE method and the conductance method show
great sensitivity to VPD, using VPD at the leaf scale could help to improve the performance
of the SIF–T relationship. Second, SIF data from four sites were measured by different
instruments and derived by different methods as above-mentioned. Moreover, the field
of view (FOV) and heights of the observation systems vary among different sites. The
emergence of remotely sensed SIF will fill the gap in the difference in the observation data.
The data during the period of cooling of Niwot Ridge were used in our research. However,
during winter, water transport of the trees was blocked due to frozen bole [19]. Most
stomata were closed and there was almost no transpiration and, to our knowledge, the
carbon–water coupling relationship under physiological stress remains unclear. Moreover,
the site was covered by snow during the winter, but the sublimation and melting process
were not included in the evaporation model due to a lack in parameters about the snowpack,
which might undermine the results of the NR site. Last but not least, the canopy-scale SIF
was directly used to model T due to data restriction. Nevertheless, recent works indicated
that the relationship between SIF and GPP is strongly affected by the structure of the
canopy [66,67]. We suggest that downscaling SIF from the canopy scale to the photosystem
scale may improve the performance of the developed methods.

Due to the absence of direct measurements of T during the study period, three models
were calibrated by ET observed from EC. Net radiation is separated into energy intercepted
by canopy and soil available energy by one dimensional Beer’s law. The simple structure of
Beer’s law could introduce great uncertainty to energy partition, especially for heterogene-
ity canopy and plants with highly anisotropic leaves in the azimuthal direction [68], for
example, maize at the early growing season at DM and HL sites. Canopy available energy
was also used to estimate T in the two-layer Penman–Monteith model in the conductance
method. Therefore, the conductance method is more sensitive to the partition of energy; in
other words, it suffers more uncertainty from Beer’s law.

Data from only four sites were used to evaluate the performance of the developed
methods. It is inadequate to show the real potential of the two methods. With more and more
in situ observations from different ecosystems, understanding of the underlying mechanism
between SIF and T will be deepened. Recently, SIF products with higher temporal-spatial
resolution from different satellites, different bands [69,70], and derivative products based
on machine learning [71–74] have become available. T can be estimated at larger scales with
the WUE method and conductance method by combining remote-sensing SIF data with
remote-sensing-based ET/T models like TSEB [75,76] and PML [77] or assimilating SIF into
land surface models in future studies.

5. Conclusions

In this study, two mechanism methods, the WUE and stomatal conductance methods,
were developed to estimate T via SIF observations. The two developed methods were tested
at hourly and daily scales over four sites including two C3 sites and two C4 sites. Both
methods showed good performance with higher R2 and lower RMSE, especially for the
conductance method. Moreover, our results indicate that the SIF–T relationship strongly
depends on air dryness. These two carbon–water coupling methods can be combined with
state-of-the-art remote sensing models or land process models. With the emergence of high
temporal-spatial resolution SIF data, SIF will not be only a powerful proxy for carbon flux,
but also for water flux.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/4/804/s1, Table S1: Input and intermediate variables, Table S2: Parameters needed to be
calibrated, Table S3: Coefficient of determination and root mean square error of different SIF–T
methods at different sites, Figure S1: Sensitivity analysis of variables in the stomatal conductance
method
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