Intraday Variation Mapping of Population Age Structure via Urban-Functional-Region-Based Scaling
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
2.2.1. Remotely Sensed Data
2.2.2. Geospatial Data
2.2.3. Demographic Data
2.2.4. Population Survey Sampling Data
3. Methods
3.1. Dasymetric Mapping of Population Age Structure
3.1.1. Covariates Calculation
3.1.2. Dasymetric Model Development
3.2. Temporal Scaling Based on UFR-Specific Mobility Pattern
3.2.1. Urban Functional Region Identification
3.2.2. Temporal Scaling Factor Calculation
4. Results
4.1. Dasymetric Maps of Population Age Structure
4.2. Urban Functional Region
4.3. Temporal Scaling Factors of Different UFRs
4.4. Intraday Variation Maps of Population Age Structure
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linard, C.; Tatem, A.J. Large-scale spatial population databases in infectious disease research. Int. J. Health Geogr. 2012, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Pindolia, D.K.; Garcia, A.J.; Huang, Z.; Smith, D.L.; Alegana, V.A.; Noor, A.M.; Snow, R.W.; Tatem, A.J. The demographics of human and malaria movement and migration patterns in East Africa. Malar. J. 2013, 12, 397. [Google Scholar] [CrossRef] [Green Version]
- Tatem, A.J.; Campiz, N.; Gething, P.W.; Snow, R.W.; Linard, C. The effects of spatial population dataset choice on estimates of population at risk of disease. Popul. Health Metr. 2011, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatem, A.J.; Garcia, A.J.; Snow, R.W.; Noor, A.M.; Gaughan, A.E.; Gilbert, M.; Linard, C. Millennium development health metrics: Where do Africa’s children and women of childbearing age live? Popul. Health Metr. 2013, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Forbes, V.E.; Calow, P.; Grimm, V.; Hayashi, T.I.; Jager, T.; Katholm, A.; Palmqvist, A.; Pastorok, R.; Salvito, D.; Sibly, R.; et al. Adding Value to Ecological Risk Assessment with Population Modeling. Hum. Ecol. Risk Assess. 2011, 17, 287–299. [Google Scholar] [CrossRef]
- Tang, X.; Li, Q.; Wu, M.; Tang, W.; Jin, F.; Haynes, J.; Scholz, M. Ecological Environment Protection in Chinese Rural Hydropower Development Practices: A Review. Water Air Soil Pollut. 2012, 223, 3033–3048. [Google Scholar] [CrossRef]
- Butler, D. Reactors, residents and risk. Nat. Cell Biol. 2011, 472, 400–401. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Tatem, A.J. Uncertainties in Measuring Populations Potentially Impacted by Sea Level Rise and Coastal Flooding. PLoS ONE 2012, 7, e48191. [Google Scholar] [CrossRef] [PubMed]
- Wegscheider, S.; Post, J.; Zosseder, K.; Muck, M.; Strunz, G.; Riedlinger, T.; Muhari, A.; Anwar, H.Z. Generating tsunami risk knowledge at community level as a base for planning and implementation of risk reduction strategies. Nat. Hazards Earth Syst. Sci. 2011, 11, 249–258. [Google Scholar] [CrossRef]
- Flowerdew, R. How serious is the Modifiable Areal Unit Problem for analysis of English census data? Popul. Trends 2011, 145, 106–118. [Google Scholar] [CrossRef]
- Dark, S.J.; Bram, D. The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. Earth Environ. 2007, 31, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Jelinski, D.E.; Wu, J. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Wong, D.W.S. The Modifiable Areal Unit Problem in Multivariate Statistical Analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Botta, F.; Moat, H.S.; Preis, T. Quantifying crowd size with mobile phone and Twitter data. R. Soc. Open Sci. 2015, 2, 150162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalcsik, T.; Szabó, B.; Vida, G.; Boros, L. Area-Based and Dasymetric Point Allocation Interpolation Method for Spatial Modelling Micro–Scale Voter Turnout in Budapest. Geogr. Technol. 2021, 16, 67–77. [Google Scholar] [CrossRef]
- Buzzelli, M. Modifiable Areal Unit Problem. Int. Encycl. Hum. Geogr. 2020, 169–173. [Google Scholar]
- Bakillah, M.; Liang, S.; Mobasheri, A.; Arsanjani, J.J.; Zipf, A. Fine-resolution population mapping using OpenStreetMap points-of-interest. Int. J. Geogr. Inf. Sci. 2014, 28, 1940–1963. [Google Scholar] [CrossRef]
- Holt, J.B.; Lo, C.; Hodler, T.W. Dasymetric Estimation of Population Density and Areal Interpolation of Census Data. Cartogr. Geogr. Inf. Sci. 2004, 31, 103–121. [Google Scholar] [CrossRef]
- Langford, M. Rapid facilitation of dasymetric-based population interpolation by means of raster pixel maps. Comput. Environ. Urban Syst. 2007, 31, 19–32. [Google Scholar] [CrossRef]
- Reibel, M.; Agrawal, A. Areal Interpolation of Population Counts Using Pre-classified Land Cover Data. Popul. Res. Policy Rev. 2007, 26, 619–633. [Google Scholar] [CrossRef]
- Lo, C.P. Population Estimation Using Geographically Weighted Regression. GISci. Remote Sens. 2008, 45, 131–148. [Google Scholar] [CrossRef]
- Tobler, W.; Deichmann, U.; Gottsegen, J.; Maloy, K. World population in a grid of spherical quadrilaterals. Int. J. Popul. Geogr. 1997, 3, 203–225. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F. Mapping population density in China between 1990 and 2010 using remote sensing. Remote Sens. Environ. 2018, 210, 269–281. [Google Scholar] [CrossRef]
- Sorichetta, A.; Hornby, G.M.; Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data 2015, 2, 150045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, F.F.; Gaughan, A.A.; Linard, C.; Tatem, A.A. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardrop, N.A.; Jochem, W.C.; Bird, T.J.; Chamberlain, H.R.; Clarke, D.; Kerr, D.; Bengtsson, L.; Juran, S.; Seaman, V.; Tatem, A.J. Spatially disaggregated population estimates in the absence of national population and housing census data. Proc. Natl. Acad. Sci. USA 2018, 115, 3529–3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Li, Q.; Zhang, Y.; Du, X. Improving the Accuracy of Fine-Grained Population Mapping Using Population-Sensitive POIs. Remote Sens. 2019, 11, 2502. [Google Scholar] [CrossRef] [Green Version]
- Mennis, J.; Hultgren, T. Intelligent Dasymetric Mapping and Its Application to Areal Interpolation. Cartogr. Geogr. Inf. Sci. 2006, 33, 179–194. [Google Scholar] [CrossRef]
- Mrozinski, R.D.; Cromley, R.G. Singly-and doubly-constrained methods of areal interpolation for vector-based GIS. Trans. GIS 1999, 3, 285–301. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- Wang, H.; Dwyer-Lindgren, L.; Lofgren, K.T.; Rajaratnam, J.K.; Marcus, J.R.; Levin-Rector, A.; Levitz, C.E.; Lopez, A.D.; Murray, C.J.L. Age-specific and sex-specific mortality in 187 countries, 1970–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2071–2094. [Google Scholar] [CrossRef]
- Bloom, D.E.; Canning, D.; Fink, G.; Finlay, J.E. Does age structure forecast economic growth? Int. J. Forecast. 2007, 23, 569–585. [Google Scholar] [CrossRef]
- Liddle, B.; Lung, S. Age-structure, urbanization, and climate change in developed countries: Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts. Popul. Environ. 2010, 31, 317–343. [Google Scholar] [CrossRef] [Green Version]
- Krüger, T.; Held, F.; Hoechstetter, S.; Goldberg, V.; Geyer, T.; Kurbjuhn, C. A new heat sensitivity index for settlement areas. Urban Clim. 2013, 6, 63–81. [Google Scholar] [CrossRef]
- Global Vaccine Action Plan 2011–2020; World Health Organization: Geneva, Switzerland, 2013; Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/strategies/global-vaccine-action-plan (accessed on 19 February 2021).
- Korenromp, E.L.; Hosseini, M.; Newman, R.D.; Cibulskis, R.E. Progress towards malaria control targets in relation to national malaria programme funding. Malar. J. 2013, 12, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Climate Change and Extreme Heat: What You Can Do to Prepare. 2019. Available online: https://www.researchgate.net/publication/312891446_Climate_Change_and_Extreme_Heat_What_You_Can_Do_to_Prepare (accessed on 19 February 2021).
- Bosco, C.; Alegana, V.; Bird, T.; Pezzulo, C.; Bengtsson, L.; Sorichetta, A.; Steele, J.; Hornby, G.; Ruktanonchai, C.; Wetter, E.; et al. Exploring the high-resolution mapping of gender-disaggregated development indicators. J. R. Soc. Interface 2017, 14, 20160825. [Google Scholar] [CrossRef] [Green Version]
- Alegana, V.A.; Atkinson, P.M.; Pezzulo, C.; Sorichetta, A.; Weiss, D.; Bird, T.; Erbach-Schoenberg, E.; Tatem, A.J. Fine resolution mapping of population age-structures for health and development applications. J. R. Soc. Interface 2015, 12, 20150073. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Wang, X.; Du, W.; Liu, J.; Li, Y. Spatiotemporal characteristics and driving forces of urban sprawl in China during 2003–2017. J. Clean. Prod. 2019, 241, 118061. [Google Scholar] [CrossRef]
- Newling, B.E. The Spatial Variation of Urban Population Densities. Geogr. Rev. 1969, 59, 242. [Google Scholar] [CrossRef]
- Pan, J.; Lai, J. Spatial pattern of population mobility among cities in China: Case study of the National Day plus Mid-Autumn Festival based on Tencent migration data. Cities 2019, 94, 55–69. [Google Scholar] [CrossRef]
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J. Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Liu, C.; Zhang, Y.; Yang, J.; Wang, Y. Investigating the impacts of built environment on vehicle miles traveled and energy consumption: Differences between commuting and non-commuting trips. Cities 2017, 68, 25–36. [Google Scholar] [CrossRef]
- Kuang, W. Spatio-temporal patterns of intra-urban land use change in Beijing, China between 1984 and 2008. Chin. Geogr. Sci. 2012, 22, 210–220. [Google Scholar] [CrossRef]
- Chen, W.; Huang, H.; Dong, J.; Zhang, Y.; Tian, Y.; Yang, Z. Social functional mapping of urban green space using remote sensing and social sensing data. ISPRS J. Photogramm. Remote Sens. 2018, 146, 436–452. [Google Scholar] [CrossRef]
- Murphy, R.; Barnes, W.; Lyapustin, A.; Privette, J.; Welsch, C.; Deluccia, F.; Swenson, H.; Schueler, C.; Ardanuy, P.; Kealy, P. Using VIIRS to provide data continuity with MODIS. In Proceedings of the IGARSS 2001, Scanning the Present and Resolving the Future, IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 9–13 July 2001; Volume 3, pp. 1212–1214. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Straka, W.; Mills, S.P.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.; Walther, A.; Heidinger, A.K.; Weiss, S.C. Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Bakillah, M.; Hagenauer, J.; Zipf, A. Toward mapping land-use patterns from volunteered geographic information. Int. J. Geogr. Inf. Sci. 2013, 27, 2264–2278. [Google Scholar] [CrossRef]
- Neis, P.; Zipf, A. Analyzing the Contributor Activity of a Volunteered Geographic Information Project—The Case of OpenStreetMap. ISPRS Int. J. Geo-Inf. 2012, 1, 146–165. [Google Scholar] [CrossRef]
- Helbich, M.; Amelunxen, C.; Neis, P.; Zipf, A. Comparative spatial analysis of positional accuracy of OpenStreetMap and proprietary geodata. Proc. GI_Forum 2012, 4, 24. [Google Scholar]
- Hong, Y.; Yao, Y. Hierarchical community detection and functional area identification with OSM roads and complex graph theory. Int. J. Geogr. Inf. Sci. 2019, 33, 1569–1587. [Google Scholar] [CrossRef]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human activities on location-based social networks. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Hu, T.; Yang, J.; Li, X.; Gong, P. Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sens. 2016, 8, 151. [Google Scholar] [CrossRef]
- Jiang, S.; Alves, A.; Rodrigues, F.; Ferreira, J.; Pereira, F.C. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Dou, M.; Qiao, M. Using Spatial Semantics and Interactions to Identify Urban Functional Regions. ISPRS Int. J. Geo-Inf. 2018, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Q.; Huang, H.; Wu, W.; Du, X.; Wang, H. The Combined Use of Remote Sensing and Social Sensing Data in Fine-Grained Urban Land Use Mapping: A Case Study in Beijing, China. Remote Sens. 2017, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liu, X.; Li, X.; Zhang, J.; Liang, Z.; Mai, K.; Zhang, Y. Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. Int. J. Geogr. Inf. Sci. 2017, 31, 1220–1224. [Google Scholar] [CrossRef]
- Anderson, H.; de Leon, A.P.; Bland, J.; Bower, J.; Emberlin, J.; Strachan, D. Air pollution, pollens, and daily admissions for asthma in London 1987-92. Thorax 1998, 53, 842–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, R.W.; Anderson, H.R.; Sunyer, J.; Ayres, J.; Baccini, M.; Vonk, J.M.; Boumghar, A.; Forastiere, F.; Forsberg, B.; Touloumi, G. Acute effects of particulate air pollution on respiratory admissions: Results from APHEA 2 project. Am. J. Respir. Crit. Care Med. 2001, 164, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Mengersen, K.; Milinovich, G.; Hu, W. Effect of Weather Variability on Seasonal Influenza among Different Age Groups in Queensland, Australia: A Bayesian Spatiotemporal Analysis. J. Infect. Dis. 2017, 215, 1695–1701. [Google Scholar] [CrossRef]
- Linard, C.; Gilbert, M.; Tatem, A.J. Assessing the use of global land cover data for guiding large area population distribution modelling. GeoJournal 2010, 76, 525–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, K. Human Development Report 2013. The Rise of the South: Human Progress in a Diverse World; UNDP-HDRO Human Development Reports; United Nations Development Programme (UNDP): New York, NY, USA, 15 March 2013. [Google Scholar]
- Bhaduri, B.L.; Bright, E.A.; Dobson, J.E. LandScan: Locating People is What Matters. Geoinformatics 2002, 5, 34–37. [Google Scholar]
- Tatem, A.J.; Adamo, S.; Bharti, N.; Burgert, C.R.; Castro, M.; Dorélien, A.; Fink, G.; Linard, C.; John, M.; Montana, L.; et al. Mapping populations at risk: Improving spatial demographic data for infectious disease modeling and metric derivation. Popul. Health Metr. 2012, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Zhao, N.; Yang, X.; Ouyang, Z.; Liu, X.; Chen, Q.; Hu, K.; Yue, W.; Qi, J.; Li, Z.; et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A New Approach for Detecting Urban Centers and Their Spatial Structure with Nighttime Light Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Tatem, A.J.; Noor, A.M.; von Hagen, C.; di Gregorio, A.; Hay, S.I. High Resolution Population Maps for Low Income Nations: Combining Land Cover and Census in East Africa. PLoS ONE 2007, 2, e1298. [Google Scholar] [CrossRef]
- Telbisz, T.; Bottlik, Z.; Mari, L.; Kőszegi, M. The impact of topography on social factors, a case study of Montenegro. J. Mt. Sci. 2014, 11, 131–141. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Qiu, G.; Bao, Y.; Yang, X.; Wang, C.; Ye, T.; Stein, A.; Jia, P. Local Population Mapping Using a Random Forest Model Based on Remote and Social Sensing Data: A Case Study in Zhengzhou, China. Remote Sens. 2020, 12, 1618. [Google Scholar] [CrossRef]
- Sinha, P.; Gaughan, A.E.; Stevens, F.R.; Nieves, J.J.; Sorichetta, A.; Tatem, A.J. Assessing the spatial sensitivity of a random forest model: Application in gridded population modeling. Comput. Environ. Urban Syst. 2019, 75, 132–145. [Google Scholar] [CrossRef]
- Granitto, P.M.; Furlanello, C.; Biasioli, F.; Gasperi, F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom. Intell. Lab. Syst. 2006, 83, 83–90. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Kuhn, M. The Caret Package; R Foundation for Statistical Computing: Vienna, Austria, 2012; Available online: https://cran.r-project.org/package=caret (accessed on 19 February 2021).
- Liu, X.; Long, Y. Automated identification and characterization of parcels with OpenStreetMap and points of interest. Environ. Plan. B Plan. Des. 2015, 43, 341–360. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering Regions of Different Functions in a City Using Human Mobility and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 186–194. [Google Scholar]
- Davis, R.R.; Lii, K.-S.; Politis, D.N. Remarks on Some Nonparametric Estimates of a Density Function. In Selected Works of Murray Rosenblatt; Springer: Berlin/Heidelberg, Germany, 2011; pp. 95–100. Available online: https://link.springer.com/chapter/10.1007/978-1-4419-8339-8_13 (accessed on 19 February 2021).
- González, M.C.; Hidalgo, C.A.; Barabási, A.-L. Understanding individual human mobility patterns. Nat. Cell Biol. 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhi, W.; Wen, X.; Zhou, W. Discovering Urban Functional Polycentricity: A Traffic Flow-Embedded and Topic Modeling-Eased Methodology Framework. Sustainability 2020, 12, 1897. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Q.; Wang, H.; Du, X.; Huang, H. Community scale livability evaluation integrating remote sensing, surface observation and geospatial big data. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 173–186. [Google Scholar] [CrossRef]
- Du, S.; Liu, B.; Zhang, X.; Zheng, Z. Large-scale urban functional zone mapping by integrating remote sensing images and open social data. GISci. Remote Sens. 2020, 57, 411–430. [Google Scholar] [CrossRef]
- Zhou, W.; Ming, D.; Lv, X.; Zhou, K.; Bao, H.; Hong, Z. SO–CNN based urban functional zone fine division with VHR remote sensing image. Remote Sens. Environ. 2020, 236, 111458. [Google Scholar] [CrossRef]
- Tu, W.; Hu, Z.; Li, L.; Cao, J.; Jiang, J.; Li, Q.; Li, Q. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data. Remote Sens. 2018, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Herold, M.; Liu, X.; Clarke, K.C. Spatial Metrics and Image Texture for Mapping Urban Land Use. Photogramm. Eng. Remote Sens. 2003, 69, 991–1001. [Google Scholar] [CrossRef] [Green Version]
Bands | Central Wavelength (μm) | Resolution (m) |
---|---|---|
Band 1—Coastal aerosol | 0.443 | 60 |
Band 2—Blue | 0.490 | 10 |
Band 3—Green | 0.560 | 10 |
Band 4—Red | 0.655 | 10 |
Band 5—Vegetation Red Edge | 0.705 | 20 |
Band 6—Vegetation Red Edge | 0.740 | 20 |
Band 7—Vegetation Red Edge | 0.783 | 20 |
Band 8—NIR | 0.842 | 10 |
Band 8A—Vegetation Red Edge | 0.865 | 20 |
Band 9—Water Vapor | 0.945 | 60 |
Band 10—SWIR—Cirrus | 1.375 | 60 |
Band 11—SWIR | 1.610 | 20 |
Band 12—SWIR | 2.190 | 20 |
Datasets | Covariates |
---|---|
VIIRS Stray Light Corrected Nighttime Day/Night Band Composites | Nighttime light |
MODIS Land Cover Type Product | Distance to built-up lands |
Shuttle Radar Topography Mission | Elevation |
Slope | |
Sentinel-2 MSI: MultiSpectral Instrument | EVI |
NDBI | |
NDWI | |
OpenStreetMap | Road density |
Distance to road | |
Density of river network | |
Distance to water body | |
NavInfo POI | Distance to POI |
Density of POI |
Actual | Open Space | Industry and Commerce Facilities | Public Facilities | Residential | User’s Accuracy | |
---|---|---|---|---|---|---|
Predicted | ||||||
Open space | 595 | 137 | 83 | 0 | 73.01% | |
Industry and commerce facilities | 89 | 332 | 96 | 81 | 55.52% | |
Public facilities | 0 | 7 | 879 | 89 | 84.03% | |
Residential | 51 | 97 | 158 | 538 | 63.74% | |
Producer’s accuracy | 80.95% | 51.55% | 72.29% | 75.99% | 70.97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, Y.; Wang, H.; Du, X.; Li, Q.; Zhu, J. Intraday Variation Mapping of Population Age Structure via Urban-Functional-Region-Based Scaling. Remote Sens. 2021, 13, 805. https://doi.org/10.3390/rs13040805
Zhao Y, Zhang Y, Wang H, Du X, Li Q, Zhu J. Intraday Variation Mapping of Population Age Structure via Urban-Functional-Region-Based Scaling. Remote Sensing. 2021; 13(4):805. https://doi.org/10.3390/rs13040805
Chicago/Turabian StyleZhao, Yuncong, Yuan Zhang, Hongyan Wang, Xin Du, Qiangzi Li, and Jiong Zhu. 2021. "Intraday Variation Mapping of Population Age Structure via Urban-Functional-Region-Based Scaling" Remote Sensing 13, no. 4: 805. https://doi.org/10.3390/rs13040805
APA StyleZhao, Y., Zhang, Y., Wang, H., Du, X., Li, Q., & Zhu, J. (2021). Intraday Variation Mapping of Population Age Structure via Urban-Functional-Region-Based Scaling. Remote Sensing, 13(4), 805. https://doi.org/10.3390/rs13040805