Diurnal Cycle of Passive Microwave Brightness Temperatures over Land at a Global Scale
Abstract
:1. Introduction
2. Satellites Sensors and Data
2.1. Brightness Temperature Datasets
2.1.1. GMI
2.1.2. AMSR2
2.1.3. SSMIS
2.2. Land Cover Type Data
3. Computation of Diurnal Cycle of PMW TBs
3.1. Computation of Diurnal Cycle of Land TBs between Latitude 68°S and 68°N
3.2. Computation of Diurnal Cycle of Land TBs above Latitude 68°N and below Latitude 68°S
4. Results and Discussion
4.1. Assessment of the Global Land Diurnal Cycle of PMW TBs
4.2. Spatial Distributions of Global Land Diurnal Brightness Temperature Range
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, G.; Curry, J.A. Retrieval of precipitation from satellite microwave measurement using both emission and scattering. J. Geophys. Res. Atmos. 1992, 97, 9959–9974. [Google Scholar] [CrossRef]
- Prigent, C.; Rossow, W.B.; Matthews, E. Global maps of microwave land surface emissivities: Potential for land surface characterization. Radio Sci. 1998, 33, 745–751. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Karbou, F.; Gérard, É.; Rabier, F. Microwave land emissivity and skin temperature for AMSU-A and -B assimilation over land. Q. J. R. Meteorol. Soc. 2006, 132, 2333–2355. [Google Scholar] [CrossRef] [Green Version]
- Min, Q.L.; Lin, B.; Li, R. Remote sensing vegetation hydrological states using passive microwave measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 124–131. [Google Scholar] [CrossRef]
- Norouzi, H.; Rossow, W.; Temimi, M.; Prigent, C.; Azarderakhsh, M.; Boukabara, S.; Khanbilvardi, R. Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land. Remote Sens. Environ. 2012, 123, 470–482. [Google Scholar] [CrossRef] [Green Version]
- Norouzi, H.; Temimi, M.; AghaKouchak, A.; Azarderakhsh, M.; Khanbilvardi, R.; Shields, G.; Tesfagiorgis, K. Inferring land surface parameters from the diurnal variability of microwave and infrared temperatures. Phys. Chem. Earth Parts 2015, 83, 28–35. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.-C.; Song, X.; Leng, P.; Wu, H.; Tang, B.-H. An algorithm for retrieving precipitable water vapor over land based on passive microwave satellite data. Adv. Meteorol. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Prigent, C.; Khanbilvardi, R. Estimation of consistent global microwave land surface emissivity from AMSR-E and AMSR2 observations. J. Appl. Meteorol. Climatol. 2018, 57, 907–919. [Google Scholar] [CrossRef]
- You, Y.; Munchak, S.J.; Ferraro, R.; Mohr, K.; Peters-Lidard, C.; Prigent, C.; Ringerud, S.; Rudlosky, S.; Wang, H.; Norouzi, H.; et al. Raindrop signature from microwave radiometer over deserts. Geophys. Res. Lett. 2020, 47, e2020GL088656. [Google Scholar] [CrossRef]
- Zhang, T.; Armstrong, R.L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing. Geophys. Res. Lett. 2001, 28, 763–766. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.S.; McDonald, K.C.; Glassy, J. Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 2011, 49, 949–960. [Google Scholar] [CrossRef]
- Podest, E.; McDonald, K.C.; Kimball, J.S. Multisensor microwave sensitivity to freeze/thaw dynamics across a complex boreal landscape. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6818–6828. [Google Scholar] [CrossRef]
- Derksen, C.; Xu, X.; Dunbar, R.S.; Colliander, A.; Kim, Y.; Kimball, J.S.; Black, T.A.; Euskirchen, E.; Langlois, A.; Loranty, M.M.; et al. Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements. Remote Sens. Environ. 2017, 194, 48–62. [Google Scholar] [CrossRef]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Khanbilvardi, R. Potential of satellite-based land emissivity estimates for the detection of high-latitude freeze and thaw states. Geophys. Res. Lett. 2017, 44, 2336–2342. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Shi, J.; Hu, T.; Zhao, L.; Zou, D.; Wang, T.; Ji, D.; Li, R.; Wang, P. Estimation of high-resolution near-surface freeze/thaw state by the integration of microwave and thermal infrared remote sensing data on the Tibetan Plateau. Earth Space Sci. 2017, 4, 472–484. [Google Scholar] [CrossRef]
- Bartsch, A.; Kidd, R.A.; Wagner, W.; Bartalis, Z. Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data. Remote Sens. Environ. 2007, 106, 360–374. [Google Scholar] [CrossRef]
- Wilheit, T.; Berg, W.; Ebrahimi, H.; Kroodsma, R.; McKague, D.; Payne, V.; Wang, J. Intercalibrating the GPM Constellation Using the GPM Microwave Imager (GMI). In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2005; pp. 5162–5165. [Google Scholar] [CrossRef]
- Berg, W.; Bilanow, S.; Chen, R.; Datta, S.; Draper, D.; Ebrahimi, H.; Farrar, S.; Jones, W.L.; Kroodsma, R.; McKague, D.; et al. Intercalibration of the GPM microwave radiometer constellation. J. Atmos. Ocean. Technol. 2016, 33, 2639–2654. [Google Scholar] [CrossRef]
- Berg, W.; Kroodsma, R.; Kummerow, C.D.; McKague, D.S. Fundamental climate data records of microwave brightness temperatures. Remote Sens. 2018, 10, 1306. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.R.H.; Crow, W.T.; Yilmaz, M.T.; Jackson, T.J.; Basara, J.B. Enhancing model-based land surface temperature estimates using multiplatform microwave observations. J. Geophys. Res. Atmos. 2013, 118, 577–591. [Google Scholar] [CrossRef]
- Draper, D.W.; Newell, D.A.; Wentz, F.J.; Krimchansky, S.; Skofronick-Jackson, G.M. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3452–3462. [Google Scholar] [CrossRef]
- Duncan, D.I.; Kummerow, C.D. A 1DVAR retrieval applied to GMI: Algorithm description, validation, and sensitivities. J. Geophys. Res. Atmos. 2016, 121, 7415–7429. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, A.; Imaoka, K. Intercalibration of Advanced Microwave Scanning Radiometer-2 (AMSR2) brightness temperature. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4568–4577. [Google Scholar] [CrossRef]
- Kunkee, D.B.; Poe, G.A.; Boucher, D.J.; Swadley, S.D.; Hong, Y.; Wessel, J.E.; Uliana, E.A. Design and evaluation of the first Special Sensor Microwave Imager/Sounder. IEEE Trans. Geosci. Remote Sens. 2008, 46, 863–883. [Google Scholar] [CrossRef]
- Matthews, E. Global vegetation and land use: New high-resolution data bases for climate studies. J. Clim. Appl. Meteorol. 1983, 22, 474–487. [Google Scholar] [CrossRef] [Green Version]
- Sharifnezhadazizi, Z.; Norouzi, H.; Prakash, S.; Beale, C.; Khanbilvardi, R. A global analysis of land surface temperature diurnal cycle using MODIS observations. J. Appl. Meteorol. Climatol. 2019, 58, 1279–1291. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Rossow, W.B. Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Beale, C.; Norouzi, H.; Sharifnezhadazizi, Z.; Bah, A.R.; Yu, P.; Yu, Y.; Blake, R.; Vaculik, A.; Gonzalez-Cruz, J. Comparison of diurnal variation of land surface temperature from GOES-16 ABI and MODIS instruments. IEEE Geosci. Remote Sens. Lett. 2019, 17, 572–576. [Google Scholar] [CrossRef]
- Wang, J.A.; Sulla-Menashe, D.; Woodcock, C.E.; Sonnentag, O.; Keeling, R.F.; Friedl, M.A. Extensive land cover change across Arctic—Boreal Northwestern North America from disturbance and climate forcing. Glob. Chang. Biol. 2020, 26, 807–822. [Google Scholar] [CrossRef]
- AlJassar, H.K.; Temimi, M.; Entekhabi, D.; Petrov, P.; AlSarraf, H.; Kokkalis, P.; Roshni, N. Forward simulation of multi-frequency microwave brightness temperature over desert soils in Kuwait and comparison with satellite observations. Remote Sens. 2019, 11, 1647. [Google Scholar] [CrossRef] [Green Version]
- Kurvonen, L.; Hallikainen, M. Influence of land-cover category on brightness temperature of snow. IEEE Trans. Geosci. Remote Sens. 1997, 35, 367–377. [Google Scholar] [CrossRef]
- Joseph, A.T.; van der Velde, R.; O’Neill, P.E.; Choudhury, B.J.; Lang, R.H.; Kim, E.J.; Gish, T. L band brightness temperature observations over a corn canopy during the entire growth cycle. Sensors 2010, 10, 6980–7001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahana, M.; Ahmed, R.; Sajjad, H. Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Model. Earth Syst. Environ. 2016, 2, 81. [Google Scholar] [CrossRef] [Green Version]
- Grody, N.C.; Weng, F. Microwave emission and scattering from deserts: Theory compared with satellite measurements. IEEE Trans. Geosci. Remote Sens. 2008, 46, 361–375. [Google Scholar] [CrossRef]
- Prigent, C.; Rossow, W.B.; Matthews, E.; Marticorena, B. Microwave radiometric signatures of different surface types in deserts. J. Geophys. Res. Atmos. 1999, 104, 12147–12158. [Google Scholar] [CrossRef] [Green Version]
- Norouzi, H.; Temimi, M.; Prigent, C.; Turk, J.; Khanbilvardi, R.; Tian, Y.; Furuzawa, F.; Masunaga, H. Assessment of the consistency among global microwave land surface emissivity products. Atmos. Meas. Tech. 2015, 8, 1197–1205. [Google Scholar] [CrossRef] [Green Version]
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LC01 | 1.56 | 0.81 | 0.93 | 1.17 | 1.08 | 0.72 | 1.07 | 1.24 | 1.34 | 0.60 | 1.21 | 1.10 |
LC02 | 2.07 | 3.11 | 2.88 | 2.15 | 3.88 | 1.47 | 2.17 | 3.03 | 2.16 | 2.31 | 2.12 | 1.66 |
LC03 | 2.27 | 3.26 | 2.43 | 1.72 | 3.67 | 1.35 | 1.96 | 3.52 | 1.89 | 1.94 | 2.12 | 1.48 |
LC04 | 2.34 | 2.23 | 3.00 | 2.22 | 3.28 | 1.62 | 1.66 | 3.74 | 2.92 | 1.24 | 3.13 | 2.07 |
LC05 | 2.18 | 1.94 | 2.39 | 1.93 | 3.44 | 1.38 | 2.06 | 3.47 | 2.79 | 1.30 | 2.13 | 2.09 |
LC06 | 2.79 | 3.05 | 2.55 | 2.32 | 3.89 | 1.86 | 2.64 | 3.77 | 3.05 | 2.18 | 2.34 | 2.50 |
LC07 | 3.20 | 6.41 | 5.89 | 15.76 | 6.08 | 2.83 | 3.49 | 4.93 | 16.94 | 2.31 | 3.17 | 15.20 |
LC08 | 2.97 | 2.70 | 2.51 | 2.74 | 3.94 | 1.93 | 2.61 | 3.69 | 3.71 | 2.09 | 2.59 | 2.93 |
LC09 | 2.99 | 4.15 | 2.33 | 1.96 | 4.37 | 1.47 | 3.12 | 3.88 | 3.74 | 3.10 | 2.51 | 2.49 |
LC10 | 2.08 | 2.79 | 1.88 | 3.22 | 2.24 | 2.92 | 2.85 | 5.11 | 3.24 | 3.60 | 3.83 | 3.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharifnezhad, Z.; Norouzi, H.; Prakash, S.; Blake, R.; Khanbilvardi, R. Diurnal Cycle of Passive Microwave Brightness Temperatures over Land at a Global Scale. Remote Sens. 2021, 13, 817. https://doi.org/10.3390/rs13040817
Sharifnezhad Z, Norouzi H, Prakash S, Blake R, Khanbilvardi R. Diurnal Cycle of Passive Microwave Brightness Temperatures over Land at a Global Scale. Remote Sensing. 2021; 13(4):817. https://doi.org/10.3390/rs13040817
Chicago/Turabian StyleSharifnezhad, Zahra, Hamid Norouzi, Satya Prakash, Reginald Blake, and Reza Khanbilvardi. 2021. "Diurnal Cycle of Passive Microwave Brightness Temperatures over Land at a Global Scale" Remote Sensing 13, no. 4: 817. https://doi.org/10.3390/rs13040817
APA StyleSharifnezhad, Z., Norouzi, H., Prakash, S., Blake, R., & Khanbilvardi, R. (2021). Diurnal Cycle of Passive Microwave Brightness Temperatures over Land at a Global Scale. Remote Sensing, 13(4), 817. https://doi.org/10.3390/rs13040817