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Abstract: Artificial terraces are of great importance for agricultural production and soil and water
conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and
related studies. Previous research achieved artificial terrace mapping based on high-resolution digital
elevation models (DEMs) or imagery. As a result of the importance of the contextual information for
terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) tech-
nologies are widely used. However, the selection of an appropriate classifier is of great importance
for the terrace mapping task. In this study, the performance of an integrated framework using OBIA
and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was
used as the study area. First, optimized image segmentation was conducted. Then, features from the
DEMs and imagery were extracted, and the correlations between the features were analyzed and
ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme
gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for
terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that
random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for
XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed.
This work provides a credible framework for mapping artificial terraces.

Keywords: artificial terrace mapping; object-based image analysis (OBIA); machine learning (ML);
random forest (RF)

1. Introduction

Artificial terraces, as a typical artificial landform, are of great importance to agricul-
tural production and soil and water conservation [1]. The construction of artificial terraces
enhances water infiltration, reduces the risk of soil erosion, and improves biodiversity [2,3].
Artificial terraces are widely distributed around the world because of these advantages [4].
Many previous studies reported their effects on soil and water processes [5–7]. Nowadays,
many artificial terraces are threatened by land degradation and soil erosion because of
land abandonment and a lack of maintenance [8]. The Loess Plateau in China, which is
a major agricultural production region in China, suffers from severe soil erosion and is
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a fragmented terrain [9]. Since the 1960s, lots of artificial terraces have been built on the
top of the loess hills and hillslopes to improve agricultural productivity. However, the
“Grain for Green” project was implemented by the Chinese government in 1999, with the
aim to “convert all reclaimed farmland to forestland step by step within a definite time
in a planned way” [10]. Through this project, hillsides were closed to actively facilitate
afforestation, the ecological environment was improved, and vegetation recovery was
accelerated [11]. Currently, the terraces are consistently at risk from gully erosion or gravity
erosion because of the lack of maintenance [12,13]. The evident changes in certain artificial
terrace areas can be clearly observed (Figure 1). Hence, mapping artificial terraces will help
us better understand their spatial distribution and other effects, such as geomorphology,
soil erosion, and ecology.
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Terrace mapping is the basis of this field of study. Traditional methods, including 
field investigation and visual interpretation [14,15], are simple, highly accurate, and easy 
to implement. However, the time expenditure, financial costs, and inconvenience make 
long-term monitoring over large areas difficult. Automatic methods are possible with the 
technological development of high spatial resolution remote sensing and terrain modeling 
by unmanned aerial vehicle (UAV) photogrammetry [16–18] or light detection and rang-
ing (lidar) technology [8]. Highly accurate terrain modeling by UAV photogrammetry is 
consistently difficult because fully and automatically interpolating the surface model into 
the terrain model, i.e., the digital elevation model (DEM), is problematic in hilly areas 
covered with dense vegetation [19]. The DEM-based mapping method is usually influ-
enced by elevation noises caused by vegetation or other features. Lidar-based terrain mod-
eling usually solves this problem using the multiple echo filtering technique, while the 
high economic cost limits its application. However, image-based methods utilize spec-
trum information and can achieve a better result. These methods include two types: pixel-
based [16,20,21] and object-based methods [22]. 

Object-based image analysis (OBIA) transfers from pixels to objects [23]. Therefore, 
spectral as well as spatial information of target features [24] can be better utilized for the 
mapping task. This characteristic makes OBIA superior to pixel-based methods, which 
usually ignore these contents and texture information, leading to a discontinuity of map-
ping results. A general OBIA framework basically consists of three steps. First, an image 
is segmented into several individual polygons with approximately the same spectral or 

Figure 1. Artificial terraces in Ansai, the Loess Plateau, China, which have almost returned to
grassland after the implement of “Grain for Green” project. Erosion can be observed between the
ridges of the terraces due to the lack of maintenance.

Terrace mapping is the basis of this field of study. Traditional methods, including
field investigation and visual interpretation [14,15], are simple, highly accurate, and easy
to implement. However, the time expenditure, financial costs, and inconvenience make
long-term monitoring over large areas difficult. Automatic methods are possible with the
technological development of high spatial resolution remote sensing and terrain modeling
by unmanned aerial vehicle (UAV) photogrammetry [16–18] or light detection and ranging
(lidar) technology [8]. Highly accurate terrain modeling by UAV photogrammetry is
consistently difficult because fully and automatically interpolating the surface model into
the terrain model, i.e., the digital elevation model (DEM), is problematic in hilly areas
covered with dense vegetation [19]. The DEM-based mapping method is usually influenced
by elevation noises caused by vegetation or other features. Lidar-based terrain modeling
usually solves this problem using the multiple echo filtering technique, while the high
economic cost limits its application. However, image-based methods utilize spectrum
information and can achieve a better result. These methods include two types: pixel-
based [16,20,21] and object-based methods [22].

Object-based image analysis (OBIA) transfers from pixels to objects [23]. Therefore,
spectral as well as spatial information of target features [24] can be better utilized for the
mapping task. This characteristic makes OBIA superior to pixel-based methods, which
usually ignore these contents and texture information, leading to a discontinuity of map-
ping results. A general OBIA framework basically consists of three steps. First, an image
is segmented into several individual polygons with approximately the same spectral or
spatial features, namely, objects. Then, each object is treated as the analysis unit, and
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the corresponding features are calculated for incoming classification. Finally, a specific
classifier is selected to achieve a certain classification task. The first step in OBIA, i.e., image
segmentation, can directly affect the analysis [25]. Commonly-used segmentation methods,
such as multi-resolution segmentation (MRS) implemented in eCognition software [26–28],
are strongly defined by the parameters (scale, shape, and compactness in this MRS). There-
fore, the inherent properties of geographic entities are necessity as the prior knowledge to
obtain suitable segmentations.

Another significant factor affecting the efficiency of the OBIA framework is the appli-
cation of the appropriate classifier. Previous studies have successfully utilized machine
learning (ML) classifiers to classify highly complex data, which illustrate the great potential
of ML in effective classification and object recognition [29]. Zhao et al. (2017) proposed
a random forest-based method using DEMs and UAV imagery for terrace mapping with
an overall accuracy of 94% [22]; however, the geometric features of terraces were not
considered, which limits the accuracy. Dai et al. (2020) used edge detection combined with
terrain attributes to extract the ridge lines of artificial terraces with an overall accuracy of
90.81%–97.57% [13]. While the inconsistency caused by soil erosion between terrace ridges
will strongly influence the success of this method, among the various existing ML-based
classifications, ensemble decision tree (DT) classifiers, such as random forest (RF), are
considered as effective methods for mapping purposes in remote sensing. Recently, as a
novel state-of-the-art DT-based ensemble classifier, extreme gradient boosting (XGBoost) is
reported as a strong and effective method that has been successfully used for OBIA-based
classification, such as landscape classification and gully feature mapping [25]. However, the
capabilities of XGBoost for artificial terrace mapping remain to be demonstrated. Moreover,
other algorithms under the OBIA framework are also commonly used for remote sensing
classification, such as k-nearest neighborhood (KNN) [30]. Although a few studies have
focused on the comparison of ML performance in land use and land cover [31] or natural
hazard susceptibility (e.g., landslide) mapping [32–34], no comprehensive comparison with
fine-scale artificial terrace mapping has been performed with an OBIA framework.

Considering the aforementioned limitations, this work focuses on the comparison
of different ML classifiers in the OBIA framework for artificial terrace mapping. The
contributions to this field are as follows: 1) image segmentation was optimized and
feature selection was performed with an objective method; 2) the performance of three ML
classifiers in the OBIA framework was compared and their potential for artificial terrace
mapping was explored.

2. Materials and Methods
2.1. Study Area and Data

The Zhifang catchment (109◦14′25”E–109◦15′20”E, 36◦43′10”N–36◦44′30”N, with an
area of 2.33 km2) was selected as the study area (Figure 2a,b). It is located in the south-
eastern part of Ansai County, Shaanxi Province, China. The study area is composed of
loess ridge and hill, with a 289-m elevation difference, and is covered with massive ridges
and tablelands. The study area is characterized by a semiarid climate with mean annual
precipitation of 528.5 mm and a mean temperature of 8.8 ◦C [35–37]. Soil erosion is ev-
idently severe, with a great number of artificial terraces built in this area, making the
terrain fragmented.
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needed. First, an MD4-1000 drone with a Sony ILCE-7R digital camera system was used 
to capture optical aerial photographs of the study site. Secondly, the horizontal and verti-
cal accuracies were maintained based on three base control points and 53 photo control 
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and DEM generation. Trimble’s Inpho 6.0 was used to perform the aerial triangulation. 
Subsequently, the DSM was generated using MapMatrix 4.0. Then, a 1-m resolution DEM 
was achieved after eliminating buildings and vegetation. The WorldView-3 imagery from 
April 2016 (Figure 2d) was utilized in this study. Launched in August 2014, the 
WorldView-3 satellite has higher spatial resolution than the previous WorldView-2 satel-
lite. The resolution of the panchromatic band is 0.31 m, and the multispectral (red, green, 
blue, and near-infrared) bands are 1.24 m.  

A field investigation was then conducted to generate the ground truth of the artificial 
terraces to evaluate the mapping accuracy. Reference polygons (Figure 2d) were manually 
delineated from both the field investigation and the details of the terrace based on 
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Figure 2. Study area and data. (a,b) show the location of the Loess Plateau, China, and the study area. (c) Digital elevation
models (DEMs) of the study area, and (d) WorldView-3 imagery of the study area with ground truth.

In this study, high-resolution DEMs and imagery were used to extract the terraces.
A DEM with a 1-m resolution was generated using UAV photogrammetry in March 2016
(Figure 2c). DEM acquisition can be divided into two main phases: the outdoor field
survey and subsequent indoor image processing. For the outdoor survey, two steps are
needed. First, an MD4-1000 drone with a Sony ILCE-7R digital camera system was used to
capture optical aerial photographs of the study site. Secondly, the horizontal and vertical
accuracies were maintained based on three base control points and 53 photo control points.
Then, two indoor image processing steps were implemented: aerial triangulation and DEM
generation. Trimble’s Inpho 6.0 was used to perform the aerial triangulation. Subsequently,
the DSM was generated using MapMatrix 4.0. Then, a 1-m resolution DEM was achieved
after eliminating buildings and vegetation. The WorldView-3 imagery from April 2016
(Figure 2d) was utilized in this study. Launched in August 2014, the WorldView-3 satellite
has higher spatial resolution than the previous WorldView-2 satellite. The resolution of the
panchromatic band is 0.31 m, and the multispectral (red, green, blue, and near-infrared)
bands are 1.24 m.

A field investigation was then conducted to generate the ground truth of the artificial
terraces to evaluate the mapping accuracy. Reference polygons (Figure 2d) were manu-
ally delineated from both the field investigation and the details of the terrace based on
WorldView-3 Imagery, DEM information, and Ortho-image (Figure 3).
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sequently, three object-based ML classifiers, namely, RF, XGBoost, and KNN, were se-
lected for terrace mapping. Finally, the mapping results were validated and compared 
through an accuracy assessment analysis. Figure 4 illustrates the entire workflow of this 
study. 

 
Figure 4. Workflow of the proposed method. 

Figure 3. Details of terraces in the study area. (a) Ortho-image of a subset (white polygon) in the
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2.2. Methods

The mapping task began with image segmentation, which is an essential step that af-
fects the accuracy of terrace mapping. In this study, segmentation by weighted aggregation
(SWA) was utilized for this step because it can generate multiple level segments without
many predefined parameters. Subsequently, a watershed-based optimization strategy was
initiated to optimize the segmentation. Then, the spectrum, topography, terrain texture,
and geometry were calculated for each suitable segment. Next, a correlation-based feature
selection method was adopted to acquire the relevant feature subsets. Subsequently, three
object-based ML classifiers, namely, RF, XGBoost, and KNN, were selected for terrace
mapping. Finally, the mapping results were validated and compared through an accuracy
assessment analysis. Figure 4 illustrates the entire workflow of this study.

2.2.1. Optimized Image Segmentation

SWA, firstly proposed by Sharon et al. (2000, 2001, 2006) [38–40], mainly consists
of four steps: (1) constructing the fine-level graph; (2) creating the coarse-level graph;
(3) evaluating the saliency of segments; and (4) determining the boundaries of salient
segments based on a top-down procedure. In this study, the SWA was used to obtain
the multi-level segmentation results based on three visible bands, one near-infrared band,
and one panchromatic band. Then, the segments were used as the basic processing units
for terrace mapping. Therefore, selecting an appropriate level segmentation from multi-
level results is necessary to optimize the segments that are generated by SWA. Present
studies have pointed out that the category’s effect on the segmentation selection needs to
be considered [30]. This finding indicates that using different levels to segment an image is
better than using a universal one [29]. In order to achieve a satisfactory segmentation, it
is necessary to consider the homogeneity of segments and significant difference with the
adjacent regions [41]. Hence, a watershed-based optimized strategy was used to select the
optimal segmentation level on the basis of our previous knowledge [25]. This procedure
first chooses the watershed as the basic processing unit because it is usually considered as
the fundamental unit of landform [42]. The three following steps are used to extract sub-
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watersheds: (1) filling the sinks; (2) extracting the stream network; and (3) extracting the
watersheds. Eighteen sub-watersheds were extracted; two were used for model training,
with the remaining 16 sub-watersheds being utilized for validation. Every sub-watershed
has its own segmentation level by considering between-segment heterogeneity and within-
segment homogeneity [43]. To meet these requirements, an unsupervised F-measure was
utilized [44]. Subsequently, the optimized segmentation level of each sub-watershed was
achieved, and the final segmentation result was obtained.
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2.2.2. Feature Extraction and Selection

For the ML-based terrace mapping, certain features need to be extracted to train the
classifiers. In this study, 55 features were adopted for training the terrace mapping model.
An overview of these features is illustrated in Table 1. The detailed descriptions for each
feature can be found in Appendix A. Given that the spectrum and geometric features are
widely used in the OBIA community [25], this information was used. Five basic topographic
factors, namely, elevation, slope, roughness, shaded relief, and curvature, were utilized.
Terrain textures, which are beneficial for the extraction of landform entities [45,46], were
also adopted. Eight terrain texture measures derived from the gray-level co-occurrence
matrix (GLCM) [47] were then calculated on the basis of five topographic features. All
these object features were calculated based on the segmentation result using the eCognition
software. Figure 5 illustrates the schematic for object-based feature extraction.

Table 1. Overview of the features used for mapping terraces.

Type Features

Spectrum Mean band (Red, Green, Blue, and Panchromatic band), Maximum
Difference, and Brightness

Geometry Shape index, Length–width, Roundness, and Area

Topography Mean value (Elevation, Curvature, Roughness, Slope, and Shaded relief)

Terrain texture

Gray-level co-occurrence matrix (GLCM) homogeneity, GLCM contrast,
GLCM dissimilarity, GLCM entropy, GLCM angular second moment,

GLCM mean, GLCM standard deviation, and GLCM correlation based on
Elevation, Curvature, Roughness, Slope, and Shaded relief
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A correlation-based feature selection (CFS) method [48], which is a popular filter
approach, was used to select the feature subset in terrace mapping in this study. In this
method, the feature subsets were evaluated by maximizing the dependency of a feature
subset with the target class while minimizing the intercorrelation within the subset [49]:

f(S) =
SCi

ASCi
(1)

where S denotes a candidate feature subset, f(S) denotes the evaluation score, SCi denotes
the average correlation between subset S and the dependent variable, and ASCi denotes
the average intercorrelation within subset S. Given an initial set of inputs, a set of features
meeting the best f(S) was identified. Each time the feature set proposed by the CFS was
removed from the initial input, the algorithm was then reapplied to the set of reduced
variables until no features were left. This selection algorithm in this work was implemented
using the Weka 3.8 package.

2.2.3. Terrace Mapping Using ML Classifiers

After image segmentation and feature selection, three different widely-used ML
classifiers, namely, XGBoost, RF, and KNN, were selected for terrace mapping.

(I) XGBoost
XGBoost [50], as a boosting-based ensemble classifier, serially trains individual DTs,

and each DT is an improved version of the previous one, resulting in a smaller error
rate [51]. This serialized training method is beneficial to reduce the residuals. To avoid
overfitting the model, XGBoost adds a regularization term to the objective function for
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controlling the entire complexity of the model [52]. Another significant enhancement of
XGBoost is the parallel processing ability. The algorithm uses presorting and block storage
methods to determine the best split point rather than growing the DT in parallel. Then,
linear scanning can be performed across the blocks to determine where the best split point
is for each feature under test. Such characteristics make XGBoost very popular for the
classification and mapping of remote sensing images.

In this study, the “XGBoost” package [53] in R language was employed to generate
the terrace mapping model. For the sake of modeling, three significant parameters need
to be determined: (1) the number of trees (nrounds) to grow; (2) the depth of the trees
(max_depth), which controls the complexity of the model; and (3) the minimum sum
of the instance weight (min_child_weight), which determines the stop point of the tree
splitting. For tuning the XGBoost model, 10-fold cross-validation was selected on the
training dataset.

(II) RF
RF is another type of ensemble classifier, proposed by Leo Breiman in 2001 [54]. It

uses bagging to generate different training samples to reduce the correlation between
classification models, thereby improving the overall prediction accuracy of the classifier.
The classification process of RF is simple and easy to implement. The training samples
are randomly and repeatedly selected from the original training set through bootstrap
sampling. Every classification and regression tree (CART) DT is based on every bootstrap
dataset and is split and grown by independently and identically distributed random vectors.
The final classification result is synthesized from the classification results trained by each
CART DT through simple majority voting.

We used the R language to implement the RF package and build the terrace mapping
model. Two important parameters affect the model performance, namely, the number of
trees (nTree) needed to be grown and the number of features (mTry) that are randomly
selected at each node. The nTree and mTry were set to 500 and the square root of the
total number of features because they are a commonly used parameter combination for RF
classifier [55].

(III) KNN
KNN is a powerful tool used in many object-based procedures [56,57] because of its

flexibility and simplicity. This classification method is frequently utilized in object-based
software frameworks. Compared with model-based learning, KNN assigns objects to
classes on the basis of the proximity or neighborhood in feature space rather than learning
from models [58]. The nearest K neighbors can be achieved from the training data and
used to vote for the new target prediction [59]. In this study, KNN was adopted using the
eCognition software (Trimble Geospatial, Munich, Germany).

2.2.4. Mapping Accuracy Assessment

After the terraces were predicted, the predicted results were validated on the basis of
the reference data. In this study, precision (Pr), recall (Re), F1-score (F1), overall accuracy
(OA), and kappa coefficient (k) were adopted for the accuracy assessment. These metrics
can be calculated as follows:

Pr =
TP

TP + FP
(2)

Re =
TP

TP + FN
(3)

F1 =
2× Pr× Re

Pr + Re
(4)

OA =
TP + TN

TP + FP + TN + FN
(5)

k =
P0 − Pe

1− Pe
(6)
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where Po is the overall accuracy, and Pe can be defined as

Pe =
(TP + FP)(TP + FN) + (FN + TN)(TN + FP)

(TP + FP + TN + FN)2 (7)

where TP, FP, and FN denote true positive, false positive, and false negative, respectively.
TP refers to the terrace area for which the extraction result is correct. FP refers to the
terrace area for which the extraction result is incorrect. FN refers to the terrace area that has
not been extracted. Therefore, the Pr metric indicates to what extent the extraction result
represents the real target terrace area, and the Re metric indicates to what extent the real
target can be extracted. The former metric can characterize the classification commission
error of the model, and the latter can represent the omission error. F1 is the harmonic mean
of the two metrics, reflecting their balance. Thus, it is used to characterize the OA of the
model [60].

3. Results and Analysis
3.1. Image Segmentation and Feature Selection Results

The segmentation result can be achieved using the watershed-based SWA optimiza-
tion strategy, as presented in Figure 6. In accordance with the segmentation results,
18 sub-watersheds and 3445 segments were generated. Two sub-watersheds were selected
to train the ML models. The training area consists of 849 segments, including 78 pos-
itive samples and 731 negative samples. They were used to train the terrace mapping
model. The remaining 16 sub-watersheds (2596 segments) were used to validate the model.
For selecting the relevant feature subset, 20-fold replicate runs of the CFS method were
implemented. The top 20 features were chosen, as shown in Table 2. The GLCM-based
terrain texture can fully consider the spatial relationship among pixels, thereby providing
the terrain texture a reliable basis for reflecting the assemblages of repeating patterns of
landform elements [61]. Therefore, the terrain texture features play a dominant role in
feature ranking. Eleven terrain texture features were selected. The terrain texture based
on GLCM can be regarded as a second-order geomorphic parameter. These second-order
parameters can improve the ability of traditional terrain factors to differentiate landform
types. The GLCM angular second moment measures the uniformity of the texture feature.
The smaller the value is, the more disorderly the image pixels will be. Therefore, the
angular second moment of curvature (Ang_Cur) can be used to reflect the internal change
pattern for the curvature. The larger the value of Ang_Cur, the more orderly the curvature,
indicating that the change in the curvature is gentle. Given that the curvature measures the
convexity of the landscape, a small Ang_Cur likely represents a complicated area. These
areas usually have great potential to develop bank gullies. Therefore, compared with the
traditional topographic features, terrain textures can preferably distinguish differences in
landforms on a certain scale [52]. In addition to terrain texture features, three geometric
and two topographic features were selected in the ranking list, indicating that they do
not have a great deal of influence in terms of improving the accuracy of terrace mapping.
The Pan feature ranks in the top positions, as shown in Table 2. This condition might be
attributed to the high spatial resolution of the panchromatic band with a 0.31-m resolution.
Thus, the features obtained from the panchromatic band are more important than those
from the 1-m resolution DEM.
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Table 2. Feature selection result using the correlation-based feature selection (CFS) method.

Feature Type Feature Iteration Average
Rank

Spectrum Mean value of panchromatic band 20 1.0
Terrain texture GLCM angular second moment of curvature 20 2.4
Terrain texture GLCM homogeneity of shade relief 20 5.0
Terrain texture GLCM homogeneity of curvature 20 5.9

Spectrum Maximum difference of value 20 7.0
Spectrum Mean value of band red 20 7.1

Terrain texture GLCM mean value of shade relief 20 7.1
Geometry Length/Width 20 7.3

Terrain texture GLCM angular second moment of elevation 20 9.8
Terrain texture GLCM homogeneity of slope 20 10.4

Topography Mean value of shade relief 20 10.9
Terrain texture GLCM angular second moment of shade relief 20 12.0
Terrain texture GLCM mean value of roughness 20 12.4
Terrain texture GLCM homogeneity of roughness 19 13.0
Terrain texture GLCM standard derivation of curvature 18 14.1

Spectrum Mean value of band green 16 19.0
Terrain texture GLCM mean value of slope 11 19.7

Geometry Area 12 20.5
Topography Mean value of elevation 8 20.9
Geometry Shape index 5 22.1
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3.2. Terrace Mapping Results and Accuracy Assessment

Figure 7 shows the terrace mapping results of XGBoost, RF, and KNN. The results
illustrate that terraces and non-terraces were successfully detected. The results indicate
that the RF classifier performed excellently by creating an accurate terrace inventory map
with only limited incorrectly extracted and unextracted terraces. The visual assessment
indicates that for terrace mapping, RF is more reliable than KNN or XGBoost. Most of
the incorrectly detected terraces (false positives) in the study area were identified with
the KNN classifier rather than RF or XGBoost. Most of the non-detected terraces (false
negatives) in the study area were identified with the XGBoost classifier rather than RF
or KNN.
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Four types of belief measurements, namely, Pr, Re, OA, and k, were adopted to validate
the mapping results in this study because of their high performance in previous studies. As
previously mentioned, F1 can reflect the balance between Pr and Re. Thus, F1 was utilized
to evaluate the pixel coverage for quantitatively detecting terraces. The belief masses for
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labeled features caused by the classifiers were calculated with a confusion matrix. Table 3
indicates the performance of three classifiers in the testing area. Among the three classifiers,
RF performed best in terms of Pr, Re, and F1 with 88.15%, 83.63%, and 85.83%, respectively,
followed by XGBoost classifiers with 81.96%, 81.48%, and 81.72%. The KNN classifier
obtained the lowest F1 score (77.19%) because of its lower Pr (73.36%) than the others,
although its recall value was good (81.44%). In accordance with the accuracy assessment
result, the RF classifier achieved an OA of up to 95.60% and accurately identified the
terraces among the object-based classifiers. This result was followed by XGBoost and KNN
classifiers with 94.19% and 92.33%, respectively. Although the three classifiers had an OA
of more than 90%, RF had the highest k value of 0.83, which is considered as approximately
perfect. The accuracy assessment proved that the RF classifier was effective and may be
applied to other regions that exhibit similar conditions to those in the present study.

Table 3. Accuracy assessment (confusion matrix) on the study area.

Classifier Mapping
Results

Reference (m2)
Pr Re F1 OA Kappa

Terraces Non-
Terraces

XGBoost
Terraces 222,855.55 49,058.78

81.96% 81.48% 81.72% 94.19% 0.78
Non-

Terraces 50,638.18 1,393,215.99

RF
Terraces 228,722.81 30,747.19

88.15% 83.63% 85.83% 95.60% 0.83Non-
Terraces 44,770.92 1,411,527.58

KNN
Terraces 222,743.59 80,880.65

73.36% 81.44% 77.19% 92.33% 0.73Non-
Terraces 50,750.14 1,361,394.12

4. Discussion
4.1. Influence of Class Imbalance and Feature Selection on Terrace Mapping

Class imbalance refers to when the total number of one class far exceeds the number of
another, thereby giving rise to a low predictive accuracy for the infrequent class. The class
imbalance effect needs to be considered because the covered areas of terraces are discrete
and small in the study area. Previous studies demonstrated that undersampling of the
majority class is a beneficial strategy to overcome the class imbalance problem [27,55,62].
To estimate the class imbalance effect, the training samples were divided into subtraining
and subtesting samples. Later, a metric R was defined as the ratio of terrace and non-terrace
segments in the current subtraining. Then, an iterative procedure was used to estimate a
target R value for the emerging balance between Pr and Re on the subtesting samples. In
each iteration, all the terrace segments and R-fold numbers of non-terrace samples were
randomly sampled from the subtraining datasets to train the ML classifiers and assess the
accuracies on the remaining subtesting samples. The procedure began from R = 1 and
increased by 0.2 in each step. For evaluating the effect of different feature combinations on
terrace mapping, five feature combinations were utilized, where the top 5, top 10, top 15,
and 20 features based on Table 2 were selected, and all the 55 features were chosen.

In this study, the training area was divided into subtraining and subtesting at a ra-
tio of 1:3 because the number of samples in the validation datasets (2596 segments) was
approximately three times higher than the training samples (849 segments). Therefore,
221 segments, including 20 terrace and 183 non-terrace segments, were randomly selected
as subtraining samples, and the remaining 646 segments were treated as subtesting sam-
ples. For each R, the procedure was repeated 10 times on the basis of randomly sampled
subtraining and subtesting segments from training datasets based on different feature
combinations. Then, the mean error rates and their standard deviations were calculated.
The experimental results are shown in Figure 8.
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The trends of three ML classifiers in terms of the accuracy value based on different class
ratios (R) and feature combinations are similar. As shown in Figure 5, Re is approximately
100% when the value of the class balanced ratio R is set to one. However, the precision
is lower than 20%, implying that the extent of terraces are overestimated. As shown
in Figure 8, converging curves of the Re and Pr accuracy appear when the value of R
changes from one to nine. For the RF, the converging curves can be crossed using five
different feature combinations. However, for the XGBoost and KNN, this unique crossing
for the converging curves can be achieved only when all the features are used, as shown
in Figure 5. The highest balanced Re and Pr for RF that can be achieved was approximately
86% when R ≈ 4.8, which is significantly higher than XGBoost (approximately 81%) and
KNN (approximately 75%). RF can obtain 85% Re and Pr when 20 features are applied.
This circumstance may imply that training an RF model does not need large datasets.

4.2. General Discussion

Although experiments show that the RF classifier outperforms other state-of-the-art
ML classifiers in terms of classification accuracy, some important considerations about its
efficiency need to be further discussed. KNN has a lower efficiency as compared with
ensemble classifiers because it is unsuitable for parallel processing. XGBoost and RF have
a higher accuracy than KNN. The basic principle behind ensemble learning is that by
combining a series of classifiers the performance is slightly better than “random guessing”,
similar to KNN [51].

The comparison in this work was conducted in a hilly area characterized by severe
soil erosion in the Loess Plateau, China. Although the landform in the Loess Plateau has
spatial heterogeneity, the distribution pattern of loess landform has a certain regularity.
Therefore, the entire OBIA-ML framework is universal, including image segmentation,
feature selection, and ML classification. The results from this study area are to some extent
transferable to other Loess Plateau regions.

Although ML in the OBIA framework demonstrated a good performance in artificial
terrace mapping, the classification works have several limitations. Only the artificial terrace
area can be identified rather than the boundaries of each individual terrace (known as
terrace ridges). To improve the mapping task, other data sources, such as lidar, along with
a variety of terrain attributes, can be considered. Apart from ML classifiers, deep learning
(DL) has become popular. The feature selection in the numbers and choices will certainly
affect the final classification accuracy. By contrast to the mandatory feature selection in ML,
the features in DL are automatically learned during classifier training. These distinctive
machine-learned features, such as spectral, contextual, and spatial features, will lead to
the increase in their generalizability. The training process in DL is time-consuming, and
an improved model network manual design is strongly required. These topics will be
explored in future studies.

5. Conclusions

Artificial terraces are common around the world and are of great importance in food
production, water and soil conservation, and ecologic protection. Automatic, efficient,
high-accuracy mapping of artificial terraces is the basis of this field of study. OBIA has
been widely applied in remote sensing image classification and essentially consists of
image segmentation, feature selection, and classification. In this study, we explored the
potential of an object-based ML framework for artificial terrace mapping. Three object-
based ML classifiers (i.e., XGBoost, RF, and KNN) were evaluated in an artificial terrace
mapping comparison. We conducted experiments on an area of the Loess Plateau, China,
through 1-m resolution aerial imagery and DEM from UAV photogrammetry. The results
indicate that the RF model obtains the most accurate classification results, and the KNN
and XGBoost classifiers produce acceptably accurate classification results. The influence
of class imbalance and feature selection was analyzed and discussed. In this study, one
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of our hypotheses was that the use of objective feature selection would improve the
classification results.

The final conclusion drawn from this study is that the OBIA framework for artificial
terrace mapping can still be improved. DL and certain other data sources, such as lidar,
may help to enhance the OBIA framework. This will require several in-depth studies in
the future.
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Appendix A

The detailed descriptions of the features used in this study for mapping terraces.

Table A1. The descriptions of the features used for mapping terraces.

Type Features Descriptions

Spectrum

Mean band (Red, Green, Blue,
and Panchromatic band)

The mean intensity of all pixels forming an image object within each band,

C =
1
n

n

∑
i=1

Ci

where Ci denotes the intensity value at the pixel in an image object; and n is
the total number of an object.

Brightness

The mean value of the C of all layers,

B =
1

nL

n

∑
i=1

Ci,

where Ci denotes the mean intensity value of layer i; and nL is the total number
of layers.

Maximum Difference

Spectrum difference of all layers,

MaxDi f f =
max

∣∣∣Ci(k)− Cj(k)
∣∣∣

B(k)

where i, j are image layers; B(v) is the brightness of the image object k; Ci(k) is
the mean intensity of image layer i of image object k; and Cj(k) is the mean
intensity of image layer j of image object k.
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Table A1. Cont.

Type Features Descriptions

Geometry

Shape index

The smoothness of an image object border,

SI =
bk

4
√

Pk
,

where bk is the border length of image object k, which is defined as the sum of
the edges of the object k. Pk is the total number of pixels contained in object k.
The smoother the border of an image object, the lower its shape index.

Length–width

A length-to-width ratio of an image object,

r =
a2 + [(1− f )b]2

Pk
,

where f = Pk
a·b ; a and b are the length and width of the bounding box of the

image object k. Pk is the total number of pixels contained in object k.

Roundness

Similarity of an object to an ellipse,

Roundness = emax
k − emin

k ,

where emax
k and emin

k are the radius of the largest and smallest enclose ellipse of
image object k, respectively.

Area The number of pixels forming an image object.

Topography
Mean value (Elevation,

Curvature, Roughness, Slope,
and Shaded relief)

The mean intensity of all pixels forming an image object within each
topographic layer.

Terrain texture

Gray-level co-occurrence
matrix (GLCM) homogeneity

The GLCM measures how often different combinations of pixel gray levels
occur in a scene. In this study, the terrain texture features were derived from
GLCM based on five topographic layers. The detail for calculating GLCM was
taken from the study by Haralick et al. (1973) [63].

GLCM contrast
GLCM dissimilarity

GLCM entropy
GLCM angular second

moment
GLCM mean

GLCM standard deviation
GLCM correlation
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