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Abstract: Monitoring water quality parameters and their ecological effects in transitional waters is
usually performed through in situ sampling programs. These are expensive and time-consuming,
and often do not represent the total area of interest. Remote sensing techniques offer enormous
advantages by providing cost-effective systematic observations of a large water system. This study
evaluates the potential of water quality monitoring using Sentinel-2 observations for the period
2018–2020 for the Sado estuary (Portugal), through an algorithm intercomparison exercise and time-
series analysis of different water quality parameters (i.e., colored dissolved organic matter (CDOM),
chlorophyll-a (Chl-a), suspended particulate matter (SPM), and turbidity). Results suggest that
Sentinel-2 is useful for monitoring these parameters in a highly dynamic system, however, with
challenges in retrieving accurate data for some of the variables, such as Chl-a. Spatio-temporal
variability results were consistent with historical data, presenting the highest values of CDOM, Chl-a,
SPM and turbidity during Spring and Summer. This work is the first study providing annual and
seasonal coverage with high spatial resolution (10 m) for the Sado estuary, being a key contribution
for the definition of effective monitoring programs. Moreover, the potential of remote sensing
methodologies for continuous water quality monitoring in transitional systems under the scope of
the European Water Framework Directive is briefly discussed.

Keywords: monitoring; remote sensing; WFD; transitional waters; water policy; suspended particu-
late matter; chlorophyll-a; CDOM; turbidity

1. Introduction

Estuaries, defined as water bodies partially saline due to their proximity to coastal
waters, but substantially influenced by the freshwater flows [1], are extremely important
ecosystems for different life forms. These complex systems are characterized by high levels
of primary and secondary productivity, supporting high abundance of organisms and
providing key nursery services.

For centuries, estuaries have been considered as regions of extremely high relevance
for society as many of the resources encountered on these ecosystems reach high economic
and social values. Although human civilizations have historically benefited from estuaries
(a majority of the world’s largest cities are located in proximity to estuaries [2]), only
in the last decades we have become aware of the disturbing effects of human activities
in these habitats [3]. Given the increasing anthropogenic pressure on such important
ecosystems, the assessment of water quality is now essential to ensure the best possible
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water conditions. Therefore, the development of cost-effective tools for these assessments
is crucial to promote continuous evaluations and maintain sustainable exploitation of
these aquatic systems, keeping their natural balance. As such, it is critical to standardize
water quality analysis and turn these processes accessible and understandable, not only
for researchers, but also for environmental managers and policy makers, which are the
ones who can put the results of this type of analysis into practice [4]. In this context,
the European Union created a legislation aiming to balance the requirements of human
needs and ecosystems conservation by a sustainable planning of human activities: The
Water Framework Directive (WFD) (2000/60/EC). The WFD obliges all Member States to
implement water management mechanisms, as well as to assess the ecological status of their
water bodies by monitoring and classifying them according to regulated parameters [5].
Routine monitoring of the water quality status is an important step in order to comply with
WFD requirements and objectives.

Water quality (WQ) can be measured in terms of biological, chemical, and physical
indicators, such as turbidity, chlorophyll-a, harmful algae, temperature, metals, dissolved
oxygen, nutrients (primarily phosphorus and nitrogen), and many other contaminants [2].
Here, we focus on core WQ indicators that can be derived directly from ocean colour satel-
lite remote sensing: coloured dissolved organic matter absorption (aCDOM), chlorophyll-a
(Chl-a), suspended particulate matter (SPM) and turbidity. These four indicators are tra-
ditionally monitored through field sampling programs, which can be labour intensive,
time consuming and expensive. Hence, it is not feasible for some of the member states
to carry out continuous monitoring, an issue that needs to be overcome. Moreover, it is
often necessary to assume that field samples, which are often limited both spatially and
temporally, are representative of the total area of interest. In this context, remote sensing
(RS) is a valuable tool for monitoring WQ parameters. The incrementing interest in under-
standing the potential of this technique is driven by the reduced costs and the high spatial
and temporal resolution that allows obtaining information for large areas. Furthermore, the
possibility to access historical data allows us to track changes and patterns of the different
WQ parameters through time [6].

Nevertheless, RS has been far less successful in transitional waters than in other areas
given the high optical complexity of the waters and the proximity to the land (adjacency
effect). Retrieving reliable information from RS in transitional systems can be considered
a complex task, with a relevant number of challenges involved. The first challenge is
performing a good atmospheric correction (AC), a crucial step when using space-born
imagery, as it removes the signal coming from the atmosphere from the total signal received
by the satellite-sensor system, allowing to isolate the signal coming from just below the
water surface. The AC in such mutable and complex environments requires different
approaches from the ones used for land and open ocean applications. Moses et al. [7]
indicated three main issues that make the AC challenging in optically complex waters: (i)
the proximity to terrestrial sources of atmospheric pollution, that may result in optically
heterogeneous atmosphere which is difficult to model; (ii) the adjacency effect, which is the
contamination of the signal received at the sensor by the contribution of the adjacent land
pixels; and (iii) the non-negligible reflectance of water in the near-infrared (NIR) region of
the spectra, due to high sediment concentrations preventing the use of the AC schemes
adopted for open oceans.

Once the water-leaving signal is retrieved, the complexity of the waters poses another
challenge: to retrieve the different parameters contributing to the optical signal. A high
range of optical variability can be found among estuaries. These waters can be a mixture
of optically shallow and optically deep waters, with different optically active compounds
(i.e., phytoplankton, CDOM, SPM) that do not co-vary and/or interact between them.
Such aquatic systems can present short spatial and temporal gradients of clear to turbid
waters, as well as oligotrophic to hypertrophic productive waters, often driven by tidal
conditions. This optical variability challenges the application of standard algorithms for
WQ monitoring. Therefore, the validation of such products by performing comparisons
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with in situ data is a crucial step for reliable analysis. Moreover, most of the bio-optical
algorithms for WQ parameters retrieval are often calibrated regionally for the optical
characteristics of the different sites. Thus, the performance of such algorithms outside their
calibration region is also a critical topic.

In the past years, the number of WQ studies using space-born imagery over estuaries
has been growing promisingly. Usually, this type of analysis in marine environments is
made with ocean colour sensors, as they are specifically designed for marine purposes
and have a good temporal (daily) and spatial resolution (300 m−1 Km). However, for
smaller regions, such as estuaries, the spatial resolution of this type of sensor could be
inadequate. As an alternative, it is possible to use land sensors, as the MultiSpectral
Instrument (MSI) on board the Sentinel-2 (S2) satellites, which have a finer spatial resolution
(10, 20, or 60 m), even though they have a lower revisiting time (5 days considering 2-
satellite constellation) [8]. As this sensor was designed primarily for land applications with
bands in different wavelengths, it is important to compare different AC processors to find
the most suitable one for water applications [5].

The use of Sentinel-2 MSI for WQ analysis has been showing interesting results. For
example, [9] retrieved better Chl-a estimations from S2-MSI for inland and coastal waters
distributed worldwide using a machine learning algorithm in comparison with state of
the art ocean colour algorithms. They identified the atmospheric correction as the main
hurdle in generating high-quality Chl-a products. Ansper and Alikas [5] retrieved Chl-a
from S2-MSI in Estonian lakes and concluded that the sensor has potential for deriving WQ
parameters from small areas, fulfilling European Union WFD monitoring and reporting
requirements. In [10], the authors made use of the Sentinel-2 derived turbidity product
to monitor changes in the water transparency in the Venice lagoon before and after the
first COVID-19 lockdown. In Portugal, using Sentinel-2 data for this type of systems is
revealing to be a good option [11,12], including for the Sado estuary [13]. However, these
approaches seem to have some gaps in terms of image processing or in their framing in
a water quality analysis. It is hard to find published studies based on the use of satellite
imagery to discuss water quality management in the Portuguese territory, in support of
water policy and legislation as the WFD. Brito et al. [14] and Cristina et al. [15] are two of
the few examples and are applied to coastal waters in Western Iberia.

In the last decades, hundreds of RS publications have proposed solutions to overcome
the challenges previously described and accurately quantify the biogeochemical parameters
of WQ [8,16–18]. However, most of these analyses focus on the development of methods
and do not use RS as a tool to better understand the dynamics of WQ in estuaries [8].
Additionally, the reviewed literature showed a lack of analysis that integrates several WQ
parameters and not focusing only on one, such as chlorophyll-a or suspended solids as it is
often observed.

In this study, we show the potential of WQ monitoring using Sentinel-2 MSI observa-
tions in the Sado estuary (Portugal), through an algorithm intercomparison exercise and
time-series analysis of different WQ parameters (CDOM, Chlorophyll-a, SPM, and turbid-
ity). This analysis was developed with the purpose of demonstrating that satellite RS can
be useful for ecological assessment of estuarine systems through a water quality evaluation,
studying the feasibility of using Sentinel-2 for studies in transitional waters, even if it was
originally designed for land applications. Moreover, we also briefly discuss the potential
and benefits of using RS methodologies to implement continuous WQ monitoring plans
in transitional systems under the scope of the WFD to overcome the issue of the lack of
continuous monitoring due to the high cost of in situ samplings.

2. Materials and Methods
2.1. Study Area

The Sado estuary is a transitional system located near Setúbal, Portugal. It has a
total area of 212.4 km2 [19], being, therefore, one of the biggest estuaries in Europe and
the second largest national estuary (Figure 1). Given its high productivity, biodiversity
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and aesthetic value, it has been part of a natural reserve since 1980 [20]. Besides all the
characteristics that make the Sado estuary a unique estuarine system, it is also a privileged
place for aquaculture. The Sado oyster (Magallana angulata) is the main example of this
activity in the region and is currently one of the main icons of the Setúbal region. In the
context of WFD, nationally it is classified as a transitional water of typology A2- mesotidal
well-mixed estuary [21].
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Figure 1. Location of the Sado estuary in the Portuguese territory and of the 8 sampling stations within the estuary. (A)
(blue box) and (B) (red box) are the outermost and innermost areas of the estuary, respectively.

The Sado estuary is characterized by a complex morphology and can be divided
into two regions: (i) the outermost area (A in Figure 1), the Setubal bay, with 5 km wide,
20 km long and an average depth of 10m; and (ii) the innermost region (B in Figure 1),
that presents a mixture of navigation channels and a vast intertidal zone of reduced depth
(average depth of 10 m), relevantly influenced by the tide [22]. The connection to the ocean
is made through a deep and narrow channel of approximately 1.5 km long and maximum
depth of 50 m [23].

The Sado river flow can be considered low, varying on average from 0.7 m3/s in the
summer to 60.0 m3/s in the winter [19,20]. Therefore, there is a strong influence of the tidal
effect on the water circulation within the estuary [21,22]. The inflow and outflow of water
is generally made along the two navigation channels (North and South channels, where
stations 6 and 8 are located, respectively), according to the tide, with more intense currents
in the South channel [24,25].

The estuary presents relatively low sun elevation during winter and higher wind
intensities during spring-summer (hourly average with a maximum of ~8 m/s in 2018
and ~6m/s in 2019, Source: https://snirh.apambiente.pt (accessed on 26 November 2020)).
These factors along with the tidal variation, the low water column depth and, consequently,
the observed bottom resuspension, makes accurate ocean colour remote sensing challenging
in this system.

2.2. In Situ Data

For the present analysis, 8 sampling stations distributed along the estuary, shown in
Figure 1, were considered. The estuary was divided into two areas according to its mor-
phologic characteristics and the variation of its physicochemical properties, as described
earlier, thus stations #6, #7, and #8 were located in the outermost area (A) and stations #1

https://snirh.apambiente.pt
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to #5 in the innermost region of the estuary (area B) (Figure 1). All sampling stations were
located in optically deep waters (verified by the in situ measurements of Secchi depth).
Monthly campaigns were performed between March 2018 and November 2019 within
the framework of the AQUASado project. All campaigns were planned to start the water
samples collection at similar tidal conditions (high water), to avoid the influence of the tide
on the temporal variability of the WQ parameters, and to coincide with the S2-MSI satellite
passage over the Sado estuary, when possible.

Surface water samples were collected and taken to the laboratory for quantification
of aCDOM, Chl-a, SPM, and turbidity. It is relevant to note that the total number of sam-
ples for the different parameters may vary according to the quality control results and
data availability.

Moreover, the absorption coefficients of phytoplankton (aphy) and non-algal particles
(anap) were also obtained following the method described in [26]. These data were only used
for the characterization of the study area and will be further analysed in a different work.
Water temperature and salinity were also measured for site characterization purposes. The
temperature was measured using an EXO2 Multiparameter Sonde (YSI) and the salinity
through a high precision salinometer (Guildline Autosal 8400B) [27].

2.2.1. CDOM Absorption Coefficient

The methodology described in [26] was used to obtain the CDOM absorption coeffi-
cient (aCDOM (λ), m−1). Water samples were filtered in triplicate through a 0.2 µm pore size
polycarbonate filter (Whatman). The absorbance readings of the filtrate were obtained at
the range of 300–800 nm through a dual-beam spectrophotometer (Shimadzu 2600). From
the average of the absorbance readings and the subtraction of the reference sample, the
values obtained at each λ were multiplied by the light extinction coefficient (2.303) and
divided by the cuvette length (0.01 m) [26].

2.2.2. Chlorophyll-a

Water samples were filtered using GF/F filters with 25 mm diameter and a pore of
0.7 µm (Whatman). The filters were then wrapped in aluminium and stored at −80 ◦C to
be later analysed through high performance liquid chromatography (HPLC) (C18 column)
to quantify the different phytoplankton pigments following the method described in [28]
and adapted by [29]. For the extraction, 3 mL of a solution composed of 95% cold methanol,
buffered with 2% of ammonium acetate and containing 0.35 mgL−1 of trans-β-Apo-8′-
carotenal (as internal standard) were used. After placing the extraction solution in the
sample test tube, the filter was grinded with a glass rod. Then, the tube was placed in
the freezer (−20 ◦C) for 30 min after which it was placed in the ultrasound for 5 min.
The test tube was then put back in the freezer (−20 ◦C) for another 30 min and, just after,
centrifuged for 10–15 min at 4000 RPM (4 ◦C). Lastly, the sample was filtered and run in
the HPLC machine.

2.2.3. Suspended Particulate Matter

SPM, defined as the dry mass of particles per unit volume of water sample (mg L−1),
was determined following the standard gravimetric method described in [30]. A known
volume of water sample was filtered through pre-ashed and pre-weighted Whatman GF/F
filters (nominal pore size 0.7 µm and 47 mm diameter), with volume depending on the
amount of material present in the water. At the end of filtration, the filters, including
the outer edge of the filters, and filtration apparatus were rinsed with MilliQ water to
remove any salt. The dry mass of particles collected on the filters was then measured with
a precision balance.

2.2.4. Turbidity

The turbidity was determined with a portable infrared turbidimeter (Lovibond TB 210
IR) which quantifies the turbidity in nephelometric turbidity units (NTU) by measuring the
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light (λ = 860 nm) scattered at 90◦, with an accuracy of ±2.5% of reading. The instrument
calibration was checked before each sampling campaign using the calibration standards
provided with the instrument (<0.1, 20, 200, and 800 NTU) and track the instrument stability.
The turbidity was always recorded in triplicate for the same water sample and averaged.

2.3. Sentinel-2 MSI Data

Sentinel-2 (A/B) MSI Level 1C images were used in the present study. The S2-MSI
granules acquired between March 2018 and March 2020 were downloaded from Sentinel
Scientific Data Hub (https://scihub.copernicus.eu/ (accessed on 26 November 2020)).
Cloud free L1C images with coincident field campaign dates were used to compare satellite-
derived data with in situ measurements or match-ups (processing chain shown in Figure 2).
The images were re-sampled to 10 m as part of the pre-processing and the average of
3 × 3 pixels window centred on the sampling station was used for the in situ comparison
and to perform the time-series.
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Figure 2. Processing chain applied to Sentinel-2 imagery for water quality parameters retrieval. ρw
refers to the water-leaving reflectance obtained from the different AC processors: Acolite, Polymer,
and AC-C2RCC.

To perform the matchups, the available images were filtered considering the time
difference between the satellite passage and the in situ measurements. The time window
chosen was ±2 h. The number of total match-ups depended on the AC processor used. To
ensure high quality of satellite data, different quality flags were considered (Table 1). These
quality flags are part of the L2 processing and, when raised, they indicate that something
might have gone wrong during the data processing and that the retrieved product should
be carefully analysed. Moreover, the IdePix (v2.2) was used on L1C images for pixel type
identification.

Given the lack of in situ radiometric measurements for the direct test of AC, three
AC processors were evaluated by testing a combination of AC + bio-optical algorithms
(Figure 2). The AC processors tested were Acolite v20190326 (RBINS) [31], C2RCC v2.0 [32]
and Polymer v4.12 [33]. The selection of the aforementioned AC algorithms was based on
their free availability, and on the correcting effects that could be applied, such as sun glint
and adjacency of land pixels, common sources of errors in transitional waters.

https://scihub.copernicus.eu/


Remote Sens. 2021, 13, 1043 7 of 27

Acolite is an AC processor developed for coastal and inland waters. By default, it
performs atmospheric correction using the dark spectrum fitting approach, but it can be
configured to use an exponential extrapolation approach [34].

Table 1. Flags used from AC-C2RCC and Polymer.

AC Processor Flag Meaning

C2RCC

Rtosa_OOS
The input spectrum to the atmospheric correction

neural net was out of the scope of the training range
and the inversion is likely to be wrong.

Rtosa_OOR The input spectrum to the atmospheric correction
neural net out of training range

Rhow_OOS

The Rhow input spectrum to the Inherent Optical
Properties (IOP) neural net is probably not within

the training range of the neural net and the
inversion is likely to be wrong.

Rhow_OOR One of the inputs to the IOP retrieval neural net is
out of training range

Cloud risk High downwelling transmission indicates
cloudy conditions

Polymer !bitmask & 1023 = 0 Invalid pixel

The C2RCC processor relies on a database of radiative transfer simulations of water-
leaving reflectance and related top-Of-atmosphere radiances (satellite signal) [32]. The
inversion of water signal and satellite signal is performed by neural networks and is fully
described in [32].

Polymer AC is a coupled water-atmosphere model that uses a spectra-matching
optimization approach to obtain a best-fitting combination of water and atmosphere
unknowns, being one of its strengths to retrieve water reflectance in the presence of
sun glint. This AC does not use exclusively the signal in the NIR, but it also uses all the
available spectral bands in the visible [33].

It is important to note that these processors are all under active development but
they are publicly available and are considered mature and useful to compare [35]. Each
processor was used with its default settings, as this should be the best option for general
use, without a priori knowledge of the water body or atmospheric conditions.

Once the image processing was complete, the atmospherically corrected outputs,
i.e., water reflectance ρw or remote sensing reflectance Rrs (Rrs = ρw/π), were used to test
different algorithms for WQ parameters retrieval (Table 2), with the aim of selecting the best
processing chain for the study area. Several algorithms have been developed to retrieve
WQ parameters from S2-MSI data. However, the majority of them are often calibrated
regionally for the optical characteristics of the different sites. Thus, the performance of
such algorithms outside their calibration region is a key topic. To address this matter,
an algorithm intercomparison exercise was performed for the different parameters under
evaluation. The selection of the bio-optical algorithms to test was conducted considering: (i)
the similarity between the original ranges of the in situ parameters used for their calibration
and the range of in situ parameters observed in this study; (ii) their good performance
outside their calibration region based on the literature review; and (iii) their applicability
to S2-MSI data.

2.4. Statistical Indicators

To assess the agreement between the in situ observations and the satellite data, a sta-
tistical evaluation was performed using: linear regression parameters including coefficient
of determination (R2), slope and intercept and uncertainty estimates including: root mean
square deviation (RMSE), bias error (BIAS, δ), unbiased root mean squared error (URMSE,
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∆), absolute percentage difference (APD), and relative percentage difference (RPD). The
RMSE, the bias, and the APD were used to evaluate the accuracy of the match-ups and the
RPD was used as an indicator of the systematic error (relative bias). These parameters can
be defined as follows:

RMSE =

√
∑N

i=1 (sati − in situi)
2

N
(1)

BIAS =
1
N

N

∑
i=1

(sati − in situi) (2)

URMS =

√√√√ 1
N

N

∑
1=1

[(sati − µsat)− (in situi − µi)]
2 (3)

Table 2. Bio-optical algorithms tested for the different water quality parameters.

Algorithm Equation Type of Algorithm MSI Bands
Involved (nm) Reference

acdom(m−1)

TS443 acdom(443) = 0.00129 + 0.6543×
(

Rrs670
Rrs490

)
Empirical 490, 665 [36]

TS412 acdom(412) = 0.00411 + 2×
(

Rrs670
Rrs490

)
Empirical 490, 665 [36]

MAs acdom (443) = ln[(
(

Rrs490
Rrs551

)
− 0.4247)/2.453]/(−13.586) Empirical 490, 560 [37]

MAM acdom (443) = ln[(
(

Rrs490
Rrs551

)
− 0.4363)/2.221]/(−13.126) Empirical 490, 560 [37]

CZ acdom (440) = 0.2987x–1.369, x = Rrs B1/Rrs B3 Empirical 490, 665 [38]

CH acdom (440) = 28.966e−2.015x, x = Rrs 560 nm/Rrs 665 nm Empirical 560, 665 [39]

KU acdom(420) = 5.20×
(

Rrs565
Rrs660

)−2.76 Empirical 560, 665 [40]

Chlorophyll-a

C2RCC - Neural network [32]

OC3
OC3 = log10

[
([Rrs(442), Rrs(492)] )× Rrs(560)−1

)
y = 0.3308− 2.684x + 1.5990x2 + 0.5525x3 − 1.4876x4

ChlaOC3 = 10y

Empirical 443, 490, 560 [17]

2-Band Chla2Band =
(

35.75× Rrs(708)
Rrs(665) − 19.3

)1.124 Semi-analytical 665, 705 [41]

Gons et al.
(2005) (GS)

bb(783) = 1.56× ρw(783)/[0.082− 0.6× ρw(783)]
aphy(665) = (0.70 + bb)× ρw(705)/ρw(665)− 0.4− bp

b
ChlaGons = aphy(665)/a∗phy(665)

Semi-analytical 665, 705, 783 [42]

Suspended Particulate Matter

C2RCC - Neural network [32]

Nechad SPM =
Aλρw(λ)

1−
(

ρw (λ)
Cλ

) + Bλ

Semi-analytical,
single band

665, 705, 740, 783,
865 [43]

Siswanto log10(SPM) = 0.649 + 25.623X1 − 0.646X2 Empirical 560, 665, 490 [44]

Turbidity

Dogliotti Turb =
Aλρw(λ)

1−
(

ρw (λ)
Cλ

) Semi-analytical,
single band 665, 865 [45]

Nechad Turb =
Aλρw(λ)

1−
(

ρw (λ)
Cλ

) + Bλ

Semi-analytical,
single band

665, 705, 740, 783,
865 [46]



Remote Sens. 2021, 13, 1043 9 of 27

APD(%) =
1
N

N

∑
i=1

|sati − in situi|
in situi

× 100 (4)

RPD(%) =
1
N

N

∑
i=1

sati − in situi
in situi

× 100 (5)

where Sat is the satellite-derived data and in situ the observations collected in the estuary.

N is the total number of samples, i is the sample index and µsat =
1
N

N
∑

i=1
sati– analogous

definition applies for µin situ.
Statistical analyses of Chl-a are presented in logarithmic scale to account for the log-

normal distribution of the bio-optical parameter [47]. According to [48] the RPD and APD
were calculated without log-transforming the Chl-a values.

Additionally, summary diagrams such as Taylor and Target plots, referenced in [49]
and [50], were used for a better visualization and inter-comparison of results. The Taylor di-
agram is based on the scoring of the normalized standard deviation (STDsat/STDin situ, [51])
and correlation coefficient (R). The Target diagram summarizes the scoring of the URMS
and BIAS instead.

2.5. Time-Series Analysis

The statistical indicators described in Section 2.4 were used to select the best processing
chain from the match-ups intercomparison exercise and perform a spatio-temporal analysis
of the different WQ parameters, with the main objective of evaluating the capabilities of
S2-MSI imagery for continuous monitoring of WQ variability in estuarine systems.

The best performing combination of AC + bio-optical algorithms was applied to
all cloud-free L1C images sensed between March 2018 and March 2020. As done for
the match-ups exercise, quality flags were considered to ensure the highest quality of
satellite data.

Given the strong variability of the in situ data and the high dynamic that characterizes
the Sado estuary, the time-series analysis was performed separately for the region A (outer-
most area) and the region B (innermost area) (Figure 1). The time-series performed with
RS products and in situ observations considered the average of the pixels corresponding
to the sampling stations included in each of the areas. Moreover, the seasonal variability
(astronomical seasons) of the WQ parameters in the whole estuary and its adjacent area, is
provided through high resolution maps.

3. Results
3.1. Study Area Characterization

Based on the monthly surface data collected in situ between March 2018 and February
2019 analysed in the present study (see Section 2.2), the estuary presents clear seasonal pat-
terns of the physical and chemical properties (Table 3) with a clear tendency to find higher
values of aCDOM, Chl-a, SPM, and turbidity during spring and summer. Furthermore, the
estuary should not be considered spatially homogeneous. The innermost region of the estu-
ary (B) shows higher values of the optically active components and a greater susceptibility
to seasonal variations of the weather, given the greater thermal amplitude observed.

The Sado estuary is optically dominated by CDOM, as observed in Figure 3, with
higher values of aCDOM compared in respect to phytoplankton and non-algal particle
absorption coefficients, aphy and anap respectively. Figure 2 shows the dominance of aCDOM
mainly in stations located in area B, showing smaller contributions of anap and aphy. It
should be reminded that anap and aphy are only here presented to characterise the study
area and will not be further analyzed in the present study. In region A, the contribution
of aphy was slightly higher. However, aCDOM remains dominant in most of the stations
located in this area. The important contribution of the aCDOM (443 nm) even in stations
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located in area A, allows to classify the whole estuary as optically complex with Case 2
waters [52], regardless of the studied period and the tidal conditions.

Table 3. Annual and seasonal averages of the temperature (T), salinity, chlorophyll-a (Chl-a), suspended particulate matter
(SPM), colored dissolved organic matter absorption (aCDOM), and turbidity in the Sado estuary (based on the monthly
surface data collected in situ between March 2018 and February 2019). A and B are the outermost and innermost regions of
the estuary, respectively.

T (◦C) Salinity Chl-a (mg/m3) SPM (mg/L) aCDOM
443 nm (m−1)

Turbidity
(NTU)

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Winter

A 14.3 0.9 35.89 0.40 0.90 0.26 1.14 0.46 0.21 0.05 1.10 0.33

B 12.9 2.4 32.45 1.95 1.45 0.92 2.61 1.13 0.38 0.07 2.14 0.81

Estuary 13.4 2.1 33.76 2.29 1.25 0.78 2.19 1.19 0.36 0.10 1.84 0.85

Spring

A 15.5 1.2 35.02 0.89 2.09 1.33 1.71 0.75 0.16 0.09 - -

B 17.4 2.0 29.13 5.13 3.54 5.85 8.40 7.74 0.37 0.12 - -

Estuary 16.7 1.9 30.91 5.04 3.03 4.79 6.09 7.00 0.26 0.15 - -

Summer

A 18.7 1.0 36.02 0.27 1.66 0.35 2.06 1.06 0.15 0.12 1.30 0.86

B 23.3 0.9 35.23 1.42 4.21 2.41 8.37 4.42 0.47 0.15 6.58 4.49

Estuary 17.7 4.0 35.46 1.25 3.34 3.66 5.74 4.94 0.31 0.20 4.28 3.86

Autumn

A 17.7 2.2 35.91 0.15 1.47 1.29 1.80 0.46 0.14 0.09 1.31 0.49

B 20.6 4.3 34.14 2.83 1.59 0.53 3.91 1.69 0.42 0.11 3.03 1.38

Estuary 18.9 3.3 34.73 2.42 1.55 0.81 3.21 1.72 0.30 0.18 2.46 1.41

Year

A 16.1 2.3 35.57 0.78 1.70 1.29 1.55 0.73 0.16 0.10 1.11 0.44

B 17.4 4.2 32.31 4.30 3.40 3.75 5.99 4.95 0.41 0.13 4.59 3.92

Estuary 17.0 3.7 33.36 3.87 3.05 3.43 4.97 4.74 0.29 0.17 3.81 3.75
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Figure 3. Ternary plot of absorption at 443 nm of CDOM (aCDOM, N = 33), non-algal particles
(anap, N = 33) and phytoplankton (aphy, N = 33) produced using the in situ data considered for the
algorithms intercomparison exercise.

3.2. S2-MSI Match-Ups

For this study, the combination of AC and bio-optical algorithms were evaluated
against in situ values of the different WQ parameters. An algorithm intercomparison
exercise was performed for the available match-ups with the objective of selecting the
best processing chain for a spatio-temporal analysis of the different WQ parameters under
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investigation. Taylor and Target diagrams were used for the selection of the best performing
processing chain.

Even if no in situ radiometric measurements were available for a thorough comparison,
the ρw spectra derived from the matchups of the three AC processors were compared
separating the two regions of the estuary (Figure 4).
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Figure 4. Sentinel-2 derived ρw spectra for the different processors under investigation (Polymer:
solid, C2RCC: dotted and ACOLITE: dashed lines). Mean and standard deviation (bars) of the
match-ups available for all the processors at stations in the outer (A) and inner basin (B) are shown
with blue and red lines, respectively.

Figure 4 shows that Acolite retrievals are significantly higher across the whole spec-
trum compared to the other ACs. In spite of this, similar shapes were obtained by the
three processors. From a visual inspection, it can be noted a difference between the spectral
shapes of areas A and B. In particular, for area B, ρw in the blue, is lower compared to the
green region of the spectra, i.e., the green peak is more pronounced than in area A. This
could be partially due to higher importance of CDOM (aCDOM) and sediments (anap), which
agrees with in situ measurements (Figure 3). Moreover, it can be observed that reflectance
in the NIR region of the spectra is higher in area B compared to A, which matches the
higher SPM found in the inner part of the estuary.

Regarding aCDOM, AC-C2RCC and Polymer showed the best performance (mean
APD = 79% and APD = 68%, respectively) when combined with the bio-optical algorithms,
compared to the results obtained using Acolite (mean APD = 164%). In the Taylor diagram
(Figure 5), the TS443 and KU algorithms combined with Polymer (pTS443 and pKU) were
closer to the reference (represented by a star). Considering the AC-C2RCC processor, the
KU, CZ, and TS443 were the best combination performing algorithms. In the Target plot,
the TS443 algorithm showed the results closest to the reference (zero), both combined with
Polymer and AC-C2RCC. All other processing chains (except AC-C2RCC) underestimated
the aCDOM. Among the algorithms that showed the best performance, the TS443 was the
one with the slope values closest to 1 (0.9 with AC-C2RCC and 0.8 with Polymer), and the
lowest RMSE (0.151 and 0.106, respectively for AC-C2RCC and Polymer) compared to the
other algorithms (Table 4).

For Chl-a, combining the results obtained with the Taylor diagram and the target
plot, the bio-optical algorithm/AC processor combination that compared best with the
in situ data was GS with AC-C2RCC (cGS) reflectances. For this processing chain, the
highest determination coefficient (R2 = 0.63) was obtained, while the remaining statistical
parameters (RMSE, bias, APD and RPD) were the closest to zero (Figure 6). It should be
noted that the application of 2-Band algorithm [41] to AC-C2RCC images also produced
good results (the second best), superior to the ones of the standard Chla-C2RCC algorithm
and even of OC3 (Taylor plot, Figure 5). On the other hand, the standard algorithm from
Polymer (pPolymer) showed better results than the standard algorithm from C2RCC, but
the first processor failed in the quantification of Chl-a using GS and 2-Band algorithms.
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In general, the satellite-derived data tended to overestimate the in situ data (except the
combination with the GS algorithm). The retrieval of Chl-a remains relatively inconsistent,
with large differences between satellite and in situ observations (high APD values).
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AC
Processor Algorithm Equation R2 RMSE URMS BIAS APD (%) RPD (%) N

CDOM

AC-C2RCC

C2RCC (443 nm) Y = 0.4x + 0.22 0.201 0.170 0.167 0.032 99.019 70.360 21

TS (443 nm) Y = 0.9x + 0.05 0.471 0.151 0.149 0.027 63.571 40.000 21

TS (412 nm) Y = 1.6x + 0.18 0.563 0.701 0.447 0.540 143.856 134.141 21

MAS (443 nm) Y = 0.1x + 0.01 0.427 0.319 0.142 −0.285 78.199 −78.199 20

MAM (443 nm) Y = 0.3x + 0.1 0.325 0.182 0.124 −0.133 63.744 −8.546 20

CZ (443 nm) Y = 0.4x − 0.004 0.462 0.226 0.117 −0.194 57.911 −51.400 21

CH (443 nm) Y = 0.6x − 0.08 0.294 0.265 0.169 −0.204 74.368 −68.336 21

KU (420 nm) Y = 0.7x − 0.05 0.446 0.283 0.199 −0.201 50.334 −40.553 21

Polymer

TS (443 nm) Y = 0.8x + 0.06 0.608 0.106 0.105 −0.013 46.612 19.630 21

TS (412 nm) Y = 1.4x + 0.21 0.651 0.516 0.303 0.418 106.388 101.800 21

MAS (443 nm) Y = 0.1x + 0.01 0.607 0.342 0.152 −0.306 85.400 −85.400 20

MAM (443 nm) Y = 0.2x + 0.09 0.515 0.229 0.133 −0.187 68.307 −27.708 21

CZ (443 nm) Y = 0.3x + 0.003 0.582 0.245 0.114 −0.217 62.152 −60.788 21

CH (443 nm) Y = 0.7x − 0.07 0.376 0.220 0.159 −0.152 66.332 −55.218 21

KU (420 nm) Y = 0.8x − 0.04 0.529 0.231 0.187 −0.135 41.981 −31.224 21
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Table 4. Cont.

AC
Processor Algorithm Equation R2 RMSE URMS BIAS APD (%) RPD (%) N

Acolite

TS (443 nm) Y = 0.4x + 0.3 0.561 0.142 0.106 0.095 117.027 114.796 19

TS (412 nm) Y = 0.8x + 0.89 0.672 0.787 0.165 0.770 258.640 258.640 19

MAS (443 nm) Y = 0.1x + 0.09 0.620 0.261 0.139 −0.222 74.266 −35.156 19

MAM (443 nm) Y = 0.1x + 0.09 0.620 0.262 0.138 −0.222 73.605 −36.073 19

CZ (443 nm) Y = 0.2x + 0.1 0.565 0.213 0.123 −0.174 70.461 −18.879 19

CH (443 nm) Y = 0.6x + 0.31 0.153 0.578 0.291 0.499 306.715 304.302 19

KU (420 nm) Y = 0.6x + 0.8 0.182 0.673 0.310 0.598 244.380 243.929 19

Chlorophyll-a

AC-C2RCC

Chla-C2RCC Y = 4.9x − 1.33 0.223 0.714 0.672 0.242 281.060 243.552 13

OC3 Y = 11.0x − 2.49 0.259 0.885 0.519 0.717 749.362 733.932 13

GS Y = 0.4x − 0.07 0.625 0.565 0.205 −0.527 66.985 −66.985 13

2-Band Y = 4.4x + 1.6 0.608 0.765 0.126 0.754 493.038 493.038 13

Polymer

Polymer Y = 2.5x + 0.67 0.365 0.503 0.228 0.448 221.230 216.124 13

OC3 Y = 2.8x + 1.27 0.294 0.603 0.260 0.543 309.703 304.136 13

GS - - - - - - - -

2-Band - - - - - - - -

Acolite

OC3 Y = 2.6x + 0.63 0.217 0.5151 0.229 0.461 224.311 224.311 11

GS Y = −0.2x + 1.14 0.0004 0.327 0.306 −0.115 61.556 −1.586 11

2-Band Y = −1.4x + 13.07 0.0003 1.044 0.233 1.018 1116.360 1116.360 11

SPM

AC-C2RCC

SPM-C2RCC Y = 2.2x − 0.59 0.467 25.696 3.927 3.025 107.691 88.159 23

N (665 nm) Y = 0.8x + 1.82 0.443 1.688 1.344 1.020 56.509 46.041 23

N (705 nm) Y = 0.8x + 1.03 0.470 1.343 1.307 0.3111 35.319 17.718 23

N (740 nm) Y = 0.8x + 0.91 0.493 1.259 1.248 0.170 31.814 12.884 23

N (783 nm) Y = 0.8x + 1.21 0.498 1.443 1.292 0.642 43.561 30.144 23

N (865 nm) Y = 0.5x + 2.11 0.503 1.237 1.079 0.606 47.695 37.523 23

SI Y = 0.7x + 0.62 0.409 1.416 1.373 −0.343 32.926 −8.814 23

Polymer

N (665 nm) Y = 0.7x + 2.12 0.536 1.611 1.102 1.175 57.332 53.049 23

N (705 nm) Y = 0.7x + 0.85 0.568 1.055 1.018 −0.274 26.082 −2.703 23

N (740 nm) Y = 0.4x + 2.17 0.229 1.427 1.421 0.129 42.072 18.463 23

N (783 nm) Y = 0.8x + 2.94 0.475 2.521 1.279 2.173 95.546 94.803 23

N (865 nm) Y = 0.7x + 0.94 0.253 1.593 1.540 0.409 57.568 6.599 21

SI Y = 0.5x + 1.05 0.589 1.198 1.002 −0.658 21.122 −14.695 23

Acolite

N (665 nm) Y = 1.1x + 3.57 0.489 1.256 1.198 3.849 153.309 153.309 20

N (705 nm) Y = 1.2x + 3.28 0.516 1.391 1.230 3.838 152.629 152.629 20

N (740 nm) Y = 2.0x + 10.27 0.196 2.409 1.513s 13.444 526.817 526.817 20

N (783 nm) Y = 1.6x + 11.81 0.133 2.829 1.759 13.804 554.024 554.024 20

N (865 nm) Y = 2.2x + 15.72 0.503 1.496 1.330 19.432 780.628 780.628 20

SI Y = 0.7x + 1.75 0.548 0.928 0.928 0.644 35.952 31.502 20

Turbidity AC-C2RCC

N (665 nm) Y = 0.5x + 1.00 0.762 1.563 1.508 −0.412 28.999 −0.165 15

N (705 nm) Y = 0.5x + 0.77 0.805 1.581 1.450 −0.630 29.688 −11.269 15

N (740 nm) Y = 0.6x + 0.38 0.837 1.706 1.393 −0.985 37.970 −31.209 15

N (783 nm) Y = 0.6x + 0.43 0.841 1.479 1.280 −0.742 33.400 −22.474 15

N (865 nm) Y = 0.4x + 0.23 0.838 2.344 1.717 − 1.597 53.064 −53.064 15

DO Y = 0.5x + 0.56 0.793 1.790 1.522 −0.943 37.657 −26.332 15
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Table 4. Cont.

AC
Processor Algorithm Equation R2 RMSE URMS BIAS APD (%) RPD (%) N

Polymer

N (665 nm) Y = 0.5x + 1.43 0.692 1.714 1.699 −0.220 31.803 15.192 15

N (705 nm) Y = 0.4x + 0.58 0.761 2.093 1.717 −1.198 44.136 −36.130 15

N (740 nm) Y = 0.3x + 1.05 0.806 2.245 1.966 −1.085 38.869 −14.188 15

N (783 nm) Y = 0.4x + 2.12 0.462 2.029 2.009 0.290 69.471 53.834 15

N (865 nm) Y = 0.4x + 0.44 0.656 2.716 1.957 −1.883 51.924 −49.191 11

DO Y = 0.4x + 0.95 0.715 1.893 1.725 −0.781 29.646 −13.270 15

Acolite

N (665 nm) Y = 0.2x + 1.48 0.747 2.577 2.370 −1.013 47.825 3.754 13

N (705 nm) Y = 0.2 + 1.55 0.744 2.570 2.385 −0.957 50.436 9.282 13

N (740 nm) Y = 0.2x + 4.14 0.282 2.983 2.464 1.680 182.207 173.672 13

N (783 nm) Y = 0.2x + 4.38 0.258 3.137 2.485 1.915 199.765 193.217 13

N (865 nm) Y = 0.2x + 5.86 0.186 4.319 2.567 3.474 296.190 292.246 13

DO Y = 0.1x + 0.97 0.340 2.858 2.418 −1.742 53.563 −30.192 13
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data record, we present here a spatio-temporal analysis of the four WQ parameters under 
investigation for the Sado estuary. To do so, the best performing processing schemes cho-
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Figure 6. Match-ups of the best performing AC plus bio-optical algorithm of the four WQ parameters
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the different scales).

For the SPM and turbidity products, better results were obtained when NIR bands
were used. Considering the rather low measured SPM and turbidity values, signal in
the NIR was expected to be low and a better correlation with the red bands could be
expected. From the S2 extracted spectra (Figure 4) this is clear for region A, but less evident
in region B. However, a poor relationship was found using the red bands for region A
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(not shown), which could be partially due to the overlap of this band with the location of
the Chl-a absorption peak which might be affecting the retrieval of SPM and turbidity at
this wavelength. Considering this and given the low number of match-ups available for
region A, the dataset was not separated by region and thus, the general performance of
the algorithm was used to select the best performing AC+algorithm. It should be noted
though that for the clearer waters in region A the correlation is low (blue signs in Figure 6),
thus results using the NIR bands should be considered with caution for this area.

For the SPM product, the best results were obtained from Polymer in combination with
Nechad algorithm [44] at 705 nm (pN705) (R2 = 0.57, APD = 26%). However, this algorithm
decreased its performance when applied to images processed with the AC-C2RCC. On the
other hand, with AC-C2RCC, good results were also obtained, using Nechad algorithm for
740 nm (cN740) (R2 = 0.49, APD=31%) (Figure 6). Interestingly, the same algorithm (for the
same wavelength) showed a worse performance when applied to images processed with
Polymer (Table 4). For SPM, Acolite + bio-optical algorithms were the combinations that
presented the worst performance (APD always > 150% except from aS, where APD = 31%)
and the only ones in which there was a tendency to overestimate in situ values, suggesting
that ρw is overestimated compared to other AC (Figure 4). From the set of results, it was
the application of Nechad for the 665 and 705 nm wavelengths that showed a greater
consistency in the results between the different processors, although they did not have the
overall best performance when compared with the in situ dataset.

The highest agreement between the satellite and the in situ turbidity data was achieved
by applying Nechad at the wavelength of 783 nm to the images processed with AC-C2RCC
(cN783, R2 = 0.84, APD = 33%) (Figure 6). Overall, this AC processor presented good results
for the set of algorithms and bands tested. Additionally, AC-C2RCC showed a tendency to
underestimate satellite-derived turbidity data in comparison to the in situ measurements
(negative RPD for all the algorithms). The application of the Dogliotti algorithm [46]
generated results similar to those of Nechad for AC-C2RCC images, as expected. With
Acolite, the application of Nechad to bands 740, 783 and 865 nm showed a relevant decrease
in the quality of the match-ups results, when compared with the lower wavelengths.

Overall, two out of the three tested AC processors algorithms, AC-C2RCC and Poly-
mer plus bio-optical, seemed to provide results more comparable with in situ data for the
selected study area (Table 4). The combinations (AC+bio-optical algorithms) tested with
these two processors presented similar results for all the parameters and can be considered
more suitable for the study area than the combinations using Acolite (mean APD = 254%),
which showed a general overestimation of the in situ values (mean BiasACOLITE = 2.78;
mean BiasC2RCC = 0.04; mean BiasPOLYMER = −0.07). Even though Polymer combinations
have outperformed AC-C2RCC combinations in specific cases, such as in the quantifica-
tion of CDOM or SPM, it did not present satisfactory results for Chl-a. Considering that
AC-C2RCC combinations showed good capabilities for all these parameters, the best per-
forming AC-C2RCC processor plus bio-optical algorithms were selected for the time-series
analysis for being the best combination for the set of parameters analysed. In accordance,
only the best match-ups results of the application of the algorithms to AC-C2RCC images
will be presented in this section (Figure 6). The full dataset of statistical results is available
in Table 4.

Since the combinations using the AC-C2RCC were chosen as overall best performing,
the algorithms selected to perform the time-series analysis were the following: cT443
(aCDOM), cGS (Chl-a), cN740 (SPM), and cN783 (turbidity). The table contemplates the
data of the average of 3 × 3 pixels centred in the pixel of the sampling stations. The best
performing processing chain of eaxh parameter are highlighted in bold.

Overall, for the set of parameters tested, encouraging results were obtained in the
satellite data intercomparisons process, which indicates the usefulness of MSI images to
monitor water quality parameters in the Sado estuary.
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3.3. Spatio-Temporal Analysis: Sado Estuary Case Study

To demonstrate and evaluate the usefulness of a consistent Sentinel-2-derived WQ
data record, we present here a spatio-temporal analysis of the four WQ parameters under
investigation for the Sado estuary. To do so, the best performing processing schemes chosen
during the intercomparison part of the present study were selected and applied to S2-MSI
time-series, i.e., AC-C2RCC-TS443 for aCDOM, AC-C2RCC-GS for Chl-a, AC-C2RCC-N740
for SPM, and AC-C2RCC-N783 for turbidity (Figure 6). Moreover, the time-series analysis
was performed separately for the two different regions of the estuary, given the high optical
variability that characterizes this transitional system.

Figures 7 and 8 show the time-series of the different parameters considering the
spatially averaged observations. From a visual inspection, it is hard to observe a clear
seasonal variability of any of the selected parameters in area A. Moreover, region B presents
a greater amplitude (over a short time, due to tidal variability) of values in respect to region
A, which remains relatively constant. This might lead to bigger uncertainties associated
with satellite-derived products over region B due to higher optical variability and greater
interaction between the optically active compounds. Therefore, a worse performance of
the bio-optical algorithms is expected. Moreover, the greater amplitude of values will lead
to difficulties in detecting WQ anomalies without a consistent climatological record of the
area of interest. On the other hand, S2-MSI time-series may allow us to better understand
the short-term variability which would be highly laborious through in situ observation.

For a better visualization of the seasonal patterns, high spatial resolution seasonal
maps of the full estuarine system are provided in Figure 9. For all the set of parameters,
the highest values were found in Spring and Summer, mainly in the inner region of the
estuary, following the tendency shown by the field measurements.

Regarding the aCDOM (443 nm), the seasonal maps show higher values during Spring
within the whole estuary. However, the seasonal average of in situ aCDOM (Table 3) shows
that the highest values were obtained in Summer in the innermost region of estuary, and in
winter in region A. In this region, the outermost area, the greatest differences between the
seasonal averages of satellite-data and in situ (Table 1) were found in summer (0.14 m−1)
and in autumn (0.11 m−1), while spring and winter presented the smallest variations (0.03
and 0.05 m−1 respectively). In region B, the greatest differences were in spring (0.28 m−1)
and in winter (0.20 m−1), while the smallest in summer (0.11 m−1) and during autumn
(0.16 m−1). Even if the satellite seems to be able to follow the in situ trend in both areas,
the satellite-derived values slightly overestimate the field observations most of the time.
This can be clearly seen in the time-series plot, especially in region B between April and
October 2019.

For chlorophyll-a, it was possible to observe a significant difference (mean APD = 391%)
in terms of absolute values between the in situ data and the satellite-derived ones (Figure 7).
This deviation between datasets seemed to be more evident during Spring and Summer, both
in region A and region B. It is possible to observe that the satellite-derived data were not able
to match the highest chlorophyll in situ values found during the sampling period, presenting
a significant underestimation in comparison to the in situ observations. During Autumn and
Winter, when field Chl-a measurements were lower, a greater similarity between the datasets
was found. In general, region B presented slightly higher Chl-a values than region A, as would
be expected, given the in situ variability observed. As such, the MSI sensor was sensitive
to the spatial variability of the chlorophyll-a in the Sado estuary. This spatial variability of
Chl-a becomes more evident when looking at the entire estuary and its surrounding region
(Figure 9). It should be noted that in Summer, it was not possible to obtain valid values for the
region in the coastal ocean (Figure 9) due to sun glint occurrences that led to an overcorrection
in the atmospheric correction part of the processing, which, combined with low concentrations
of chlorophyll, resulted in invalid Chl-a values. During winter, it was also possible to observe
high chlorophyll values in the interior of the estuary and in the region of the coastal ocean
(higher values than during spring).



Remote Sens. 2021, 13, 1043 17 of 27
Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 30 
 

 

 
Figure 7. Time series of S2-MSI-derived and in situ water quality parameters in the two regions of the estuary, A (blue) 
and B (red). The time-series considered the average of the pixels corresponding to the sampling stations included in each 
of the areas. Please note the log-scale in the Chl-a plots. It should be noted that the in situ variability does not consider the 
tidal effect since the in situ samplings were always performed at high tide. 

Figure 7. Time series of S2-MSI-derived and in situ water quality parameters in the two regions of the estuary, A (blue) and
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areas. Please note the log-scale in the Chl-a plots. It should be noted that the in situ variability does not consider the tidal
effect since the in situ samplings were always performed at high tide.
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Figure 8. Inter-annual seasonal variability of S2-MSI-derived and in situ water quality parameters in
the two regions of the estuary, A (blue) and B (red). The time-series considered the average of the
pixels corresponding to the sampling stations included in each of the areas. Please note the log-scale
in the Chl-a plots. It should be noted that satellite data include a mixture of tidal conditions while the
in situ was always collected at high tide.



Remote Sens. 2021, 13, 1043 19 of 27Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 30 
 

 

 
Figure 9. Seasonal averages of the four water quality parameters for the period between March 2018 and March 2020. 
Averages of aCDOM, Chl-a, SPM, and turbidity were performed via the best performing processing chain selected during 
the algorithms intercomparison exercise (Section 3.1). Please note that no bottom corrections were applied. 
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Figure 9. Seasonal averages of the four water quality parameters for the period between March 2018 and March 2020.
Averages of aCDOM, Chl-a, SPM, and turbidity were performed via the best performing processing chain selected during the
algorithms intercomparison exercise (Section 3.1). Please note that no bottom corrections were applied.

Regarding SPM, Figures 7 and 8 show that the derived product can clearly capture
the temporal variability and potential anomalies in water conditions. As expected, higher
values were observed in the inner region of the estuary at all seasons, being spring and
summer the seasons with the highest levels of suspended solids within the estuary. As well
as for aCDOM and turbidity, the SPM retrieved recurring to the S2-MSI presented a slight
overestimation of the in situ observations.

As already mentioned in the match-ups section, the turbidity product was the best
represented WQ parameter using S2-MSI data. This can be easily observed also from the
time-series plots, where the satellite-derived turbidity followed the in situ observations
with high similarity, showing the great potential of this satellite for routine monitoring of
this important parameter. Again, the highest turbidity levels were reached in spring and
summer, with higher concentrations in the inner region of the estuary. It is important to
note that despite the match-ups stations being optically deep at the time of the sampling,
for the time-series it was not possible to know it in advance. Moreover, in this study, it was
not possible to assess if the shallower regions of the estuary were influenced by the bottom
signal therefore Figure 9 should be interpreted with caution.

4. Discussion
4.1. Algorithms Intercomparison Exercise

The principal objective of this study was to evaluate the potential use of high spatial
resolution satellite data to estimate water quality (WQ) parameters in a highly dynamic
system. For this purpose, different processing chains (AC plus WQ algorithms) have been
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selected and applied to S2-MSI imagery in order to evaluate the usefulness of this satellite
for water quality monitoring in the Sado estuary.

According to the results, the statistics indicate consistency between the satellite-
derived values and in situ observations of turbidity, indicating that this parameter is the
best WQ parameter to be retrieved via S2-MSI data. However, the agreement is also
relatively strong for SPM and aCDOM for the study area, while the Chl-a product showed
some limitations and higher errors associated (Table 4).

Even if no field radiometric measurements were available to directly assess the per-
formance of the AC processors, AC-C2RCC and Polymer combined with bio-optical algo-
rithms were the combinations that provided the most comparable results to the in situ data.
Similar results have also been discussed by Warren et al. [35], where different AC proces-
sors have been tested on S2-MSI data showing that AC-C2RCC and Polymer outperformed
Acolite for applications in coastal waters. Pereira-Sandoval et al. [53] also showed similar
results, pointing out the good performance of these two ACs in Spanish inland waters and
suggesting the application of a water type classification to improve the performance of
the processors.

Polymer and AC-C2RCC were the processor that presented the smallest reflectance
values between the processors tested in this study. An underestimation from the Polymer
processor was observed in other studies. Steinmetz et al. in [33,54], the authors pointed
towards a miss-estimation of the wind speed from the afore-mentioned processor that
might lead to an over-correction of the model, resulting in a significant reduction of the
total signal, which could explain the invalid Chl-a values obtained using this processor.
Again, the lack of in situ radiometric measurements did not permit to deeply explore the
performance of the ACs in this study area. Even if the Polymer processor, in combination
with bio-optical algorithms, outperformed AC-C2RCC in some cases, the neural network
methodology was selected as it provided the best overall combinations performance and
was used to perform the time-series analysis.

In complex waters, the CDOM generally increases absorption (reducing reflectance) in
the blue bands while the SPM causes an increase in reflectance in the green and red bands
due to scattering [53,55]. In the present study, region B of the estuary presented greater
contribution of SPM and turbidity and, in fact, the water-leaving reflectance of all AC
processors was relatively higher in the green-red bands compared to region A (Figure 4).
However, very similar values were observed between the two areas of the estuary in the
blue region of the spectra, where also higher values were expected. In conditions of high
SPM concentration, the aCDOM algorithms that use the blue/green-red band ratios tend
to underestimate the measured aCDOM. These factors may have affected the performance
of regionally calibrated algorithms (i.e., MAS, MAM, CZ, CH, and KU) that, in general,
underestimate the aCDOM retrieval in conditions of higher SPM concentrations. In cases
where the aCDOM does not co-vary with Chl-a, as in the present study, this can significantly
affect the bands in the blue to green part of the spectrum due the overlap on the reflected
signal [56–59]. Thus, it is necessary to know the variation of the optically active components
present in the water to find alternatives that provide greater accuracy to the retrieval of
WQ parameters by satellite remote sensing.

Regarding chlorophyll-a, in the study conducted by Pahlevan et al. [9], the 2-band
algorithm originated negative retrievals for low concentrations of Chl-a. The authors
considered that this was somehow expected as 2-band algorithms are usually designed to
be applied in highly eutrophic waters, a category in which the Sado estuary does not fit.
Pereira-Sandoval et al. [53] tested several AC processors to S2-MSI data and observed that,
for inland waters with low concentrations of chlorophyll-a, Polymer showed slightly worse
results in the NIR bands than C2RCC. Possibly, the existence of low Chl-a values in the
Sado estuary, combined with a possible overcorrection performed by Polymer processor,
could be the cause of the absence of valid Chl-a values when the GS and 2-band were
applied to the data derived from this processor. Interestingly, Chl-a processed by Plymouth
Marine Laboratory (PML) using the Calimnos processing chain [60] also did not produce
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Chl-a matchups with our in situ data for the Gons algorithm [42] coupled with Polymer AC,
demonstrating consistency with our results (data not shown). Thus, deriving reliable Chl-a
data from S2 is still challenging and further developments are needed. In this context, the
on-going H2020 CERTO project (www.certo-project.org (accessed on 26 November 2020)) is
likely to provide relevant outputs. This project aims to produce improved satellite data that
should be harmonized across different types of complex waters, i.e., from lakes to the sea,
with a particular emphasis in transitional waters. Considering its great potential, future
work will include testing CERTO’s products, which will be delivered during the project.

Regarding SPM and turbidity retrieval, given the strong relationship between the two
parameters (R2 = 0.92 in our study area) their relation is worth to be mentioned. Clear
differences can be noticed between the turbidity and SPM S2-MSI retrieval, with turbidity
presenting overall better correlations with in situ data. This might be caused by different
factors. Firstly, turbidity parameter is less subject to in situ measurements errors than SPM.
Röttgers et al. [61] demonstrated that significant uncertainties can be associated with most
of the SPM measurements. Their results showed that these errors were mainly associated
with salt retention and loss of filter material during washing and drying procedures.
Moreover, turbidity is an optical parameter highly related to backscattering [45] and thus
to reflectance. To explain the poorer retrieval of SPM using a global algorithm with respect
to turbidity, the differences between the SPM and turbidity retrieval algorithms should be
considered as suggested by [45]. In fact, since turbidity (a measure of side-scattering) is
an inherent optical property (IOP), it is not necessary to consider the potential variability
of mass specific optical properties, while SPM algorithms do. On the other hand, SPM
retrieval algorithms will also be sensitive to particle size, density, and refractive index,
which can be important sources of regional variability for retrieval of SPM concentration.

Furthermore, in Figure 6 it is possible to see that the selected algorithms for SPM and
turbidity (which use NIR bands) perform better in region B (more turbid waters) compared
to region A (clearer waters). Considering the strong spatial gradients, the non-linearity
of SPM optics properties in estuarine environment [62] and the interaction with different
optically active constituents such as phytoplankton cells, it is key to develop algorithms
that are calibrated regionally to accurately quantify SPM from satellite data. Future work
will include further investigation on the performance of single-band algorithms considering
the different optical properties that characterize the different regions of the estuary. The
work will focus on the development of a switching band algorithm that takes into account
the different optical properties of region A and region B.

In general, the results of the present study suggest that for satellite-derived aCDOM,
Chl-a and SPM, regional approaches should be adopted for Portuguese transitional waters.
Regarding turbidity, the statistical results are encouraging, with reasonably accurate tur-
bidity retrieval using a global algorithm, at least for Region B. As a whole, for the Sado
estuary, there is still the need for a more robust database accompanied by in situ and orbital
radiometric measurements from remote sensors.

4.2. Spatio-Temporal Analysis

All the analysed parameters showed strong spatial variability within the estuary, as
expected. This indicates that to analyze these parameters using in situ measurements,
multiple sampling points are needed to fully represent the study area, which is not always
feasible. In turn, the seasonal variability of the WQ parameters seemed to be well captured
from the S2-MSI satellite products, evidenced in the time series by overlapping the in situ
with the satellite-derived data.

For all parameters, higher values were obtained in the interior area of the estuary
and during Spring and Summer, in concordance with previous studies [18,63], mainly due
to phytoplankton blooms and bottom resuspension caused by stronger wind regimes in
the referred period of the year. In the period here studied, the highest SPM values were
also found in spring and summer, even if precipitation is stronger in autumn and winter,
when higher terrigenous inputs from the rivers are expected. The higher values of SPM
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(which are historically found in spring) are related to the phytoplankton spring blooms
and bottom resuspension due to stronger wind regimes, and not to terrigenous inputs
of the SPM [64].The aCDOM (443) parameter did not correlate or co-vary with the Chl-a,
but it had an inverse relationship of R2 = −0.57 (p < 0.05) with salinity (not shown here).
This suggests that most of the CDOM’s origin is not local (e.g., from the phytoplankton
derived components), but rather from bottom resuspension processes due to stronger wind
regime within the estuary during spring/summer and from increased rain and riverine
input mainly during winter [64,65].

As already mentioned, Chl-a was the parameter that presented the greatest challenges
in achieving accurate satellite-derived data. However, it was possible to obtain useful
results on the patterns of temporal and spatial variability of the phytoplankton proxy using
Sentinel−2 MSI in the Sado estuary. The highest concentrations were found in spring and
summer, as expected, even if high values of Chl-a were also observed during winter in
the inner region of the estuary. It is also interesting to note that the region of the coastal
ocean presented unexpected variation patterns, showing higher values of Chl-a during
winter with respect to spring. Furthermore, during summer, the same region did not
present any valid Chl-a data, suggesting that the selected algorithms may not be suitable
for Chl-a retrieval for the clearer waters in the coastal ocean which present different optical
properties, more similar to the open ocean.

Overall, the time-series analysis of all the studied parameters was found to be in
agreement with the historical climatological data available for the area and, therefore, the
use of the S2-MSI sensor can be considered useful for water quality analysis over the Sado
estuary using the selected best-performing processing chain. The high spatial resolution
maps provided for the study area are a relevant achievement since no such information
was available until the present work, although improvements regarding the bottom effect
should be pursued in future work.

4.3. Applicability of Satellite RS Products to WFD

The EU WFD requires that all Member States achieve and/or maintain good ecological
status of their water bodies, including estuaries. Under the directive, the assessment
of WQ is based on the deviation from a predefined reference condition. However, as
discussed by [66], this is one of the most complex, and still under discussion, points of its
implementation. For the Sado estuary, in fact, the phytoplankton Chl-a is one of the few
water parameters that have a well-defined classification system to assess the ecological
status of the water body. According to the range of values observed during the period under
analysis, the concentrations never exceeded the reference value for the highest salinity class
(6.67 mg m−3 for salinities higher than 25 [67,68]) being the observed Chl-a concentration
(both in situ and satellite-derived) always <5 mg m−3, and therefore indicating that the
Sado estuary has currently no clear sign of eutrophication problems. However, it should
be reminded that the in situ data considered was always collected at high tide conditions.
Higher values might be encountered during low tides.

The lack of historical data for the other physicochemical parameters in the Sado
estuary increased the level of difficulty in applying RS WQ products in the context of
ecological quality assessment, under the WFD. The definition of reference values is crucial
to further explore the potential of RS in the context of the WFD, for which S2-MSI satellites
have a great potential. The provided time-series of the WQ parameters obtained through
remote sensing observations are crucial to define baseline levels and allowed to confirm the
values used to assess the normal variation patterns (i.e., SPM < 20 mgL−1, data not shown).
This will help decision-makers to detect potential anomalies and support further studies
on ecological aspects. Moreover, these high-resolution maps provide key information to
implement effective and meaningful monitoring programs for WQ assessments under
the WFD.

Considering the great importance of CDOM as a WQ indicator, we consider that more
efforts should be put to retrieve more accurate CDOM absorption values from the S2-MSI
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data. As discussed previously, aCDOM is strongly related to salinity [69] and therefore could
be used by policymakers as an indicator of fresh-water input within the estuary or to infer
drought periods.

One major benefit of using remote sensing data to support the monitoring of surface
water status is the capability of providing systematic observations of the whole water-
system. The high revisit frequency (5 days) allows an easier detection of small-scale changes
and a more synoptic view of the water body. However, a relevant drawback of optical
remote sensing data is that cloud coverage and sun glint effects may seriously affect its
usefulness [70]. In the present work, only an average of 55% of the total images available
(over the 2 years period under investigation) were cloud-free and focused on periods with
good atmospheric conditions. This means that image availability is non-homogeneous
around the year and can make routine monitoring challenging.

As an example of the applicability of S2-MSI images for water quality assessment,
Figure 10A shows the RGB image acquired on 19 February 2020 by the satellite S2A,
that captured the dredging activities conducted in the Sado estuary. In the RGB image
(top), the sediment plume produced by the dredge is clearly visible (red box). Using the
selected algorithm for SPM retrieval (Figure 10B), we observed that a value of 35 mgL−1

of suspended solids was reached in the pixels corresponding to the sediment plume,
compared to an average of 2 mgL−1 of SPM in the surrounding pixels. Considering that
concentration of SPM in the same area never exceeded 8 mgL−1 during the studied period,
it can be concluded that, although locally, the dredging activities performed in the area
had a severe impact on the water clarity of that specific area of the estuary. Unfortunately,
it was not possible to follow the evolution of impacts during the dredging period due to
cloud-coverage of Sentinel-2 images.
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Figure 10. (A) S2A RGB image and (B) SPM map of the Sado estuary acquired on 19 February 2020.
Inside the red box, the sediment plume produced by the dredging activities is clearly visible. The
SPM map (B) was produced through the best performing processing chain selected for SPM retrieval
(AC-C2RCC in combination with Nechad algorithm at 740 nm). Please note that no bottom reflection
correction was implemented.
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Finally, we consider that the approach followed in this research may be extended to
other Portuguese transitional systems and European countries in support of the WFD con-
sidering the low costs of the data production with respect to continuous in situ monitoring
programs.

5. Conclusions

Over the past few decades, satellite remote sensing techniques have increasingly been
used to support environmental monitoring and to assess different types of water bodies,
mainly because of their cost-effectiveness and spatio-temporal resolution [71]. The aim of
the present study was to demonstrate the capabilities and knowledge gaps of S2-MSI data
for continuous monitoring of WQ parameters in a highly dynamic system and evaluate its
usefulness under the WFD.

In fact, the Sentinel-2 satellites showed their encouraging potential for routine moni-
toring of WQ parameters in the Sado estuary. Their medium temporal resolution (5 days
at mid latitudes) and, therefore, the higher frequency of satellite data regarding in situ
observations, lead to an easier detection of small-scale changes and allow a synoptic view
and analysis of the system.

In the context of the WFD, this study demonstrates the high potential of S2-MSI in
water quality mapping and monitoring. However, a regional validation and calibration of
the bio-optical algorithms is suggested. The turbidity product showed high consistency
with in situ observations, proving the great capabilities of the MSI sensor to monitor this
important water quality parameter. However, for the key parameter Chl-a further research
is needed, with a more complete set of match-ups. Moreover, in the context of the WFD,
the need to define reference values for variables such aCDOM, SPM, and turbidity for the
Sado estuary (and other Portuguese estuaries) may be overcome through the provided
remote sensing data (maps and time series) which are fundamental to be used as a baseline
information for the characterization of the normal conditions of the Sado estuary.

Improvements in the management of water resources can be achieved only through
the delivery of continuous and sustained WQ data, to allow forecasts at local and regional
scales and achieve an effective decision-making process. In this context, remote sensing is
an extraordinary tool that allows a better understanding of how water bodies are changing
due to environmental perturbations, anthropogenic pressure and climate change.

Future work will focus on a more direct link between S2-MSI derived products and
WFD for the determination of the ecological status of Portuguese transitional systems.
In addition, to further evaluate the best processing chain for estuarine systems as the
Sado estuary, the collection of in situ radiometric data is key, in order to carry out robust
satellite data validation and calibration exercises. It would also be interesting to use remote
satellite detection to monitor the water quality during the course of specific engineering
operations, such as dredging activities, that, as observed, may cause relevant changes in
the estuarine system.

The present work was the first exercise to provide inter-annual and seasonal variability
of several WQ parameters, with high spatial resolution (10 m) for the Sado estuary, being
fundamental for the establishment of effective monitoring in the study area.
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