National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Landscape of Wales
2.2. Validation Sites
2.3. Data
2.3.1. Sentinel-1 C-band SAR
2.3.2. Land Parcel Identification System (LPIS)
2.3.3. Planet CubeSat Data: PlanetScope Constellation
2.3.4. Reference Crop Maps for Wales
2.4. Methods for Crop Type Mapping
2.4.1. Benchmark Temporal SAR Dynamics
2.4.2. From Key SAR Dynamics to Crop Type: A Descriptive Decision Algorithm
2.4.3. Generation and Validation of Crop Map
3. Results
3.1. Key Temporal SAR Signatures (VH/VV, VH, and VV)
3.1.1. Winter Crops
3.1.2. Spring Crops
3.2. A Crop Map for Wales
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Knowledge-Based Growth Stages
Appendix A.1. Winter Wheat
Appendix A.2. Winter Barley
Appendix A.3. Winter Rapeseed
Appendix A.4. Spring Barley and Wheat
Appendix A.5. Maize
Appendix A.6. Potatoes
Appendix A.7. Beets
Appendix B. Decision Algorithm
Conditions | ||||
---|---|---|---|---|
VH/VV | VH | VV | Decision | |
Broad crop categories | Winter crop | |||
Spring crop | ||||
Winter crops | WW | |||
WR | ||||
WB | ||||
Spring crops | PO | |||
SB | ||||
. | MA | |||
BT | ||||
SW |
References
- Food and Agriculture Organization. Agricultural Land (% of Land Area). The World Bank|Data. 2016. Available online: https://data.worldbank.org/indicator/AG.LND.AGRI.ZS?most_recent_value_desc=true (accessed on 28 September 2020).
- Anderson, W.; You, L.; Anisimova, E. Mapping Crops to Improve Food Security. International Food Policy Research Institute. 2014. Available online: https://www.ifpri.org/blog/mapping-crops-improve-food-security (accessed on 28 September 2020).
- McLaughlin, A.; Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 1995, 55, 201–212. [Google Scholar] [CrossRef]
- Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The Nitrogen Cascade. BioScience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Hotta, S. Wind erosion from cropland in the USA: A review of problems, solutions and prospects. Geoderma 2004, 121, 157–167. [Google Scholar] [CrossRef]
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.-A.; Justes, E.; Journet, E.-P.; Aubertot, J.-N.; Savary, S.; Bergez, J.-E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.; Ridoutt, B.G.; Wang, X.; Ren, P. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health-A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Loveland, T.R.; Merchant, J.W.; Ohlen, D.O.; Brown, J.F. Development of a land cover characteristics database for the counterminous U.S. Photogramm. Eng. Remote Sens. 1991, 57, 1453–1463. [Google Scholar]
- Loveland, T.R.; Merchant, J.W.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Olson, P.; Hutchinson, J. Seasonal land cover regions of the United States. Ann. Assoc. Am. Geogr. 1995, 85, 339–355. [Google Scholar] [CrossRef] [Green Version]
- DeFries, R.S.; Hansen, M.C.; Townshend, J.R.G.; and Sohlberg, R.S. Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens 1998, 19, 3141–3168. [Google Scholar] [CrossRef]
- DeFries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Loveland, T.R.; Belward, A.S. The International Geosphere Biosphere Programme Data and Information System global land cover data set (DISCover). Acta Astronaut. Dev. Bus. 1997, 41, 681–689. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- JRC European Commission. Average Field Size in ha; JRC European Commission: Ispra, Italy, 2008. [Google Scholar]
- Roy, D.P.; Ju, J.; Mbow, C.; Frost, P.; Loveland, T. Accessing free Landsat data via the Internet: Africa’s challenge. Remote Sens. Lett. 2010, 1, 111–117. [Google Scholar] [CrossRef]
- Mandanici, E.; Bitelli, G. Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Davidson, A.M.; Fisette, T.; Mcnairn, H.; Daneshfar, B. Detailed crop mapping using remote sensing data (Crop Data Layers). In Handbook on Remote Sensing for Agricultural Statistics (Chapter 4); Global Strategy to improve Agricultural and Rural Statistics (GSARS): Rome, Italy, 2017. [Google Scholar]
- Khabbazan, S.; Vermunt, P.; Steele-Dunne, S.; Ratering Arntz, L.; Marinetti, C.; van der Valk, D.; Iannini, L.; Molijn, R.; Westerdijk, K.; van der Sande, C. Crop Monitoring Using Sentinel-1 Data: A Case Study from The Netherlands. Remote Sens. 2019, 11, 1887. [Google Scholar] [CrossRef] [Green Version]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. Theme Issue Mapp. SAR Tech. Appl. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Larrañaga, A.; Álvarez-Mozos, J.; Albizua, L. Crop classification in rain-fed and irrigated agricultural areas using Landsat TM and ALOS/PALSAR data. Can. J. Remote Sens. 2011, 37, 157–170. [Google Scholar] [CrossRef]
- Fisette, T.; McNairn, H.; Davidson, A. An Operational Annual Space-Based Crop Inventory Based on the Integration of Optical and Microwave Remote Sensing Data: Protocol Document; Agriculture and Agri-Food Canada Publication: Ottawa, ON, Canada, 2015. [Google Scholar]
- Fisette, T.; Rollin, P.; Aly, Z.; Campbell, L.; Daneshfar, B.; Filyer, P.; Smith, A.; Davidson, A.; Shang, J. Jarvis, AAFC annual crop inventory. In Proceedings of the IEEE, 2013 Second International Conference on AgroGeoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; IEEE Publication: Piscataway, NJ, USA, 2013; pp. 270–274. [Google Scholar]
- Skakun, S.; Kussul, N.; Shelestov, A.Y.; Lavreniuk, M.; Kussul, O. Efficiency Assessment of Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for Crop Classification in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 3712–3719. [Google Scholar] [CrossRef]
- Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2500–2508. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Giordano, S.; Bailly, S.; Landrieu, L. Temporal Structured Classification of Sentinel 1 and 2 Time Series for Crop Type Mapping. Available online: https://hal.archives-ouvertes.fr/hal-01844619 (accessed on 12 June 2020).
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Towards future Copernicus Service Components in Support to Agriculture? 2016. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/Copernicus_concept_note_agriculture.pdf (accessed on 18 August 2020).
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [Google Scholar] [CrossRef] [Green Version]
- Whelen, T.; Siqueira, P. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sens. Lett. 2018, 9, 411–420. [Google Scholar] [CrossRef]
- Kenduiywo, B.K.; Bargiel, D.; Soergel, U. Crop-type mapping from a sequence of Sentinel 1 images. Int. J. Remote Sens. 2018, 39, 6383–6404. [Google Scholar] [CrossRef]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Minh, D.H.T.; Ndikumana, E.; Courault, D.; Belhouchette, H. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sens. 2019, 11, 887. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.; Campo-Bescós, M.Á.; Álvarez-Mozos, J. Crop Classification Based on Temporal Signatures of Sentinel-1 Observations over Navarre Province, Spain. Remote Sens. 2020, 12, 278. [Google Scholar] [CrossRef] [Green Version]
- Sitokonstantinou, V.; Papoutsis, I.; Kontoes, C.; Lafarga Arnal, A.; Armesto Andrés, A.P.; Garraza Zurbano, J.A. Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy. Remote Sens. 2018, 10, 911. [Google Scholar] [CrossRef] [Green Version]
- Matton, N.; Canto, G.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef] [Green Version]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Hack, H.; Bleiholder, H.; Buhr, L.; Meier, U.; Schnock-Fricke, U.; Stauss, R.; Weber, E.; Witzenberger, A. Einheitliche Codierung der phänologischen En- twicklungsstadien mono- und dikotyler Pflanzen.—Er-weiterte BBCH-Skala, Allgemein –Nachrichtenbl. Deut. Pflanzenschutzd. 1992, 44, 265–270. [Google Scholar]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Hess, M.; Lancashire, P.; Schnock, D.; Stauss, U.; van den Boom, R.; et al. The BBCH system to coding the phenological growth stages of plants—history and publications. J. Kult. 2009, 61, 41–52. [Google Scholar]
- MetOffice. Wales: Climate. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/regional-climates/wales_-climate---met-office.pdf (accessed on 12 June 2020).
- Weather Spark. 2018; Average Weather in Wales, United Kingdom. Weather Spark. Available online: https://weatherspark.com/y/41923/Average-Weather-in-Wales-United-Kingdom-Year-Round (accessed on 17 February 2021).
- Armstrong, E. The Farming Sector in Wales (No. 16–053); National Assembly for Wales-Research Service: Cardiff, UK, 2016. [Google Scholar]
- National Resources Wales. Milford Haven, National Landscape Character. Available online: https://cdn.cyfoethnaturiol.cymru/media/682648/nlca48-milford-haven-description.pdf (accessed on 29 September 2020).
- National Resources Wales. South Pembrokeshire Coast, National Landscape Character. Available online: https://cdn.naturalresources.wales/media/682647/nlca47-south-pembrokeshire-coast-description.pdf (accessed on 29 September 2020).
- National Resources Wales. Vale of Glamorgan, National Landscape Character. Available online: https://cdn.cyfoethnaturiol.cymru/media/682623/nlca36-vale-of-glamorgan-description.pdf (accessed on 29 September 2020).
- National Resources Wales. Central Monmouthshire, National Landscape Character. Available online: https://cdn.cyfoethnaturiol.cymru/media/682611/nlca31-central-monmouthshire-description.pdf (accessed on 29 September 2020).
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Wood, D.; McNairn, H.; Brown, R.J.; Dixon, R. The effect of dew on the use of RADARSAT-1 for crop monitoring: Choosing between ascending and descending orbits. Remote Sens. Environ. 2002, 80, 241–247. [Google Scholar] [CrossRef]
- Gamma Remote Sensing. GAMMA Software Information. Available online: https://www.gamma-rs.ch/uploads/media/GAMMA_Software_information.pdf (accessed on 3 February 2021).
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Computer Science. 2016, 100, 1305–1312. [Google Scholar]
- Ticehurst, C.; Zhou, Z.-S.; Lehmann, E.; Yuan, F.; Thankappan, M.; Rosenqvist, A.; Lewis, B.; Paget, M. Building a SAR-Enabled Data Cube Capability in Australia Using SAR Analysis Ready Data. Data 2019, 4, 100. [Google Scholar] [CrossRef] [Green Version]
- ESA. SNAP. STEP|Science Toolbox Exploitation Platform. 2015. Available online: https://step.esa.int/main/doc/ (accessed on 29 September 2020).
- National Resources Wales. LiDAR Data Guidance. 2018. Available online: https://naturalresourceswales.sharefile.eu/share/view/s9c7c0a31e304ff28 (accessed on 9 June 2020).
- Mattia, F.; Le Toan, T.; Picard, G.; Posa, F.I.; D’Alessio, A.; Notarnicola, C.; Gatti, A.M.; Rinaldi, M.; Satalino, G.; Pasquariello, G. Multitemporal C-band radar measurements on wheat fields. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1551–1560. [Google Scholar] [CrossRef]
- Blaes, X.; Defourny, P.; Wegmuller, U.; Della Vecchia, A.; Guerriero, L.; Ferrazzoli, P. C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model. IEEE Trans. Geosci. Remote Sens. 2006, 44, 791–800. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F.; Marais-Sicre, C. Monitoring Wheat and Rapeseed by Using Synchronous Optical and Radar Satellite Data—From Temporal Signatures to Crop Parameters Estimation. Adv. Remote Sens. 2013, 2, 162–180. [Google Scholar] [CrossRef] [Green Version]
- CEH. UKCEH Land Cover® Plus: Crops. UK Centre for Ecology & Hydrology. 2016. Available online: https://www.ceh.ac.uk/crops2015 (accessed on 8 June 2020).
- OneSoil. OneSoil|The Free Platform for Reliable Agricultural Decisions. 2018. Available online: https://onesoil.ai/en/ (accessed on 8 June 2020).
- Morton, D.; Rowland, C.; Wood, C.; Meek, L.; Marston, C.; Smith, G.; Wadsworth, R.; Simpson, I.C. Final Report for LCM2007—the new UK Land Cover Map; Centre for Ecology & Hydrology: Lancaster, UK, 2011. [Google Scholar]
- Wilson, R.G.; Martin, A. Right Crop Stage for Herbicide Use for Alfalfa, Sugarbeets, Soybeans, and Fieldbeans; Historical Materials from University of Nebraska-Lincoln Extension: Lincoln, NE, USA, 1978. [Google Scholar]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops; Iowa State University of Science and Technology-Cooperative Extension Service: Ames, IA, USA, 1986. [Google Scholar]
- ADAS. Aerial Photo Manual—User Guide, Crop Calendar; ADAS: Aberystwyth, UK, 1989. [Google Scholar]
- Weber, E.; Bleiholder, H. Erläuterungen zu den BBCH-Dezimal-Codes für die Entwicklungsstadien von Mais, Raps, Faba-Bohne, Sonnenblume und Erbse- mit Abbildungen. Gesunde Pflanz. 1990, 42, 308–321. [Google Scholar]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Weatherhead, K. Survey of Irrigation of Outdoor Crops in 2005—England and Wales; Cranfield University: Bedford, UK, 2007. [Google Scholar]
- Knox, J.W.; Weatherhead, E.K. The growth of trickle irrigation in England and Wales: Data, regulation and water resource impacts. Irrig. Drain. 2005, 54, 135–143. [Google Scholar] [CrossRef]
- Milford, G.F.J. Plant Structure and Crop Physiology (Chapter 3). In Sugar Beet; Blackwell Publishing: Hoboken, NJ, USA, 2006. [Google Scholar]
- Nemes, Z.; Baciu, A.; Popa, D.; Mike, L.; Petrus-Vancea, A.; Danci, O. The study of the potato’s life-cycle phases important to the increase of the individual variability. Analele Unversitatii Oradea Fasc. Biol. 2008, 15, 60–63. [Google Scholar]
- Rosen, C.J.; Bierman, P.M. Potato Yield and Tuber Set as Affected by Phosphorus Fertilization. Am. J. Pot Res. 2008, 85, 110–120. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Gitelson, A.A.; Peng, Y.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C. Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Knox, J.; Daccache, A.; Weatherhead, K.; Groves, S.; Hulin, A. Assessment of the Impacts of Climate Change and Changes in Land Use on Future Water Requirement and Availability for Farming, and Opportunities for Adaptation (FFG1129): (Phase I) Final Report; Department for Environment, Food and Rural Affairs: London, UK, 2013. [Google Scholar]
- AHDB. Barley Growth Guide; Agriculture and Horticulture Development Board Cereals & Oilseeds: Warwickshire, UK, 2015. [Google Scholar]
- DEKALB. Corn and Soybean Growth Stages; Monsanto Canada Inc.: Winnipeg, MB, Canada, 2015. [Google Scholar]
- Teagasc. The Spring Barley Guide; Teagasc Agriculture and Food Development Authority: Carlow, Ireland, 2015. [Google Scholar]
- Liebisch, F.; Pfeifer, J.; Khanna, R.; Lottes, P.; Stachniss, C.; Falck, T.; Sander, S.; Siegwart, R.; Walter, A.; Galceran, E. Flourish—A robotic approach for automation in crop management. In Workshop Computer-Bildanalyse und Unbemannte autonom fliegende Systeme in der Landwirtschaft; Wernigerode Harz University: Wernigerode, Germany, 21 April 2016. [Google Scholar]
- Patil, V.U.; Kawar, P.G.; Sundaresha, S.; Bhardwaj, V. Biology of Solanum tuberosum (Potato); Ministry of Environment, Forest and Climate Change and Central Potato Research Institute: New Delhi, India, 2016. [Google Scholar]
- Teagasc. Winter Wheat Guide; Teagasc Agriculture and Food Development Authority: Carlow, Ireland, 2016. [Google Scholar]
- Bell, J. Corn Growth Stages and Development; Texas A&M AgriLife Extension and Research Agronomist: Amarillo, TX, USA, 2017. [Google Scholar]
- Pringle, G. Maize Production: MANAGING Critical Plant Growth Stages. Farmer’s Weekly. 2017. Available online: https://www.farmersweekly.co.za/crops/field-crops/maize-production-managing-critical-plant-growth-stages/ (accessed on 4 December 2019).
- Yara. Fertiliser Recommendations|Crop Nutrition Programme|Sugar Beet|Yara UK. Yara United Kingdom. 2017. Available online: https://www.yara.co.uk/crop-nutrition/sugar-beet/sugar-beet-crop-nutrition-programme/ (accessed on 21 January 2020).
- AHDB. Wheat Growth Guide; Agriculture and Horticulture Development Board Cereals & Oilseeds: Warwickshire, UK, 2018. [Google Scholar]
- AHDB. Barley Growth Guide; Agriculture and Horticulture Development Board Cereals & Oilseeds: Warwickshire, UK, 2018. [Google Scholar]
- AHDB. Oilseed Rape Guide; Agriculture and Horticulture Development Board Cereals & Oilseeds: Warwickshire, UK, 2018. [Google Scholar]
- Meier, U. Growth stages of mono- and dicotyledonous plants: BBCH Monograph. Open Agrar. Repos. Quedlinbg. 2018. [Google Scholar] [CrossRef]
- Skellern, M.P.; Cook, S.M. The potential of crop management practices to reduce pollen beetle damage in oilseed rape. Arthropod-Plant Interact. 2018, 12, 867–879. [Google Scholar] [CrossRef] [Green Version]
- Terrachem. Oilseed Rape Crop Growth [WWW Document]. Terrachem a Growing Technology. 2018. Available online: https://www.terrachem.ie/oilseed-rape-crop-growth/ (accessed on 2 December 2019).
- Blancon, J.; Dutartre, D.; Tixier, M.-H.; Weiss, M.; Comar, A.; Praud, S.; Baret, F. A High-Throughput Model-Assisted Method for Phenotyping Maize Green Leaf Area Index Dynamics Using Unmanned Aerial Vehicle Imagery. Front. Plant. Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- FAO. Sugarbeet|Land & Water|Food and Agriculture Organization of the United Nations|Land & Water|Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/sugarbeet/en/ (accessed on 21 January 2020).
- YARA. Barley Growth and Development. YARA Knowledge Grows. 2020. Available online: https://www.yara.co.uk/crop-nutrition/barley/barley-growth-and-development/ (accessed on 21 January 2020).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Liang, S.; Zhang, X.; Xiao, Z.; Cheng, J.; Liu, Q.; Zhao, X. Global Land Surface Satellite (GLASS) Products: Algorithms, Validation and Analysis; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Karabulut, M.; Gürbüz, M.; Korkmaz, H. Precipitation and temperature trend analyses. Int. Environ. Appl. Sci. 2008, 3, 399–408. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Duhan, D.; Pandey, A. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmos. Res. 2013, 122, 136–149. [Google Scholar] [CrossRef]
- Alcaraz-Segura, D.; Liras, E.; Tabik, S.; Paruelo, J.; Cabello, J. Evaluating the consisten- cy of the 1982–1999 NDVI trends in the Iberian peninsula across four time-series de- rived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II. Sensors 2010, 10, 1291–1314. [Google Scholar] [CrossRef]
- Mwangi, H.M.; Julich, S.; Patil, S.D.; McDonald, M.A.; Feger, K.-H. Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya. J. Hydrolys. Reg. Stud. 2016, 5, 244–260. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Musial, J.; Malinska, A.; Budzynska, M.; Gurdak, R.; Kiryla, W.; Bartold, M.; Grzybowski, P. Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery. Remote Sens. 2018, 10, 1979. [Google Scholar] [CrossRef] [Green Version]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. I, II, III I, II, III. Proc. K. Ned. Akad. Wet. 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources In Hydrologic Analysis and Interpretation; United States Geological Survey: Reston, VA, USA, 2002; Volume 4, Chapter A3. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Guo, L.; Gong, H.; Zhu, F.; Zhu, L.; Zhang, Z.; Zhou, C.; Gao, M.; Sun, Y. Analysis of the Spatiotemporal Variation in Land Subsidence on the Beijing Plain, China. Remote Sens. 2019, 11, 1170. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, W.S.; Grosse, E.; Shyu, W.M. Local Regression Models In Statistical Models in S; Routledge: Boca Raton, FL, USA, 1992; p. 68. [Google Scholar]
- Cleveland, W.S.; Loader, C. Smoothing by Local Regression: Principles and Methods. In Statistical Theory and Computational Aspects of Smoothing, Contributions to Statistics; Härdle, W., Schimek, M.G., Eds.; Physica-Verlag HD: Heidelberg, Germany, 1996; pp. 10–49. [Google Scholar]
- Gijbels, I.; Prosdocimi, I. Loess. WIREs Comput. Stat. 2010, 2, 590–599. [Google Scholar] [CrossRef]
- Moreno, Á.; García-Haro, F.J.; Martínez, B.; Gilabert, M.A. Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter. Remote Sens. 2014, 6, 8238–8260. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, W.G. Loess: A nonparametric, graphical tool for depicting relationships between variables. Elect. Stud. 2000, 19, 577–613. [Google Scholar] [CrossRef]
- Gao, Q.; Zhu, L.; Lin, Y.; Chen, X. Anomaly Noise Filtering with Logistic Regression and a New Method for Time Series Trend Computation for Monitoring Systems. In Proceedings of the 2019 IEEE 27th International Conference on Network Protocols (ICNP), Chicago, IL, USA, 8–10 October 2019; pp. 1–6. [Google Scholar]
- Prabhakaran, S. Loess Regression and Smoothing With, R. r-Statistics. 2017. Available online: http://r-statistics.co/Loess-Regression-With-R.html (accessed on 16 February 2021).
- Tate, N.J.; Brunsdon, C.; Charlton, M.; Fotheringham, A.S.; Jarvis, C.H. Smoothing/filtering LiDAR digital surface models. Experiments with loess regression and discrete wavelets. J. Geogr. Syst. 2005, 7, 273–290. [Google Scholar] [CrossRef]
- Foody, G.M. On the compensation for chance agreement in image classification accuracy assessment. Photogramm. Eng. Remote Sens. 1992, 58, 1459–1460. [Google Scholar]
- Ma, Z.; Redmond, R.L. Tau coefficients for accuracy assessment of classification of remote sensing data. October 1995, 61, 435–439. [Google Scholar]
- Stehman, S.V.; Czaplewski, R.L. Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Turk, G. Map evaluation and ‘chance correction’. . Photogramm. Eng. Remote Sens. 2002, 68, 123–133. [Google Scholar] [CrossRef]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global and Cover Maps. Scientific and Technical Research Series: EUR 22156 EN; European Commission Joint Research Centre, Institute for Environment and Sustainability: Ispra, Italy, 2006. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Lopes, A.; Le Toan, T. Effet de la polarization d’une onde electro-magnetique dans l’attenuation de l’onde dans un couvert vegetal. In Proceedings of the 3rd International Coll. Spectral Signatures in Remote Sensing, ESA SP-247, Les Arcs, France, 16–20 December 1985; pp. 117–122. [Google Scholar]
- Brown, S.C.M.; Quegan, S.; Morrison, K.; Bennett, J.C.; Cookmartin, G. High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1602–1610. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, G.; McNairn, H.; Homayouni, S.; Shang, J. RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring. IEEE J. Sel. Top. in Appl. Earth Obs. Remote Sens. 2014, 7, 4461–4471. [Google Scholar] [CrossRef]
- Paris, J.F. Radar Backscattering Properties of Corn And Soybeans at Frequencies of 1.6, 4.75, And 13.3 GHz. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 392–400. [Google Scholar] [CrossRef]
- Wegmüller, U.; Santoro, M.; Mattia, F.; Balenzano, A.; Satalino, G.; Marzahn, P.; Fischer, G.; Ludwig, R.; Floury, N. Progress in the understanding of narrow directional microwave scattering of agricultural fields. Remote Sens. Environ. 2011, 115, 2423–2433. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of Using Sentinel-1 and -2 Time-Series to Identify Winter Land Use in Agricultural Landscapes. Remote Sens. 2019, 11, 37. [Google Scholar] [CrossRef] [Green Version]
Sites | WB | WW | WR | SB | SW | MA | PO | BT | GR | |
---|---|---|---|---|---|---|---|---|---|---|
Pembrokeshire | (% crops) (% parcels) | 11 4 | 19 6 | 8 3 | 31 10 | 1 0 | 9 3 | 18 6 | 2 1 | - 67 |
Vale of Glamorgan | (% crops) (% parcels) | 19 8 | 43 18 | 14 6 | 11 5 | 0 0 | 11 5 | 1 0 | 2 1 | - 57 |
Monmouthshire | (% crops) (% parcels) | 8 3 | 46 15 | 15 5 | 5 2 | 0 0 | 26 9 | 0 0 | 0 0 | - 67 |
WB | WR | WW | SB | BT | MA | PO | SW | GR | Total | |
---|---|---|---|---|---|---|---|---|---|---|
Pembrokeshire | 23 | 17 | 40 | 65 | 5 | 20 | 39 | 2 | 433 | 644 |
Vale of Glamorgan | 49 | 38 | 113 | 28 | 5 | 29 | 2 | 0 | 353 | 617 |
Monmouthshire | 18 | 32 | 100 | 11 | 1 | 56 | 0 | 1 | 435 | 654 |
Product | Site | Seasonal Crops | Annual Crops | |||||
---|---|---|---|---|---|---|---|---|
All Parcels | Crops | All Parcels | Crops | |||||
K-based | Pembrokeshire Glamorgan Monmouthshire | 90.2 * 89.6 * 82.0 * | 88.6 * 90.6 * 85.8 | 90.2 * 89.8 * 82.0 | 87.1 * 90.1 * 83.5 * | |||
CEH 1 | Pembrokeshire Glamorgan Monmouthshire | 60.8 70.3 61.9 | 87.6 79.4 94.2 * | - - - | - - - | |||
OneSoil | Pembrokeshire Glamorgan Monmouthshire | - - - | - - - | 83.9 88.0 92.2 * | 70.5 83.5 76.8 |
Measure | Crop Type | Pembrokeshire | Vale of Glamorgan | Monmouthshire | |||
---|---|---|---|---|---|---|---|
K-Based | CEH 1 | K-Based | CEH 1 | K-Based | CEH1 | ||
PAs | WB | 100.00 * | 95.24 | 89.58 | 100.00 * | 88.89 | 100.00 * |
WR | 100.00 * | 100.00 * | 94.74 | 100.00 * | 90.63 | 100.00 * | |
WW | 82.35 * | 65.96 | 100.00 * | 92.38 | 87.37 * | 76.74 | |
SB | 80.36 * | 77.78 | 82.61 * | 4.35 | - | - | |
BT | - | - | - | - | - | - | |
MA | 90.00 * | 86.36 | 76.92 | 100.00 * | 76.19 | 100.00 * | |
PO | 78.95 | 100.00 * | - | - | - | - | |
SW | - | - | - | - | - | - | |
UAs | WB | 100.00 * | 86.48 | 97.15 * | 95.45 | 90.37 * | 83.50 |
WR | 100.00 * | 100.00 * | 100.00 * | 100.00 * | 100.00 * | 100.00 * | |
WW | 96.90 * | 93.27 | 86.43 | 100.00 * | 82.72 | 100.00 * | |
SB | 72.63 | 82.04 * | 97.54 * | 60.34 | - | - | |
BT | - | - | - | - | - | - | |
MA | 76.08 | 95.89 * | 89.84 * | 88.46 | 100.00 * | 100.00 * | |
PO | 93.65 * | 85.22 | - | - | - | - | |
SW | - | - | - | - | - | - |
Measure | Crop Type | Pembrokeshire | Vale of Glamorgan | Monmouthshire | |||
---|---|---|---|---|---|---|---|
K-Based | OneSoil | K-Based | OneSoil | K-Based | OneSoil | ||
PAs | Barley | 85.90 * | 62.07 | 88.73 | 92.21 * | 80.77 * | 68.97 |
Rapeseed | 100.00 * | 100.00 * | 94.74 | 100.00 * | 90.63 | 100.00 * | |
Wheat | 80.56 * | 45.24 | 100.00 * | 59.29 | 86.46 | 98.00 * | |
Beets | - | - | - | - | - | - | |
Maize | 90.00 | 95.00 * | 76.92 | 82.35 * | 76.19 * | 40.38 | |
Potatoes | 78.95 * | 50.00 | - | - | - | - | |
UAs | Barley | 74.57 * | 57.21 | 97.12 * | 61.24 | 74.07 | 82.67 * |
Rapeseed | 100.00 * | 100.00 * | 100.00 * | 100.00 * | 100.00 * | 96.67 | |
Wheat | 95.37 * | 84.90 | 80.87 | 91.94 * | 83.39 | 86.74 | |
Beets | - | - | - | - | - | - | |
Maize | 76.57 * | 63.78 | 96.47 | 98.45 * | 100.00 * | 97.58 | |
Potatoes | 95.35 | 95.60 * | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Planque, C.; Lucas, R.; Punalekar, S.; Chognard, S.; Hurford, C.; Owers, C.; Horton, C.; Guest, P.; King, S.; Williams, S.; et al. National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm. Remote Sens. 2021, 13, 846. https://doi.org/10.3390/rs13050846
Planque C, Lucas R, Punalekar S, Chognard S, Hurford C, Owers C, Horton C, Guest P, King S, Williams S, et al. National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm. Remote Sensing. 2021; 13(5):846. https://doi.org/10.3390/rs13050846
Chicago/Turabian StylePlanque, Carole, Richard Lucas, Suvarna Punalekar, Sebastien Chognard, Clive Hurford, Christopher Owers, Claire Horton, Paul Guest, Stephen King, Sion Williams, and et al. 2021. "National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm" Remote Sensing 13, no. 5: 846. https://doi.org/10.3390/rs13050846
APA StylePlanque, C., Lucas, R., Punalekar, S., Chognard, S., Hurford, C., Owers, C., Horton, C., Guest, P., King, S., Williams, S., & Bunting, P. (2021). National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm. Remote Sensing, 13(5), 846. https://doi.org/10.3390/rs13050846