Multisensor and Multiresolution Remote Sensing Image Classification through a Causal Hierarchical Markov Framework and Decision Tree Ensembles
Abstract
:1. Introduction
2. Previous Work
3. Methodology
3.1. The Proposed Hierarchical Causal Markov Framework
3.1.1. Model Assumptions
3.1.2. Methodological Properties
3.2. The Proposed Multimodal Classification Methods
3.2.1. Markov Mesh-Based Classification Algorithm
3.2.2. Markov Chain-Based Classification Algorithm
3.2.3. Role of Decision Tree Ensembles
4. Experimental Results
4.1. Dataset and Experimental Setup
4.2. Results and Performances
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Theorem 1
Appendix A.2. Proof of Theorem 2
References
- Moser, G.; Serpico, S.B.; Benediktsson, J.A. Land-Cover Mapping by Markov Modeling of Spatial–Contextual Information in Very-High-Resolution Remote Sensing Images. Proc. IEEE 2013, 101, 631–651. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction, 5th ed.; Springer: Berlin, Germany, 2013. [Google Scholar]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, G. Remote Sensing Image Fusion; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Hedhli, I.; Moser, G.; Serpico, S.B.; Zerubia, J. Classification of multisensor and multiresolution remote sensing images through hierarchical Markov random fields. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2448–2452. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Deep learning in object recognition, detection, and segmentation. Found. Trends Signal Process. 2016, 8, 217–382. [Google Scholar] [CrossRef]
- Arnab, A.; Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Larsson, M.; Kirillov, A.; Savchynskyy, B.; Rother, C.; Kahl, F.; Torr, P.H.S. Conditional random fields meet deep neural networks for semantic segmentation: Combining probabilistic graphical models with deep learning for structured prediction. IEEE Signal Process. Mag. 2018, 35, 37–52. [Google Scholar] [CrossRef]
- Li, S.Z. Markov Random Field Modeling in Image Analysis, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 1222–1239. [Google Scholar] [CrossRef] [Green Version]
- Baggenstoss, P.M. A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces. IEEE Trans. Speech Audio Process. 2001, 9, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Laferté, J.M.; Pérez, P.; Heitz, F. Discrete Markov image modeling and inference on the quadtree. IEEE Trans. Image Process. 2000, 9, 390–404. [Google Scholar] [CrossRef]
- Abend, K.; Harley, T.J.; Kanal, L.N. Classification of binary random patterns. IEEE Trans. Inf. Theory 1965, 11, 538–544. [Google Scholar] [CrossRef]
- Fjortoft, R.; Delignon, Y.; Pieczynski, W.; Sigelle, M.; Tupin, F. Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields. IEEE Trans. Geosci. Remote Sens. 2003, 41, 675–686. [Google Scholar] [CrossRef]
- Devijver, P.A. Hidden Markov mesh random field models in image analysis. J. Appl. Stat. 1993, 20, 187–227. [Google Scholar] [CrossRef]
- Dunmur, A.P.; Titterington, D.M. Computational Bayesian analysis of hidden Markov mesh models. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 1296–1300. [Google Scholar] [CrossRef]
- Yousefi, S.; Kehtarnavaz, N.; Cao, Y. Computationally tractable stochastic image modeling based on symmetric Markov mesh random fields. IEEE Trans. Image Process. 2013, 22, 2192–2206. [Google Scholar] [CrossRef] [PubMed]
- Razlighi, Q.R.; Kehtarnavaz, N.; Nosratinia, A. Computation of image spatial entropy using quadrilateral Markov random field. IEEE Trans. Image Process. 2009, 18, 2629–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criminisi, A.; Shotton, J. Decision Forests for Computer Vision and Medical Image Analysis; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hedhli, I.; Moser, G.; Serpico, S.B.; Zerubia, J. Multi-resolution classification of urban areas using hierarchical symmetric Markov mesh models. In Proceedings of the JURSE 2017, Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar]
- Montaldo, A.; Fronda, L.; Hedhli, I.; Moser, G.; Serpico, S.B.; Zerubia, J. Causal Markov mesh hierarchical modeling for the contextual classification of multiresolution satellite images. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2716–2720. [Google Scholar]
- Montaldo, A.; Fronda, L.; Hedhli, I.; Moser, G.; Zerubia, J.; Serpico, S.B. Joint classification of multiresolution and multisensor data using a multiscale Markov mesh model. In Proceedings of the 2019 IEEE Geoscience and Remote Sensing Society (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 2810–2813. [Google Scholar]
- Montaldo, A.; Fronda, L.; Hedhli, I.; Moser, G.; Serpico, S.; Zerubia, J. A causal hierarchical Markov framework for the classification of multiresolution and multisensor remote sensing images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 269–277. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.J.; Kuncheva, L.I.; Alonso, C.J. Rotation forest: A New classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Merentitis, A.; Debes, C. Many hands make light work—On ensemble learning techniques for data fusion in remote sensing. IEEE Geosci. Remote Sens. Mag. 2015, 3, 86–99. [Google Scholar] [CrossRef]
- Serpico, S.B.; Dellepiane, S.; Boni, G.; Moser, G.; Angiati, E.; Rudari, R. Information extraction from remote sensing images for flood monitoring and damage evaluation. Proc. IEEE 2012, 100, 2946–2970. [Google Scholar] [CrossRef]
- Pohl, C.; Van Genderen, J. Remote Sensing Image Fusion: A Practical Guide, 1st ed.; CRC Press: Baton Rouge, FL, USA, 2016. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing—The Sparse Way, 3rd ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Li, S.; Yang, B. Hybrid multiresolution method for multisensor multimodal image fusion. IEEE Sensors J. 2010, 10, 1519–1526. [Google Scholar]
- Pajares, G.; Manuel de la Cruz, J. A wavelet-based image fusion tutorial. Pattern Recognit. 2004, 37, 1855–1872. [Google Scholar] [CrossRef]
- Cole-Rhodes, A.; Johnson, K.; LeMoigne, J.; Zavorin, I. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Trans. Image Process. 2003, 12, 1495–1511. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, S.; Jiao, L.; Tian, D.; Wang, S. A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4328–4338. [Google Scholar] [CrossRef]
- Zavorin, I.; Moigne, J. Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery. IEEE Trans. Image Process. 2005, 14, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.S.; King, R.L.; Younan, N.H.; Holcomb, D.W. Estimation of the mumber of decomposition levels for a wavelet-based multiresolution multisensor image fusion. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3674–3686. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Höfle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R.; et al. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef] [Green Version]
- Carper, W.; Lillesand, T.; Kiefer, P. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Chavez, P.; Kwarteng, A. Extracting spectral contrast in landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348. [Google Scholar]
- Baronti, S.; Aiazzi, B.; Selva, M.; Garzelli, A.; Alparone, L. A theoretical analysis of the effects of aliasing and misregistration on pansharpened imagery. IEEE J. Sel. Top. Signal Process. 2011, 5, 446–453. [Google Scholar] [CrossRef]
- Liu, J.G. Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Nunez, J.; Otazu, X.; Fors, O.; Prades, A.; Pala, V.; Arbiol, R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1204–1211. [Google Scholar] [CrossRef] [Green Version]
- Otazu, X.; Gonzalez-Audicana, M.; Fors, O.; Nunez, J. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2376–2385. [Google Scholar] [CrossRef] [Green Version]
- Nencini, F.; Garzelli, A.; Baronti, S.; Alparone, L. Remote sensing image fusion using the curvelet transform. Inf. Fusion 2007, 8, 143–156. [Google Scholar] [CrossRef]
- Thoonen, G.; Mahmood, Z.; Peeters, S.; Scheunders, P. Multisource classification of color and hyperspectral images using color attribute profiles and composite decision fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 510–521. [Google Scholar] [CrossRef]
- Gómez-Chova, L.; Tuia, D.; Moser, G.; Camps-Valls, G. Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 2015, 103, 1560–1584. [Google Scholar] [CrossRef]
- Datcu, M.; Melgani, F.; Piardi, A.; Serpico, S.B. Multisource data classification with dependence trees. IEEE Trans. Geosci. Remote Sens. 2002, 40, 609–617. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Swain, P.H.; Ersoy, O.K. Neural network approaches versus statistical methods in classification of multisource remote sensing data. In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; Volume 2, pp. 489–492. [Google Scholar]
- Serpico, S.B.; Roli, F. Classification of multi-sensor remote-sensing images by structured neural networks. IEEE Trans. Geosci. Remote Sens. 1995, 33, 562–578. [Google Scholar] [CrossRef]
- Simone, G.; Farina, A.; Morabito, F.; Serpico, S.B.; Bruzzone, L. Image fusion techniques for remote sensing applications. Int. J. Inf. Fusion 2002, 3, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Waske, B.; Benediktsson, J.A. Fusion of support vector machines for classification of multisensor data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3858–3866. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L.; Martinez-Ramon, M. Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1822–1835. [Google Scholar] [CrossRef]
- Solberg, A.H.S.; Taxt, T.; Jain, A.K. A Markov random field model for classification of multisource satellite imagery. IEEE Trans. Geosci. Remote Sens. 1996, 34, 100–113. [Google Scholar] [CrossRef]
- Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. Landsat ETM+ and SAR image fusion based on generalized intensity Modulation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2832–2839. [Google Scholar] [CrossRef]
- Chibani, Y. Integration of panchromatic and SAR features into multispectral SPOT images using the ‘à trous’ wavelet decomposition. Int. J. Remote Sens. 2007, 28, 2295–2307. [Google Scholar] [CrossRef]
- Byun, Y.; Choi, J.; Han, Y. An area-based image fusion scheme for the integration of SAR and optical satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2212–2220. [Google Scholar] [CrossRef]
- Colditz, R.R.; Wehrmann, T.; Bachmann, M.; Steinnocher, K.; Schmidt, M.; Strunz, G.; Dech, S. Influence of image fusion approaches on classification accuracy: A case study. Int. J. Remote Sens. 2006, 27, 3311–3335. [Google Scholar] [CrossRef]
- Storvik, G.; Fjortoft, R.; Solberg, A.H.S. A Bayesian approach to classification of multiresolution remote sensing data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 539–547. [Google Scholar] [CrossRef]
- Voisin, A.; Krylov, V.A.; Moser, G.; Serpico, S.B.; Zerubia, J. Supervised classification of multisensor and multiresolution remote sensing images with a hierarchical copula-based approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3346–3358. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, G.; Zhang, T. Temporal attention networks for multitemporal multisensor crop classification. IEEE Access 2019, 7, 134677–134690. [Google Scholar] [CrossRef]
- Li, Z.; Chen, G.; Zhang, T. A CNN-transformer hybrid approach for crop classification using multitemporal multisensor images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 847–858. [Google Scholar] [CrossRef]
- Willsky, A.S. Multiresolution Markov models for signal and image processing. Proc. IEEE 2002, 90, 1396–1458. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill, Inc.: New York, NY, USA USA, 1987. [Google Scholar]
- Dikshit, O.; Roy, D.P. An empirical investigation of image resampling effects upon the spectral and textural supervised classification of a high spatial resolution multispectral image. Photogramm. Eng. Remote Sens. 1996, 62, 1085–1092. [Google Scholar]
- Inglada, J.; Muron, V.; Pichard, D.; Feuvrier, T. Analysis of artifacts in subpixel remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Kato, Z.; Zerubia, J. Markov Random Fields in Image Segmentation. Found. Trends Signal Process. 2012, 5, 1–155. [Google Scholar] [CrossRef]
- Bouman, C.A.; Shapiro, M. A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process. 1994, 3, 162–177. [Google Scholar] [CrossRef]
- Hedhli, I.; Moser, G.; Zerubia, J.; Serpico, S.B. A new cascade model for the hierarchical joint classification of multitemporal and multiresolution remote sensing data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6333–6348. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, S.; Kehtarnavaz, N. Generating symmetric causal Markov random fields. Electron. Lett. 2011, 47, 1224–1225. [Google Scholar] [CrossRef]
- Schapire, R. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Briem, G.J.; Benediktsson, J.A.; Sveinsson, J.R. Multiple classifiers applied to multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2291–2299. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Heaton, J.; Zheng, S.; Charlet, D.; Liu, H. Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data. Int. J. Remote Sens. 2012, 33, 1823–1849. [Google Scholar] [CrossRef]
- DeFries, R.S.; Chan, J.C.W. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sens. Environ. 2000, 74, 503–515. [Google Scholar] [CrossRef]
- Kolmogorov, V. Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1568–1583. [Google Scholar] [CrossRef] [PubMed]
- Moser, G.; De Giorgi, A.; Serpico, S.B. Multiresolution supervised classification of panchromatic and multispectral images by Markov random fields and graph cuts. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5054–5070. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT Press: Boston, MA, USA, 2016. [Google Scholar]
- Zhou, Y.; Li, J.; Feng, L.; Zhang, X.; Hu, X. Adaptive scale selection for multiscale segmentation of satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3641–3651. [Google Scholar] [CrossRef]
- Akbas, E.; Ahuja, N. Low-level multiscale image segmentation and a benchmark for its evaluation. Comput. Vis. Image Underst. 2020, 199, 103026. [Google Scholar] [CrossRef]
Resolution m | RanF | RotF | ET | GBRT | |
---|---|---|---|---|---|
Proposed-SMMRF | OA % | 96.06 | 94.48 | 95.07 | 96.36 |
Cohen’s coeff | 0.9047 | 0.8613 | 0.8786 | 0.9124 | |
Proposed-MC | OA % | 96.80 | 96.37 | 97.04 | 96.90 |
Cohen’s coeff | 0.9026 | 0.8868 | 0.9098 | 0.9057 | |
Resolutionm | RanF | RotF | ET | GBRT | |
Proposed-SMMRF | OA % | 96.23 | 94.47 | 96.13 | 96.63 |
Cohen’s coeff | 0.9174 | 0.8691 | 0.9148 | 0.9276 | |
Proposed-MC | OA % | 96.77 | 95.85 | 96.81 | 97.00 |
Cohen’s coeff | 0.9139 | 0.8800 | 0.9150 | 0.9218 | |
Resolution 5 m | RanF | RotF | ET | GBRT | |
Proposed-SMMRF | OA % | 90.00 | 85.81 | 87.58 | 96.01 |
Cohen’s coeff | 0.7680 | 0.6561 | 0.7035 | 0.9288 | |
Proposed-MC | OA % | 90.97 | 87.92 | 88.78 | 96.01 |
Cohen’s coeff | 0.7347 | 0.6284 | 0.6588 | 0.9288 |
Resolution m | Container % | Vegetation % | Asphalt % | Buildings % | Water % | OA % | Cohen’s Coeff |
---|---|---|---|---|---|---|---|
Proposed-SMMRF-GBRT | 87.08 | 33.27 | 95.17 | 99.04 | 97.18 | 96.36 | 0.9124 |
Proposed-MC-GBRT | 86.97 | 34.57 | 97.82 | 99.36 | 100 | 96.90 | 0.9057 |
Single-res. MRF after resampling | 63.97 | 74.81 | 98.64 | 99.30 | 76.24 | 94.58 | 0.888 |
Adaptation of [75] | 75.06 | 85.32 | 95.89 | 97.75 | 99.36 | 95.11 | 0.901 |
Resolutionm | Container % | Vegetation % | Asphalt % | Buildings % | Water % | OA % | Cohen’sCoeff |
Proposed-SMMRF-GBRT | 86.31 | 32.71 | 94.87 | 100 | 96.04 | 96.63 | 0.9276 |
Proposed-MC-GBRT | 86.92 | 33.08 | 97.29 | 100 | 100 | 97.00 | 0.9218 |
Resolution 5 m | Container % | Vegetation % | Asphalt % | Buildings % | Water % | OA % | Cohen’sCoeff |
Proposed-SMMRF-GBRT | 87.98 | 25.39 | 96.55 | 100 | 88.88 | 96.01 | 0.9288 |
Proposed-MC-GBRT | 87.98 | 25.39 | 96.55 | 100 | 88.88 | 96.01 | 0.9288 |
Resolution 1 m | RanF | RotF | ET | GBRT | |
---|---|---|---|---|---|
Proposed-SMMRF | OA % | 97.84 | 98.34 | 98.77 | 99.12 |
Cohen’s coeff | 0.9749 | 0.9818 | 0.9879 | 0.9976 | |
Proposed-MC | OA % | 97.52 | 97.10 | 98.44 | 98.58 |
Cohen’s coeff | 0.9704 | 0.9647 | 0.9833 | 0.9853 | |
Resolution 2 m | RanF | RotF | ET | GBRT | |
Proposed-SMMRF | OA % | 97.45 | 96.65 | 98.31 | 98.01 |
Cohen’s coeff | 0.9745 | 0.9635 | 0.9867 | 0.9825 | |
Proposed-MC | OA % | 97.23 | 96.61 | 98.09 | 98.03 |
Cohen’s coeff | 0.9715 | 0.9629 | 0.9836 | 0.9829 | |
Resolution 4 m | RanF | RotF | ET | GBRT | |
Proposed-SMMRF | OA % | 96.25 | 94.79 | 96.95 | 96.36 |
Cohen’s coeff | 0.9682 | 0.9477 | 0.9781 | 0.9697 | |
Proposed-MC | OA % | 96.25 | 94.75 | 96.95 | 96.36 |
Cohen’s coeff | 0.9682 | 0.9477 | 0.9782 | 0.9697 |
Resolution 1 m | Urban % | Agriculture % | Rangeland % | Forest % | Water % | Wet Soil % | Bare Soil % | OA % | Cohen’s Coeff |
---|---|---|---|---|---|---|---|---|---|
Proposed-SMMRF-GBRT | 100 | 99.07 | 99.65 | 100 | 99.65 | 100 | 100 | 99.12 | 0.9976 |
Proposed-MC-GBRT | 99.54 | 98.26 | 99.91 | 86.40 | 99.80 | 100 | 100 | 98.58 | 0.9853 |
Single-res. MRF after resampling | 98.58 | 99.12 | 92.23 | 36.98 | 100 | 98.30 | 96.82 | 96.03 | 0.9453 |
Method in [75] | 99.70 | 99.21 | 97.34 | 64.92 | 100 | 100 | 99.66 | 98.60 | 0.9804 |
Resolution 2 m | Urban % | Agriculture % | Rangeland % | Forest % | Water % | Wet Soil % | Bare Soil % | OA % | Cohen’sCoeff |
Proposed-SMMRF-GBRT | 99.54 | 98.06 | 99.91 | 78.74 | 99.53 | 100 | 100 | 98.01 | 0.9825 |
Proposed-MC-GBRT | 99.49 | 98.08 | 99.91 | 79.52 | 99.84 | 100 | 100 | 98.03 | 0.9829 |
Resolution 4 m | Urban % | Agriculture % | Rangeland % | Forest % | Water % | Wet Soil % | Bare Soil % | OA % | Cohen’sCoeff |
Proposed-SMMRF-GBRT | 99.09 | 96.81 | 99.82 | 64.86 | 98.72 | 100 | 100 | 96.36 | 0.9697 |
Proposed-MC-GBRT | 99.09 | 96.81 | 99.82 | 64.86 | 98.72 | 100 | 100 | 96.36 | 0.9697 |
Resolution m | Container % | Vegetation % | Asphalt % | Buildings % | Water % | OA % | Cohen’s Coeff |
---|---|---|---|---|---|---|---|
Proposed-SMMRF-RanF | 85.76 | 34.29 | 95.03 | 98.86 | 95.35 | 96.06 | 0.9047 |
Proposed-SMMRF-RotF | 83.37 | 38.75 | 81.51 | 99.52 | 67.73 | 94.48 | 0.8613 |
Proposed-SMMRF-ET | 82.29 | 37.63 | 88.75 | 98.77 | 91.89 | 95.07 | 0.8786 |
Proposed-SMMRF-GBRT | 87.08 | 33.27 | 95.17 | 99.04 | 97.18 | 96.36 | 0.9124 |
Resolutionm | Container % | Vegetation % | Asphalt % | Buildings % | Water % | OA % | Cohen’sCoeff |
Proposed-SMMRF-RanF | 85.95 | 27.51 | 95.32 | 99.58 | 95.85 | 96.23 | 0.9174 |
Proposed-SMMRF-RotF | 76.85 | 32.71 | 81.18 | 100 | 92.29 | 94.47 | 0.8691 |
Proposed-SMMRF-ET | 84.76 | 32.71 | 95.77 | 99.44 | 95.45 | 96.13 | 0.9148 |
Proposed-SMMRF-GBRT | 86.31 | 32.71 | 94.87 | 100 | 96.04 | 96.63 | 0.9276 |
Resolution 5 m | Container % | Vegetation % | Asphalt % | Buildings % | Water % | OA % | Cohen’sCoeff |
Proposed-SMMRF-RanF | 73.32 | 15.87 | 84.40 | 97.28 | 32.54 | 90.00 | 0.7680 |
Proposed-SMMRF-RotF | 45.91 | 14.28 | 65.60 | 97.26 | 28.57 | 85.81 | 0.6561 |
Proposed-SMMRF-ET | 57.93 | 20.63 | 72.24 | 97.23 | 31.74 | 87.58 | 0.7035 |
Proposed-SMMRF-GBRT | 87.98 | 25.39 | 96.55 | 100 | 88.88 | 96.01 | 0.9288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastorino, M.; Montaldo, A.; Fronda, L.; Hedhli, I.; Moser, G.; Serpico, S.B.; Zerubia, J. Multisensor and Multiresolution Remote Sensing Image Classification through a Causal Hierarchical Markov Framework and Decision Tree Ensembles. Remote Sens. 2021, 13, 849. https://doi.org/10.3390/rs13050849
Pastorino M, Montaldo A, Fronda L, Hedhli I, Moser G, Serpico SB, Zerubia J. Multisensor and Multiresolution Remote Sensing Image Classification through a Causal Hierarchical Markov Framework and Decision Tree Ensembles. Remote Sensing. 2021; 13(5):849. https://doi.org/10.3390/rs13050849
Chicago/Turabian StylePastorino, Martina, Alessandro Montaldo, Luca Fronda, Ihsen Hedhli, Gabriele Moser, Sebastiano B. Serpico, and Josiane Zerubia. 2021. "Multisensor and Multiresolution Remote Sensing Image Classification through a Causal Hierarchical Markov Framework and Decision Tree Ensembles" Remote Sensing 13, no. 5: 849. https://doi.org/10.3390/rs13050849
APA StylePastorino, M., Montaldo, A., Fronda, L., Hedhli, I., Moser, G., Serpico, S. B., & Zerubia, J. (2021). Multisensor and Multiresolution Remote Sensing Image Classification through a Causal Hierarchical Markov Framework and Decision Tree Ensembles. Remote Sensing, 13(5), 849. https://doi.org/10.3390/rs13050849