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Abstract: Skipjack tuna are the most abundant commercial species in Taiwan’s pelagic purse seine
fisheries. However, the rapidly changing marine environment increases the challenge of locating
target fish in the vast ocean. The aim of this study was to identify the potential fishing grounds of
skipjack tuna in the Western and Central Pacific Ocean (WCPO). The fishing grounds of skipjack
tuna were simulated using the habitat suitability index (HSI) on the basis of global fishing activities
and remote sensing data from 2012 to 2015. The selected environmental factors included sea surface
temperature and front, sea surface height, sea surface salinity, mixed layer depth, chlorophyll a
concentration, and finite-size Lyapunov exponents. The final input factors were selected according
to their percentage contribution to the total efforts. Overall, 68.3% of global datasets and 35.7% of
Taiwanese logbooks’ fishing spots were recorded within 5 km of suitable habitat in the daily field.
Moreover, 94.9% and 79.6% of global and Taiwan data, respectively, were identified within 50 km
of suitable habitat. Our results showed that the model performed well in fitting daily forecast and
actual fishing position data. Further, results from this study could benefit habitat monitoring and
contribute to managing sustainable fisheries for skipjack tuna by providing wide spatial coverage
information on habitat variation.

Keywords: Western and Central Pacific Ocean; skipjack tuna; habitat suitability index

1. Introduction

Skipjack tuna (Katsuwonus pelamis) is known for being highly migratory and is widely
distributed in the Western and Central Pacific Ocean (WCPO) [1]. The lack of a swim
bladder allows skipjack tuna to flexibly move near the surface of water [2], and they can
be caught by industry fishing equipment, such as purse seine nets and pole and line [3,4].
As an economically harvested species, skipjack tuna are mainly sold to canneries [5]. This
fishery harvest ranks third among the most fished species globally, and catches have more
than doubled since the 1980s [6]. The increasing catches of skipjack tuna are evident due
to the flourishing large-scale, international purse seine fisheries that predominate in the
WCPO [3,7].

Several studies have noted that environmental parameters influence skipjack tuna
distribution selection, resulting in apparent spatial shifts in the skipjack tuna [8]. The
physiology of skipjack also plays a role: They avoid cooler water and inhabit warm water
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(upper 200 m) in the eastern tropical Pacific [9]. Sea surface temperature (SST) is used to
elaborate on the main habitat characteristics of tuna-like species in oceans globally. For
example, the suitable SST for skipjack tuna ranges from 20.5 to 26.0 ◦C in the Western North
Pacific Ocean [2]. Mature individuals are usually found at SSTs over 24 ◦C in the Western
Pacific Ocean [1]. In the Western Indian Ocean and Eastern Central Atlantic, the SST ranges
from 21.6 to 30.0 ◦C the SST ranges from 21.6 to 30.0 ◦C [10,11], and it ranges from 29.5 to
31.5 ◦C in the gulf of the Bone-Flores Sea [12]. Generally, sea surface temperature is the
primary metric that determines the occurrence and abundance of oceanic species. Other
factors, such as sea surface salinity (SSS), sea surface height (SSH), mixed layer depth
(MLD), chlorophyll a concentration (CHLA), and finite-size Lyapunov exponents (FSLE)
also have direct or indirect effects on the habitats of apex predators. A higher SSH is
suitable for skipjack tuna [2,13–15], and SSS is a good indicator of nutrient conditions and,
hence, primary productivity [10,16,17]. CHLA impacts the forage distribution of tuna-like
species [2,11,12], and MLD is associated with the oxygen level, which restricts vertical
movement of tuna [9,11]. The new concept of FSLE envelops the foraging behavior and
movement of top marine predators [18–20]. One single factor may not clearly indicate
the location of a habitat; therefore, a multifactor model must be developed to study the
skipjack tuna habitat.

As stated above, spatial variation of tuna were mainly related to environmental fac-
tors. Unlike traditional field survey by research vessels and buoys, variables obtained
via satellite-onboard sensors that, quantified by empirical model and ground truth mea-
surements, enable us to delimit tuna habitat in pelagic ocean [17,21]. Remote sensing
data has the advantages of wide spatial coverage and continuous time period that allow
us to make better inferences about habitat variation related to ocean surface/subsurface
conditions based on large amount of integrated and reliable data [21,22]. However, to
study fish habitat structure for highly migrated species in wide oceans, researchers usually
use the satellite-derived data spatial resolution ranged from 10 km to 500 km and temporal
resolution in seven days or monthly average because of the limitation of the catch data
or modeling approach [15,21,23]. The broadly spatial and temporal resolution of satellite-
derived data may omit the detail information of finer scale features of ocean environment
that decline the ability of fishing ground prediction for the use of fishermen [22]. Therefore,
this study aims to acquire high-spatial-temporal-resolution data from multiple satellites as
oceanographic parameters for improving the accuracy and immediacy of fishing grounds
prediction, which may benefit the operation of fishing fleet in finding fish schools and
declining fuel consumption.

The application of the habitat suitability index (HSI) in models is influential in identi-
fying the habitat quality for selected species. HSI distinguishes the habitat preference of
species [24] and is widely adopted as an efficient tool in fishery management [21,25,26].
Numerous scientists have applied the HSI in modeling the habitat of apex predators. For
example, Yen et al. (2012) established HSI models for yellowfin tuna in the WCPO and
discovered that these models could be further applied to improve the efficiency of locating
fishing grounds. A similar example was developed to identify albacore tuna habitats in
the North Pacific Ocean, finding that HSI is an appropriate model to locate tuna-like habi-
tats [25]. Logbook data collected from fisheries include subjective and precise directions of
target fish populations, which are collected with standard equipment and protocols [27].
Nevertheless, fishing masters used to rely on word-of-mouth from other fishing vessels to
locate fishing grounds. Since the fishery role is opportunistic, a non-random distribution of
fishing vessels highly concentrated in an area indicates an abundance of target fish. Like
skipjack tuna, fishers tend to remain in warmer waters where masters seek opportunities
to cast their nets. Thus, fishery data may lack adequate temporal and spatial coverage over
an entire study field due to the insufficient and one-sided survey research perspective. The
catch per unit effort (CPUE) may not always be a dependable proxy of fish abundance [28].
Some analysts have attempted to show that fishing effort may be a more reliable indicator
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than CPUE [29,30]. Therefore, we used the location of fishing efforts as an indicator to
establish our HSI model.

The objectives of this study were to investigate the connection of skipjack tuna habitat
suitability with environmental factors in the WCPO using fishery data derived from
automatic identification system (AIS) and satellite-derived oceanic variables. The results
will allow us to better understand the fine scale dynamics of skipjack tuna. Furthermore,
this study provides fundamental information on expressing relationships in ecological
systems, which is essential in the sustainable development of fishery resources.

2. Materials and Methods
2.1. Skipjack Tuna Fishery Data

The traditional purse seine fishing areas of Taiwan are mainly distributed in the
WCPO spanning from 130◦E–150◦W to 20◦N–20◦S, and all data were collected in this
region (Figure 1). Two types of data were collected: Global datasets and Taiwan’s logbook
data. Global datasets were obtained from Global Fishing Watch, which analyzed AIS data
and identified fishing activities during the period from 2012 to 2016 [31]. The datasets
contain fishing activities at 0.01◦ resolution, and vessel presence by flag state and fishing
gear type Taiwanese data were gathered from the Overseas Fishery Development Council
(OFDC) of Taiwan during the year of 2016. Logbook data comprised daily fishing positions
(longitude and latitude in 0.01◦Spatial grid), the school type of fish, the set type of fishing,
and the total catch (in tons). To facilitate the compilation of all data from inconsistent spatial
scales, the original data were aggregated into the same grid resolution as environmental
data.
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Western and Central Pacific Ocean.

Industrial tropical purse seiners deploy fish aggregating devices (FADs), which are
known to provide geo-locations of objects to attract the target tuna [32,33]. Some FADs
are powerful in not only locating valuable targets, but also highlight the signals of non-
targets [34]. Hence, we used only free-swimming schools from Taiwan’s logbook data for
further analysis.
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2.2. Remotely-Sensed Environmental Data

The oceanographic variables (Table 1) used for modelling the habitat suitability index
include sea surface temperature (SST) and its gradient (SST front; calculated as the peak
and ridge temperature features in the same pixel) [35], sea surface salinity (SSS), sea surface
height (SSH), mixed layer depth (MLD), chlorophyll a concentration (CHLA), and finite-size
Lyapunov exponents (FSLE). Oceanic fronts are known for their characteristic of increased
abundance and diversity of taxa ranging from phytoplankton to top predators [36]. The
SST front detection algorithm is based on the gradient magnitude, which reveals the fine
scale of boundaries between water masses (Figure 2). These operational variables were
chosen because they are known to affect catches of tuna [2,19,37,38].

Table 1. List of satellite remote sensing data and the data sources.

Parameters Data Source Unit Spatial Resolution Temporal Resolution

Sea Surface
Temperature (SST)

https://marine.copernicus.eu/
(accessed on 17 January 2021)

◦C 8 × 8 km daily

Sea Surface
Temperature front detected from SST ◦C/km 8 × 8 km daily

Sea Surface Height
(SSH)

https://marine.copernicus.eu/
(accessed on 17 January 2021) m 8 × 8 km daily

Sea Surface Salinity
(SSS)

https://marine.copernicus.eu/
(accessed on 17 January 2021) PSU 8 × 8 km daily

Mixed Layer Depth
(MLD)

https://marine.copernicus.eu/
(accessed on 17 January 2021) m 8 × 8 km daily

Chlorophyll a
concentration (CHLA)

https://marine.copernicus.eu/
(accessed on 17 January 2021) mg/m3 8 × 8 km weekly

Finite-Size Lyapunov
Exponents (FSLE)

https://www.aviso.altimetry.fr/
(accessed on 17 January 2021) day−1 4 × 4 km daily
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For the end user, the Copernicus Marine Environment Monitoring Service (CMEMS
website provides level-4 products of daily mean SST, SSS, SSH, and MLD that were gener-
ated using a statistical model based on both satellite-derived data and in situ observations.

https://marine.copernicus.eu/
https://marine.copernicus.eu/
https://marine.copernicus.eu/
https://marine.copernicus.eu/
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CHLA concentration was derived as a weekly mean because of low coverage of cloud-
free pixels in daily satellite-derived images (available at http://marine.copernicus.eu/
(accessed on 17 January 2021)). For the SST product, multiple satellites are integrated
from the Advanced Very-High-Resolution Radiometer (AVHRR), Environmental Satellite
(Envisat), Aqua, and the Tropical Rainfall Measuring Mission (TRMM). The SSS product is
based on the data derived from the satellite Soil Moisture Ocean Salinity (SMOS) and in
situ salinity measurements. SSH and MLD products are processed from all altimeter mis-
sions: Jason-3, Sentinel-3A, HaiYang-2A (HY-2A), Saral/AltiKa, Cryosat-2, Jason-2, Jason-1,
TOPEX/Poseidon (T/P), ENVISAT, Geosat Follow-On (GFO), and European Remote Sens-
ing Satellite 1/2 (ERS1/2). CHLA product is based on the merging of multiple sensors
of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging
Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), Visible
Infrared Imaging Radiometer Suite (VIIRS), Suomi National Polar-orbiting Partnership
(SNPP), and the Joint Polar-orbiting Satellite System-1 (JPSS1). The CMEMS products are
available for 50 geopotential coverage levels from 0 to 5000 m. Due to the near-surface
water fishing operation, the upper level (0 to 5 m) oceanographic factors were selected for
model construction.

Daily mean FSLE data were download from Archiving Validation and Interpretation
of Satellite Oceanographic (AVISO) data with a spatial resolution of 1/25 degree (~4 km)
(available at https://www.aviso.altimetry.fr/ (accessed on 17 January 2021)). All datasets
and SST frontal detections were decoded and integrated by code programming in Interac-
tive Data Language (IDL 8.7.2) using the Advanced Math and Stats Module (IMSL). All
environmental variables were resampled to 0.08-degree (~8 km) resolution on the basis of
the coarsest scale.

2.3. Habitat Suitability Index Model

We started by fitting global datasets from 2012 to 2015 with remote sensing data to
establish the HSI model. First, the suitability index (SI) was calculated using the frequency
distribution of environmental parameters. The SI was described as a score, ranking from
0 to 1 for inappropriate and optimal habitats, respectively:

This is an example of the equation:

SIenv = e(α(env+β))2
(1)

In Equation (1), α and β are the regression coefficients, which were modified by the
least-squares method to assess the residuals between observations and functions of SI [21].
env is the value for each environmental parameter. After calculating the SI values, the SIs
were subsequently developed to determine the overall habitat preference. We used the
geometric mean model (GMM) to set up the HSI model [21,39].

The GMM model is described as follows:

HSIGMM = (
n

∏
i=1

SIi)

1
n

(2)

where n is the number of selected environmental parameters for setting up the HSI algo-
rithm, and SIi is the SI for the ith environmental variable. Similar to the SI, the HSI has
values ranging from 0 to 1.0, indicating not suitable to optimal, respectively [26,39]. HSI
values equal to or higher than 0.6 were regarded as indicating potential fishing grounds [25].

2.4. Calculation of Predicting Rate

To evaluate the model’s performance, we calculated the habitat suitability index using
environmental data in the year of 2016 and compared it with untrained fishing activities
data, included in global datasets and Taiwan’s logbook data over the same period, to
estimate the fishing grounds of skipjack tuna in the WCPO.

http://marine.copernicus.eu/
https://www.aviso.altimetry.fr/
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The distance between the observed fishing effort and the boundary of potential fishing
grounds derived from the HSI model is the clearest approach to show the ability of our
model to locate potential fishing grounds. The accuracy rates were defined by the ratio of
fishing activity occurring within different distances to the potential fishing grounds [11].
The workflow of this study is demonstrated in (Figure 3).
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3. Results
3.1. Variations of Skipjack Tuna in the WCPO

The quarterly spatial distribution of fishing efforts from 2012 to 2015 at 1 degree
resolution (Figure 4) showed quarterly variations. The global datasets are indicated in
gray circles, which were widely distributed in the Pacific Ocean for all quarters. The
Taiwanese vessels are shown by red dots and were mainly concentrated in the exclusive
economic zone (EEZ) of Papua New Guinea, Nauru, Federated States of Micronesia, and
west Kiribati (165◦E–175◦W and 5◦N–5◦S) and extended to Central Kiribati (170◦W) in the
second quarter. In 2016 (Figure 5), location variations were clearly seen in the third quarter.
Global datasets showed less activity in the east high seas (170◦W–160◦W). Meanwhile,
Taiwanese vessels (Figure 6) were concentrated in the EEZ of Nauru and Kiribati (165◦E–
180◦E). Due to the lack of logistic lines and supplemental ports, Taiwanese purse seine
vessels did not tend to fish on the east side of the Pacific Ocean from the commercial
profit perspective.
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Figure 6. Fishing spots of Taiwanese operational vessels with habitat variation: (a) quarter 1, (b) quarter 2, (c) quarter 3, and
(d) quarter 4 in 2016.

3.2. Suitability Index Analysis and Habitat Suitability Index Model

The intention for model development based on environmental variables and fishery
data was to classify the preferred regions for skipjack tuna from a remote sensing per-
spective. A total of 737,167 datapoints were used in the HSI model, taken from the global
datasets in the period of 2012–2015. The suitability index equations for each parameter,
derived from global datasets, are shown in Table 2. All environmental parameters were
analyzed for statistical significance. For purse seiners, the optimal range (SI = 0.6) of
skipjack tuna was defined as a slightly hotter SST, higher than 29.6 ◦C (Figure 7a), an SST
front of approximately 0.01–0.11 ◦C/km (Figure 7b), an SSH of approximately 0.60–0.71 m
(Figure 7c), an SSS of approximately 34.29–35.28 PSU (Figure 7d), an MLD shallower than
10.81 m (Figure 7e), a CHLA of approximately 0.03–0.04 mg/m3 (Figure 7f), and an FSLE
greater than −0.05 day−1 (Figure 7g). Furthermore, the optimal ranges of SST, SST front,
SSH, SSS, and FSLE accounted for 60.00%, 62.66%, 51.26%, 57.40%, and 64.50% of total
efforts, respectively (Table 2).

Table 2. The equations of suitability index (SI) derived from environmental variables.

Variable SI Models F Value p Value Accounted Rate of Total Efforts
(SI Value = 0.6)

SST exp(−1.69(XSST − 30.13)2) 2628.26 <0.01 60.00%
SST front exp(−207.43(Xsst f t − 0.06)2) 4374.82 <0.01 62.66%

SSH exp(−183.78(XSSH − 0.66)2) 4359.73 <0.01 51.26%
SSS exp(−2.08(XSSS − 34.78)2) 1119.0 <0.01 57.40%

MLD exp(−1.65(XMLD − 10.25)2) 170.58 <0.01 20.36%
CHLA exp(−27878.87(XCHLA − 0.03)2) 3744.87 <0.01 23.91%
FSLE exp(−168.49(XFSLE − 0.007)2) 3718.63 <0.01 64.50%
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The daily distributions of operation locations from the 20 to 23 August 2016, with SST
and SST front images are shown in Figure 8. The fishing spots were mainly distributed
in Nauru and Kiribati waters, where the adjacent water masses on the east side are cold
and on the west side are warm. The fishing spots were in warm water where the SST
was higher than 29 ◦C and there was a low gradient of SST front (Figure 8, left column).
Furthermore, the high-gradient SST front was more associated with fishing grounds. The
strong SST front did not specifically appear in the fishing datasets; nevertheless, the fishing
grounds were not far from strong fronts (Figure 8, right column).

3.3. Accuracy of the HSI Model

Five suitable ranges of environmental variables, which accounted for up to 50% of
total efforts, were used, i.e., SST, SST front, SSH, SSS, and FSLE (Table 2). These were
selected to derive the HSI model for skipjack tuna. The period of 2016 was chosen to
calculate the accuracy of the HSI model by comparing data with fishery efforts, including
global datasets and Taiwanese logbook data. In the overview of 2016, 68.3% of global data
was within 5 km of suitable areas, whereas 94.9% were within 50 km (Figure 9a). In contrast,
35.7% of Taiwanese logbook data occurred within 5 km, and 79.6% were found within
50 km of suitable areas (Figure 9c). The accuracy of the model without SST fronts was
compared, and found to decrease to 62.3% and 91.9% within 5 and 50 km, respectively, in
global data (Figure 9b). Taiwanese logbook data showed increased accuracy (43.3%) in the
area within 5 km but lower accuracy of 74.9% within 50 km (Figure 9d). As a consequence,
SST fronts is the parameter which improves the predictability of fishing grounds in the
suitability index-based models.
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3.4. The Outputs of the HSI Model and Purse Seine Fishing

The outputs of the habitat model in 2016 are shown in Figure 5, and global datasets
showed that fishing activities generally occurred in the equatorial region, except for the
Phoenix Islands Protected Area (175◦W–170◦W). The fishing hours decreased in the high
seas (170◦W–160◦W) from quarter 1 and were nearly absent in quarter 3. Notable, in the
Central Pacific, Nauru and West Kiribati are two important fishing grounds for purse
seiners, showing long fishing hours throughout the year. The habitat derived from the HSI
model shifted northwest to the Federated States of Micronesia and Papua New Guinea
in quarter 2, and continued to quarter 4. Simultaneously, the length of fishing hours
showed the same trend, moving northwest and extending to the south of the EEZ in the
Federated States of Micronesia. In general, the suitable habitat displayed a large horizontal
shift in the period of quarters 1 and 2, but was relatively stable in quarter 2–quarter 4.
In comparison, Taiwanese purse seine vessels showed less variations in the vertical and
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horizontal directions (Figure 6). In quarter 1, fishing efforts mainly occurred in the EEZ
of Nauru, the junction (4◦S) of west Kiribati and Tuvalu, Solomon Islands. The high seas
(178◦W–176◦W) between Tuvalu and central Kiribati also showed dense fishing activities.
In quarter 2, fishing locations shifted northward and westward, similar to the shift in
suitable habitat. Skipjack tuna were caught across the EEZ of Papua New Guinea and along
the line from Federated States of Micronesia to Marshall Islands. In quarter 3, fewer suitable
habitats were detected in Tuvalu, Tokelau, and Cook Islands, whereas the Western Pacific
was highlighted as a suitable fishing ground. The catches were also mainly concentrated in
two areas: the central area between two high seas (151◦E–158◦E) and the EEZ of Nauru to
Central Kiribati. Suitable habitats were no longer present in the Western Pacific in quarter
4. Instead, the HSI model marked the south edge of the EEZ of Nauru, the north of the
Federated States of Micronesia, and all of Tokelau, as suitable habitats. Catches were
concentrated on the south side of Nauru and north side of Papua New Guinea, and were
sporadic between Pohnpei and Majuro.
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Overall, in both datasets, the EEZs of Nauru and Kiribati were the most popular
fishing areas (163◦E–180◦E, 2◦N–3◦S), except in quarter 2. The east high seas surrounding
Kiribati (167◦W–160◦W) were marked as a suitable habitat in quarters 1 and 2, and the
fishing activities in the global dataset presented the same spatial distribution for the same
period, but Taiwanese vessels were absent in this region. Taiwanese vessels appeared to
avoid crossing the vertical line of 180◦E, showing few records in the narrow high seas.
An increase in fishing activities was also found in both datasets: the recorded number
fishing activities in both datasets in the study area increased by 1.5 times from quarter 1 to
4. Taiwanese and global datasets recorded the highest fishing activities in quarters 3 and
4, respectively.

4. Discussion

The HSI model theory led us to infer characteristics of the skipjack tuna habitat in the
WCPO and build a forecasting system using fishery and satellite remote sensing data to
locate potential fishing grounds. The fishery data collected were not field survey quality
because fishing masters determined fishing locations according to their own choice and
not by random selection. However, fishery data are easy to acquire, and low-cost species
survey data sets are available to scientists [2]. Here we obtained fishing effort data that
covered a wide geographical area, and data were from all operational purse seine vessels
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in the WCPO. The advantage of using remote sensing data is the efficiency in measuring
parameters on the oceanic scale compared to on-site investigations [40]. By programming
code, we were able to construct an automatic procedure to locate interesting areas for
finding target fish in just a few minutes.

The global purse seine fishery industry operates in the Pacific Ocean over a wide
distribution from 140◦E to 150◦W. In contrast, traditional fishing grounds for Taiwanese
vessels mainly occurred around the Federated States of Micronesia, Papua New Guinea,
Solomon Islands, and Kiribati from 1997 [41]. Skipjack tuna follow a brief route to the
south for spawning and retreat to the north during the summer [42]. Fishing efforts
extended south to the Solomon Islands in quarters 1 and 4, and they withdrew from the
south in quarters 2 and 3 in both datasets (Figures 4–6). These shifts seem to reflect the
migration route of skipjack tuna following the south–north pathway. The high sea pocket
was enclosed from 1 January 2010 for conservation management [43]. The footprints of
Taiwanese purse seines were present around the high sea pocket (i.e., they were fishing-
the-line), and the fishing masters obtained benefits from the spillover of the enclosed area
(Figure 4).

Typically, the western Pacific is a warm pool with an annual maximum sea surface
temperature of 30 ◦C, and a higher density of skipjack tuna gather there [22,23]. The SST in
this study was slightly higher compared to previous studies, ranging from 20.5 to 26.0 ◦C
for skipjack in the Western North Pacific Ocean [2] and over 24 ◦C in the Western Pacific
Ocean [1]. A possible explanation for this might be the sampling bias derived from the
tendency for operational fleets to find targets in higher SSTs. Another possible explanation
is a regional bias derived from the different resource types of data and collecting areas.
There are, however, other possible explanations. It is thought that predators (tuna) cluster
around the front area where the prey is located [44], and thermal fronts are also associated
with a high probability of the skipjack population [17].

The findings of the SST front were confirmed in the lower gradient change from 0.01 to
0.11 ◦C/km. The most likely cause of this lower gradient change is that fishing spots
are located at the junction of the convergence zone of the warm pool and the tongue of
cold surface water [23]. The cold tongue is nutrient-enriched, which benefits prey, and
the warm pool offers a place for skipjack tuna to cluster. Skipjack tuna move to cooler
water for ingestion and swim into warm water due to its comfortable temperature. The
fishing activities of skipjack tuna occur in warm water, near the convergence zone of warm
and cold water where there is less gradient change compared to the junction of two water
masses. Our findings indicate that the actual fishing grounds were closely associated with
adjacent areas of strong SST fronts rather than in the center of strong fronts (Figure 8).

A higher value of SSH influences the suitable range of skipjack tuna, and this was con-
firmed in our study. For example, SSH ranged from 0 to 50 cm in the Western North Pacific
Ocean [2], and 70–100 cm in the WCPO [14,15], which were defined by the generalized
additive model (GAM) method, and 80–90 cm by the empirical cumulative distribution
function in Sri Lankan waters [13]. The intermediate values of these findings coincided
with our results ranging from 60 to 71 cm (Figure 7c), given that the datasets in our study
had broad coverage. The salinity broadly ranges from 33.0 to 37.2 PSU for the world
oceans [16]; 5th and 95th percentile values ranged from 34.9 to 35.8 PSU in the Southwest-
ern Atlantic according to the GAM method [17], and 30.3 to 36.2 PSU was recorded in the
Eastern central Atlantic and Western Indian Oceans by the ecological niche model [10].
High salinity values above 35.8 PSU present oligotrophic conditions and lower primary
productivity, which cannot support feeding requirements for skipjack tuna in tropical
waters [17]. A suitable range from 34.29 to 35.28 PSU (Figure 7d) was seen under the border
limit and is consistent with previous studies.

Skipjack tuna do not resist hypoxic water where there is less than 3.5 mL O2 per
liter [16], and this restricts skipjack tuna to inhabit the mixed layer above the thermocline [2].
The MLD from 6 to 158 m was confirmed as a favorable feeding habitat for skipjack [11].
A fishing master works towards better sinking performance, where faster and greater
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sinking depth means a higher probability of a successful set [45]. Underwater nets are
attached to FADs; the length can reach a depth of 50 m [46], and the common average depth
is 15–20 m [33]. Moreover, MLD associated with oxygen restriction affects the vertical
distribution of tuna, and larger skipjacks with greater requirements are more spatially
confined [9]. The suitable range of MLD reflects the selection of fishing operations more
than the suitability of the skipjack tuna habitat. In our findings, the suitable range of MLD
showed a highly left-skewed distribution (Figure 7e) and accounted for 20% of total efforts
(Table 2). We propose that the MLD, which implies the limit of oxygen concentration, does
not directly reflect fishing activities.

Chlorophyll concentration has direct or indirect relationships with the foraging distri-
bution, and affects the predators [2]. The specific value of 0.2 mg/m3 was described as an
indicator for the highest CPUE and fishing frequency in the gulf of the Bone-Flores Sea,
Indonesia [12]. A similar range of 0.1 to 0.3 mg/m3 was also shown in the Western North
Pacific [2]. A widely defined favorable range between 0.13 and 5.27 mg/m3 exists in the At-
lantic and Indian Oceans [11]. Furthermore, fishing positions in the aforementioned studies
were mostly located in coastal areas known for high nutrient concentrations. There is a dis-
crepancy between our findings ranging from 0.03 to 0.04 mg/m3 (Figure 7f) and a previous
study on the suitable range of CHLA. We assumed this difference resulted from feeding
habits. As a piscivorous feeder, skipjack tuna also depends on various prey [47]. Skipjack
tuna can easily adapt their survival strategy to the local prey composition [47,48], different
food consumptions of tuna between FAD-associated and -unassociated schools [49], and
feeding habit variations in different current systems [47]. Thus, the feeding strategy in
distant waters with poorer nutritional conditions seems to differ from the relatively high
CHLA region.

Unlike other physical oceanic parameters, the FSLE is new dynamic concept developed
using the Lagrangian technique. This new concept crucially influences the marine top
predators, indicating their foraging behavior, movement distribution, etc. [18–20]. For
example, strong Lagrangian fronts imply a zooplankton concentration and larger quantities
of fish, and more prey, in the Southern Indian Ocean [18]. Tuna fishermen track strong
Lagrangian coherent structures where three times more profits per trip are expected in
the U.S. in California [20]. A strong FSLE represents an area of aggregated fish, but this
strong oceanic dynamic also represents stirring and strongly organizes the fluid motion.
The prerequisites for successful purse seine fishing operations are the direction and speed
of the wind and current [50], which are strong under current due to the shear force, and
this may cause damage to the net. FSLE ranges close to zero (Figure 7g) indicate better
conditions for purse seine fishing, although they may not represent the highest density of
skipjack tuna.

After determining the optimal range for each environmental parameter relevant
to skipjack tuna from global datasets, the accuracy of the HSI model was determined
(Figure 7). HSI values in the accumulation map were appreciably concurrent with fishing
spots for 2016 (Figure 5). The present model appears to have defects in describing the
spatial distribution in the first quarter (Figures 5 and 6); the HSI values were highly
accumulated in Tokelau and Cook Islands waters. Meanwhile, the actual fishing spots
were mainly distributed in the region on the west side of the Pacific Ocean, for either global
or Taiwanese data. The major distant water fishing nations, which include Korea (15%),
Japan (14%), Taiwan (12%), and the USA (11%), accounted for all of the WCPO tuna catches
by weight [51]. This list of major nations mostly comprises Asian nations. Considering
multiple essential factors, such as increased supply line costs and oil prices, it is not difficult
to imagine that Asian nations tend to fish on the western side of the Pacific. Even if most
of the fish were on the east side of the Pacific, fishing vessels still fish in adjacent areas
rather than chasing distant targets. Furthermore, fishing is moving toward FAD-based
strategies instead of free-swimming school sets. In addition, the advantages of FADs are
shown in three important aspects: the high success rates, stable schooling situations, and
higher average catch [52]. Distinguishable behaviors of skipjack tuna include moving over
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long distances or their association with floating objects in the El Niño-Southern Oscillation
(ENSO) [53]. Purse seine vessels no longer chase free-swimming schools, and powerful
multifunction buoys are the first choice. Most FAD sets are done in the early morning,
before sunrise, and most can still search for free-swimming schools during the day [46].
Therefore, it can be concluded that the FAD and the associated cost showed changes in
fishing activity patterns and moving strategies.

In Taiwanese logbook data, about 20% of free-swimming sets were far from the
optimal habitat boundary (>50 km), whereas the global data represented 5% of all sets,
suggesting that the model performed well in fitting daily forecasting habitats and actual
fishing position. However, quarterly accumulation of HSI appears to coincide with defects
in quarter 1 (Figure 5).

5. Conclusions

This study successfully developed an HSI model, which could be an efficient tool to
forecast potential fishing grounds because it projects optimal habitat selection for skipjack
tuna using fishery data and environmental parameters from a high spatial–temporal
resolution and remote sensing perspective. Our automatic process could be ideally used
to assist in management scenarios, to avoid marine protected areas, and to ensure proper
areas are fished and eco-friendly regulations are followed. The dominant fishing grounds
were not far from areas of strong SST fronts. Moreover, the model without SST fronts was
compared with the optimal model to examine how SST fronts can improve the predictability
of fishing grounds in the HSI model. Overall, the accuracies of the two datasets generally
declined in the model without SST fronts. The decrease in SI elements (from 5 SI to 4 SI)
implies a looser filter for determining suitable habitat. The model without SST fronts did
not benefit from a loose filter to obtain higher accuracy compared with the optimal model.
The result shows that SST fronts can improve the predictability of fishing grounds.

Future work should expand on our algorithm to improve the forecasting rate and
provide precise directions of optimal fishing areas. In addition, considering more oceanic
parameters, such as dissolved oxygen [9], could be helpful in detailing the habitat suitability
index for skipjack tuna, in addition to identifying both fishing and weather conditions to
determine optimal fishing conditions and fish locations.
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