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Abstract: The automatic detection of aircrafts from SAR images is widely applied in both military
and civil fields, but there are still considerable challenges. To address the high variety of aircraft
sizes and complex background information in SAR images, a new fast detection framework based on
convolution neural networks is proposed, which achieves automatic and rapid detection of aircraft
with high accuracy. First, the airport runway areas are detected to generate the airport runway
mask and rectangular contour of the whole airport are generated. Then, a new deep neural network
proposed in this paper, named Efficient Weighted Feature Fusion and Attention Network (EWFAN), is
used to detect aircrafts. EWFAN integrates the weighted feature fusion module, the spatial attention
mechanism, and the CIF loss function. EWFAN can effectively reduce the interference of negative
samples and enhance feature extraction, thereby significantly improving the detection accuracy.
Finally, the airport runway mask is applied to the detected results to reduce false alarms and produce
the final aircraft detection results. To evaluate the performance of the proposed framework, large-
scale Gaofen-3 SAR images with 1 m resolution are utilized in the experiment. The detection rate
and false alarm rate of our EWFAN algorithm are 95.4% and 3.3%, respectively, which outperforms
Efficientdet and YOLOv4. In addition, the average test time with the proposed framework is only
15.40 s, indicating satisfying efficiency of automatic aircraft detection.

Keywords: SAR image; aircraft detection; airport detection; deep learning; feature fusion; spatial
attention module

1. Introduction

Synthetic Aperture Radar (SAR) is an advanced active microwave earth observation
approach, which is insensitive to clouds and fogs, and images the earth surface all day
and all night. SAR turns out to be fascinating for reconnaissance missions under various
weather conditions. At present, the resolution of SAR platforms can reach the centimeter-
level, which offers opportunities to identify detailed targets in various application domains.
Since 1978, SAR has attracted considerable attention of the radar scientific community
because of its unique imaging mechanism; and it has been widely used in both military
and civilian fields.

The detection and identification of aircraft are essential to the effective management
of the airport. Acquiring the number, type, location, and status information of aircrafts is
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of great military value. Therefore, research on automatic aircraft detection algorithm with
SAR imagery is very necessary.

A novel framework is proposed in this paper to perform efficient aircraft detection
from SAR images automatically and efficiently. The main contributions of this article are
summarized as follows:

(1) For the efficient management of the airport (in the civil field) and real-time acquisition
of battlefield military intelligence and formulation of combat plans (in the military
field). An efficient and automatic aircrafts detection framework is proposed. First,
the airport runway areas are extracted, then the aircraft is detected using the Efficient
Weighted Feature Fusion and Attention Network (EWFAN), and finally the runway
area is employed to filter false alarms. This framework can provide a generalizable
workflow for aircraft detection and achieve high-precision and rapid detection.

(2) EWFAN is proposed to perform aircrafts detection by integrating SAR image analytics
and deep neural networks. It effectively integrates the weighted feature fusion module
and the spatial attention mechanism, with the CIF loss function. This network is a
lightweight network with the advantages of high detection accuracy and fast detection
speed; it provides an important reference to other scholars and can also be extended
for the detection of other dense targets in SAR image analytics, such as vehicles
and ships.

For the efficient management of the airport (in the civil field) and real-time acquisition
of battlefield military intelligence and formulation of combat plans (in the military field).
An Efficient Weighted Feature Fusion and Attention Network (EWFAN) is proposed to
perform aircrafts detection. It effectively integrates the weighted feature fusion module and
the spatial attention mechanism, with the CIF loss function. This network is a lightweight
network with the advantages of high detection accuracy and fast detection speed; it
provides an important reference for other scholars and can also be used for the detection of
other dense targets in SAR image analytics, such as vehicles and ships.

The rest of this paper is arranged as follows. Section 2 introduces the state-of-the-art
of the deep learning on objects detection and the development of the bridge detection from
SAR images. In Section 3, the aircraft detection framework of SAR images proposed in this
paper is introduced in detail. Section 4 indicates specific experimental results and analysis
to verify the efficiency of the algorithm proposed in this paper. Finally, the summary of the
paper and the discussion of the future research are given.

2. State-of-the-Art

Traditional target detection methods of SAR image are mainly divided into two
categories: (1) single feature-based method and (2) multi-feature-based method. The single
feature-based approach usually uses Radar Cross Section (RCS) information to extract
brighter areas as candidate targets. The most common method is the Constant False Alarm
Rate (CFAR) algorithm, which is based on clutter statistics and threshold extraction [1].
In 1968, on the basis of CFAR, Finn et al. [2] proposed the CA-CFAR algorithm, which
used all pixels in the clutter region of the sliding window to estimate parameters of the
corresponding clutter statistical model, and it is optimal for the detection in homogenous
regions. In 1973, Goldstein [3] further extended the CFAR method to address background
noise with lognormal distribution and Weibull distribution, to forge the famous Goldstein
detector. However, the CFAR algorithm did not include the structural information of
the target, which would lead to inaccurate targets positioning. The target detection of
the multi-feature-based method is based on the fusion of multiple image features. In
2015, Tan et al. [4] combined gradient texture saliency map with CFAR algorithm to detect
aircrafts. However, the manual feature craft process was complex and time-consuming, and
the feature fusion algorithm was scenario-dependent, which usually incurred additional
errors. In general, manual feature-based target detection in SAR image analytics is facing
various challenges, such as poor robustness and low automation [5].
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Recently, many scholars began to investigate machine learning algorithms for SAR
image target detection, such as Support Vector Machine (SVM) [6] and Adaptive Boosting
(AdaBoost) [7]. Although machine learning algorithms have improved detection accu-
racy to a certain extent compared with traditional target detection methods, they are
only suitable for small samples [8], and the manually crafted features are still poor in
generalization.

Nowadays, deep learning algorithms have developed rapidly and achieved good
results in many fields. Object detection within deep learning can be grouped into two
types: “two-stage detection” and “one-stage detection” [9]. The former can be depicted as
a “coarse to-fine” process while the latter is described as “complete detection in one step.”
Among two-stage detection algorithms, Girshick et al. [10] proposed Region-Convolution
Neural Network (R-CNN), which first extracted candidate boxes from the prior boxes, and
then filtered the candidate boxes to obtain the final prediction results. But this algorithm
suffered from the slow detection speed. In 2015, Girshick [11] further improved the network
on the basis of R-CNN [10] and SPPNet [12], as Fast R-CNN, with enhanced detection accu-
racy and speed. In 2017, He et al. [13] proposed Mask R-CNN, which not only improved the
accuracy of the target detection, but also satisfied the accuracy requirements of semantic
segmentation tasks. In 2015, R. Joseph et al. [14] proposed the “You Only Look Once”
(YOLO) algorithm, which was the first one-stage deep learning target detection algorithm.
Compared with the two-stage detection algorithm, its detection speed was impressive,
but the detection accuracy was reduced meanwhile. In 2019, Tan et al. [15] proposed Effi-
cientdet, which introduced the weighted BI-directional Feature Pyramid Network (BIFPN)
and the compound zoom method, to improve the detection efficiency of the network. In
2020, Bochkovskiy et al. [16] proposed the YOLOv4 algorithm. Compared with previous
versions, YOLOv4 further improved the detection speed and accuracy considerably.

With the rapid development of deep learning and SAR imaging technology, many
scholars use deep learning algorithms to perform targets detection in SAR image analytics.
Compared with traditional methods for targets detection of SAR images, deep learning
can achieve higher detection accuracy and faster detection speed, especially with end-to-
end detection.

Due to the discreteness, variability, and interference of aircraft scattering characteris-
tics, aircraft detection in synthetic aperture radar (SAR) images is a challenging task. In
2017, Wang et al. [8] proposed an improved significance pre-detection method to achieve
multi-scale fast and coarse location of aircraft candidate in SAR images. Then, Convolu-
tional Neural Network (CNN) was used to implement accurate detection of candidate
targets, which could achieve good detection accuracy with long testing time. When data en-
hancement methods are not used, the detection rate of their algorithm are 86.33%. In 2019,
Li [17] and others combined the improved line segment detector LSD and deep learning
Faster-CNN [18] to design an aircraft detection method in SAR images. The detection rate
and false alarm rate of their algorithm are 95% and 5%. In 2020, Zhao et al. [19] proposed
a rapid detection algorithm for aircraft targets in SAR images in complex environments
and large scenes. The algorithm optimizes the overall detection process, and designs the
refined extraction of airport regions based on grayscale features and the coarse detection of
aircraft targets based on CNN. The detection rate and false alarm rate of their algorithm
are 74.0% and 6.9%. In 2020, Guo et al. [5] proposed a method to detect aircrafts, which
first adopted an adaptive discriminant operator to detect the airport, and then extract
aircrafts by integrating the scattering information with deep learning. In their work, the
airport detection algorithm used could reduce the computation intensity and improve the
detection efficiency compared with traditional algorithms. The detection rate and false
alarm rate of their algorithm are 94.5% and 8.8%. However, for high-resolution SAR images,
it would take a long time to extract the airport area and be difficult to perform automatic
aircraft detection. Chen et al. [20] proposed a multi-level densely connected dual-attention
network to automatically detect the airport runway area, which achieved better extraction
results. However, due to the use of the dual-attention mechanism, the training speed and
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testing speed of this network were relatively slow. In 2019, Zhang et al. [21] proposed a new
framework called Multi-Resolution Dense Encoder and Decoder (MRDED) network, which
integrates Convolutional Neural Network (CNN), Residual Network (ResNet), Dense Con-
volutional Network (DenseNet), Global Convolutional Network (GCN), and Convolutional
Long Short-Term Memory (ConvLSTM). In 2020, Chen et al. [22] proposed a new end-to-
end framework based on deep learning to automatically classify water and shadow areas
in SAR images. In 2020, Chen et al. [23] proposed a new deep learning-based network to
identify bridges from SAR images, namely, multi-resolution attention and balance network
(MABN). Chen et al. [24] propose a new scene classification framework, named Feature Re-
calibration Network with Multi-scale Spatial Features (FRN-MSF), to achieve high accuracy
in SAR-based scene classification. Tan et al. [25] proposed a geospatial context attention
mechanism (GCAM) to automatically extract airport areas. First, down-sampling were
applied to the high-resolution SAR images. Then the proposed GCAM network was used
to perform airport detection. Finally, coordinate mapping was utilized to obtain accurate
airport detection results from high-resolution SAR images. This method not only presented
high detection accuracy, but also greatly reduced the training and testing time compared to
MDDA network.

Aiming at the problems of low automation of existing SAR image aircraft detection
algorithms, long airport extraction time, and complex preprocessing procedures, this paper
proposes an efficient and automatic aircrafts detection framework. The detection rate and
false alarm rate of our aircrafts detection framework are 95.4% and 3.3%.

3. Methodology
3.1. Overall Detection Framework

For the efficient management of the airport (in the civil field) and real-time acquisition
of battlefield military intelligence and formulation of combat plans (in the military field),
we propose an efficient aircraft detection framework, which can automatically and quickly
detect aircrafts from SAR images. The framework mainly includes three parts: airport
detection, aircraft detection, and filtering. The architecture of the proposed framework is
shown in Figure 1. First, the airport detection algorithm [23] is used to obtain the airport
runway areas and rectangular contours of the airport, which can be employed to locate the
airport area, to reduce the false alarm rate of aircraft detection. Second, after obtaining the
rectangular contour of the airport, we first use EWFAN algorithm (as shown in Figure 2) to
detect aircrafts via sliding windows in the rectangular box generated by airport detection.
The adjacent windows will overlap by 20% (see Section 4.5), which can ensure that each area
can be completely detected. Then we use coordinate mapping to convert the coordinates
of the aircraft target in each window into its coordinates in the original SAR image. Since
the sliding window has a certain overlap rate, it will cause the appearance of overlapping
boxes. Therefore, we use the NMS algorithm to filter the overlapping boxes to get the
preliminary detection result. Finally, the runway mask is incurred to remove false alarms
(they are not aircrafts, but it has been tested as an aircraft), and the final aircraft detection
results are generated.
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3.2. EfficientDet

EfficientDet is a powerful target detection network proposed by Tan et al. [15] from the
Google Brain team. It combines Efficientnet [26] (also proposed by the same team) and the
newly proposed Weighted Bi-directional Feature Pyramid Network (BiFPN). EfficientDet
utilizes less parameter calculations to achieve a higher precision compared with other target
detection algorithms. It introduces Efficientnet as the backbone network, which transforms
the input image into the five-layer feature maps, which are input into BiFPN respectively,
and five effective feature layers are obtained after two BiFPN layers. Furthermore, the
classification regression network is used to predict the result, and the NMS algorithm is
applied to generate the final detection results.



Remote Sens. 2021, 13, 910 6 of 21

3.3. EWFAN for Aircraft Detection

The architecture of Efficient Weighted Feature Fusion and Attention Network (EW-
FAN) is shown in Figure 2, which is based on the EfficientDet-D0 framework. In this article,
we introduce Adaptively Spatial Feature Fusion (ASFF) [27] and Residual Spatial Attention
Module (RSAM) to fuse and extract features and then the Weighted Feature Fusion and
Attention Module (WFAM) is proposed. In addition, CIF Loss is also presented in this
paper (see Section 3.3.3).

The EWFAN algorithm proposed in this paper still adopts Efficientnet as the backbone
network. First, the image is input to the backbone network and down-sampled, then five
feature maps of different sizes are obtained. The sizes are 64 × 64, 32 × 32, 16 × 16, 8 × 8,
and 4 × 4 respectively. Furthermore, five-layer feature maps are input into WFAM to
obtain five effective feature maps. WFAM is composed of BiFPN, ASFF, and RSAM. BiFPN
and ASFF perform weighted feature fusion on feature maps. Among them, ASFF pays
more attention to spatial information fusion and effectively suppresses the interference
of negative samples. RSAM is an attention mechanism proposed in this article. RSAM
combines the Spatial Attention Module (SAM) with the residual connection method. Fur-
thermore, the network generates 9 boxes with different sizes and aspect ratios on every
grid of each effective feature layer. Then, the prior boxes are classified and regressed in
the classification and regression network to predict the results. In the training stage, CIF
Loss is proposed in this paper. CIF Loss combines CIoU Loss [28] with Focal Loss [29],
which not only improves the stability and accuracy of targets regression, but also speeds
up the convergence.

3.3.1. Weighted Feature Fusion and Attention Module (WFAM)

The WFAM module proposed in this paper is composed of BiFPN, ASFF, and RSAM.
Among them, BiFPN can perform preliminary weighted fusion of features, and ASFF can
enhance the saliency of aircraft targets and suppress the influence of background features
on the detection of aircrafts [27]. In addition, this paper combines the SAM with the
residual structure, and proposes the RSAM module.

• Weighted Bi-directional Feature Pyramid Network (BiFPN)

BiFPN is an efficient bidirectional feature pyramid network in EfficientDet. In this
paper, the BiFPN of EfficientDet-D0 is improved, and only one layer of BiFPN is used
in WFAM for preliminary feature fusion. The structure of BiFPN network is shown in
Figure 3. BiFPN has made a series of improvements based on FPN.
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• Residual Spatial Attention Module (RSAM)

We combine SAM [30] with skip connections to obtain the RSAM algorithm. The
specific implementation steps of RSAM are shown in Figure 4.
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RSAM mainly focuses on spatial information. In small targets detection, because
the target size is small, there is less spatial information on low-resolution feature maps.
Therefore, the introduction of RSAM can effectively enhance the spatial information to
improve the effect of small target detection. First, the average pooling and maximum
pooling operations are performed on the feature maps in the channel dimension, so that the
original feature map with a channel number of 64 becomes two intermediate feature maps
with a channel number of 1, then concatenation operation is carried out on these two results.
Furthermore, the sigmoid function is utilized to normalize the feature map to obtain the
spatial attention feature, which is multiplied by the input, and then the skip connection is
performed. Finally, the Relu activation function is used to generate the final result.

• Adaptively Spatial Feature Fusion (ASFF)

Although BiFPN performs preliminary feature fusion, it cannot address the shape and
size heterogeneity of aircraft detection. There are a few missing alarms but many false
alarms in the detection results, which greatly reduce the reliability of the detection results.
Therefore, the Adaptive Spatial Feature Fusion (ASFF) algorithm is introduced in this paper.
ASFF performs weighted fusion by setting self-learning weights for each fused feature map.
This method is better than the direct connection, addition or fast normalization fusion [27].
It can effectively suppress the interference of negative samples and solve the problem of
inconsistency between different feature scales in single-stage detection [27]. In addition,
the ASFF algorithm has little impact on the amount of network parameters and testing
speed [27]. In order to limit the interference of negative samples and enhance the saliency
of features, ASFF is introduced in the P3-P5 layer. As shown in Figure 5, the principle and
implementation steps of ASFF are listed as:
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(1) Feature resizing. ASFF-1, ASFF-2, and ASFF-3 correspond to the P5 layer, the P4
layer, and the P3 layer, respectively. The feature resizing is demonstrated using ASFF-2. In
ASFF-2, the size of the P4 layer remains unchanged, and the P3 and P5 layers are adjusted
to the same size as the P4 layer. After down-sampling the feature map of the P3 layer, its
size is reduced from 64 to 32 to obtain P3_resized. After up-sampling the feature map of
the P5 layer, the size is increased from 16 to 32, and P5_resized is obtained. In this way, the
size of the three feature maps is converged. Among these operations, up-sampling adopts
interpolation method, and down-sampling employs a 3 × 3 convolution (stride = 2) to
reduce the size to half of the original. If you want to reduce the size to 1/4 of the original
size, you can first use the largest pooling layer (stride = 2), then use a 3 × 3 convolution
(stride = 2).

(2) Adaptive fusion. We also use ASFF-2 as an example to illustrate this process. First,
a 1 × 1 convolution operation is performed on the three adjusted feature maps to reduce
the number of channels from the original 64 to 16. Then, the three feature maps are spliced
together to obtain a feature layer with 48 channels. Furthermore, a 1 × 1 convolution
is carried out to reduce the number of channels to 3. Finally, normalization is achieved
through softmax, and the final weights α3, β3, and γ3 are obtained. The weights α3, β3, and
γ3 are obtained. The weights α3, β3, and γ3 are multiplied by P3_resized, P3_resized, and
P4 respectively, and then the three results are added to obtain the new fusion feature ASFF-
2. The calculation method of ASFF is shown in Equation (1) [27], and the normalization
method of softmax is shown in Equation (2) [27]:
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are the control parameters of three weights respectively. βl
ij and
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ij use the same definition as above.

3.3.2. Classification Regression Network and Priori Boxes Generation

After the data are processed by the WFAM module, five effective feature layers are
generated. The EWFAN network generates a large number of a priori boxes on each
effective feature layer, and every grid point of each layer generates 9 a priori boxes. The
specific structure of the classification and regression network and the generation of a priori
boxes are shown in Figure 6:
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Among them, classification network uses three times of the convolution with 64 chan-
nels and one time of n_b × n_ convolution to predict the category of each prediction box
(n_b refers to the number of priori boxes owned by the feature layer, n_c refers to the
number of network target detection categories). Regression network utilizes three times
of the convolution with 64 channels and 1 time of n_b × 4 convolution to predict the
regression of each a priori box. In addition, according to the aspect ratio distribution of
the aircraft targets in the data set (the aircraft target aspect ratio distribution is shown in
Figure 7), we change the aspect ratio of the a prior boxes to 0.6, 1.12, and 1.57 in the paper,
which can improve the detection accuracy of the network to a certain extent compared
with the original aspect ratio.
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3.3.3. CIF Loss Function CIF Loss Function

In the training stage, the loss function is used to calculate the difference between the
network prediction result and the true value, then the optimizer is utilized to reduce the
difference between the model output value and the true label. In this paper, CIF Loss is
proposed, which integrated CIoU Loss and Focal Loss. CIF Loss can improve the regression
accuracy and robustness of the network to a certain extent, thus further enhancing the
aircraft detection effect of the network.

The traditional IoU Loss is defined as follows:

IoU =

∣∣B ∩ Bt
∣∣

|B ∪ Bt| (3)

LIoU = 1 − IoU (4)

where B represents the prediction box, and Bt indicates the real box.
Obviously, in the traditional IoU Loss, the regression loss only considers the intersec-

tion ratio of the prediction box and the real box, which will affect the network training and
testing effects. Figure 8 describes the problems of IoU Loss in different situations. (1) When
two boxes have no intersection, the loss of a near non intersection box is the same as that
of a faraway non intersection box, so the gradient direction is lost and the optimization
cannot be implemented; (2) when the prediction boxes are contained by the real boxes, the
prediction boxes with the same area in different positions are the same as the IoU of the
real boxes, which will cause problems such as inaccuracy of the prediction boxes; (3) the
aspect ratio between the two boxes is not considered. In the aircrafts detection, the shapes
of the targets are different and the distribution is dense, and there may even be a small area
overlap between the two real boxes. Therefore, if the aspect ratio is not considered, it will
cause problems such as inaccurate prediction boxes and classification error.



Remote Sens. 2021, 13, 910 10 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 21 
 

 

even be a small area overlap between the two real boxes. Therefore, if the aspect ratio is 
not considered, it will cause problems such as inaccurate prediction boxes and classifica-
tion error.   

 
Figure 8. The problems of IoU Loss. 

To solve the shortcomings of IoU Loss, CIoU Loss [28] has made improvements, 
which can improve the accuracy of aircrafts detection. 𝐿ூ  =  1 െ   𝐼𝑜𝑈  𝑑ଶ(𝑥, 𝑥௧)    𝑎ଶ   𝜇𝛽 (5)

𝜇 =  𝛽(1 െ 𝐼𝑜𝑈)  𝛽 (6)

𝛽 =  4𝜋ଶ (𝑎𝑟𝑐𝑡𝑎𝑛 𝑤௧ℎ௧  െ  𝑎𝑟𝑐𝑡𝑎𝑛 𝑤ℎ )ଶ (7)

where 𝑥 and 𝑥௧  represent the center points of 𝐵 and 𝐵௧  respectively. 𝑑() is the Eu-
clidean distance.  𝑎 is the minimum diagonal length that can cover 𝐵 and 𝐵௧. 𝜇 is the 
weight function of the aspect ratio, and 𝛽 is used to measure the similarity of the aspect 
ratio. 𝑤 and 𝑤௧ represent the width of 𝐵 and 𝐵௧ respectively, and ℎ and ℎ௧ indicate 
the height of 𝐵 and 𝐵௧ respectively. 

The penalty term  ௗమ(௫,௫)    మ  takes into account the center distance between the predic-
tion box and the real box. It not only solves the problem of no gradient direction when 
two boxes have no intersection, but also reduces the distance between the center points of 
the two boxes when the two boxes have intersection. 

The penalty term 𝜇𝛽 takes into account the difference in the aspect ratio between the 
predicted box and the real box, which can make the aspect ratio of the predicted box closer 
to that of the real box. 

We combine CIoU Loss with Focal Loss and propose CIF Loss to further improve the 
accuracy of the network. Its definition is as follows: 𝐿ூி =  𝐿  𝐿௨ (8)𝐿ி = െ𝛼௧(1 െ 𝑝௧)ఊ log(𝑝௧) (9)𝑝௧ = ൜ 𝑝, 𝑦 = 11 െ 𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (10)

𝑝௧ = ൜ 𝑝, 𝑦 = 11 െ 𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (11)

 
where 𝐿 is the total classification loss. 𝛼𝑡 is a balanced variant. p is the category pre-
diction probability, and its value is between 0 and 1 [29].y represents the label value, and 
y value of the positive sample is 1. 𝐿େ୍୭ indicates the total regression loss. 

Figure 8. The problems of IoU Loss.

To solve the shortcomings of IoU Loss, CIoU Loss [28] has made improvements, which
can improve the accuracy of aircrafts detection.

LCIoU = 1 − IoU +
d2(x, xt)

a2 + µβ (5)

µ =
β

(1− IoU) + β
(6)

β =
4

π2

(
arctan

wt

ht − arctan
w
h

)2

(7)

where x and xt represent the center points of B and Bt respectively. d(·) is the Euclidean
distance. a is the minimum diagonal length that can cover B and Bt. µ is the weight
function of the aspect ratio, and β is used to measure the similarity of the aspect ratio. w
and wt represent the width of B and Bt respectively, and h and ht indicate the height of B
and Bt respectively.

The penalty term
d2(x,xt)

a2 takes into account the center distance between the predic-
tion box and the real box. It not only solves the problem of no gradient direction when two
boxes have no intersection, but also reduces the distance between the center points of the
two boxes when the two boxes have intersection.

The penalty term µβ takes into account the difference in the aspect ratio between the
predicted box and the real box, which can make the aspect ratio of the predicted box closer
to that of the real box.

We combine CIoU Loss with Focal Loss and propose CIF Loss to further improve the
accuracy of the network. Its definition is as follows:

LCIF = LFL + LCIoU (8)

LFL = −αt(1− pt)
γ log(pt) (9)

pt =

{
p, y = 1

1− p, otherwise,
(10)

pt =

{
p, y = 1

1− p, otherwise,
(11)

where LFL is the total classification loss. αt is a balanced variant. p is the category prediction
probability, and its value is between 0 and 1 [29]. y represents the label value, and y value
of the positive sample is 1. LCIoU indicates the total regression loss.

3.3.4. Non-Maximum Suppression (NMS)

In the testing stage, multiple prediction boxes with different confidence levels are
generated on a target, which will greatly affect the detection effect. Therefore, we use
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the NMS algorithm to filter the prediction boxes. The NMS algorithm retains the optimal
prediction box and deletes all the remaining prediction boxes on this target, so that each
target corresponds to only one prediction box, which can effectively reduce the number
of false alarms. First, we sort all the prediction boxes on the detection image from high to
low confidence and find the box A with the highest confidence. Then, the IoUs of A and all
the other prediction boxes on the image are calculated and compared with the default IoU
threshold (usually it is between 0–0.5, but it is set to 0.5 in this paper). If they are greater
than the threshold, they will be deleted, otherwise they will be remained. Furthermore,
it will continue to find the box with the highest confidence in the remaining prediction
boxes. The above steps will be repeated until each detected target corresponds to only one
prediction box. A simple schematic diagram of the NMS algorithm is shown in Figure 9.
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3.3.5. Using Airport Masks to Remove False Alarms

After using the EWFAN algorithm to obtain the preliminary aircraft detection results,
the airport mask will be performed to reduce the false alarms, which will remove the
prediction box outside the runway areas to obtain the final aircraft detection results. Using
airport mask can further reduce the false alarm rate, thereby effectively improving the
overall detection effect.

4. Experimental Results and Analyses
4.1. Data Usage

In this article, the data used in the experiment is SAR images with 1 m resolution
obtained by Gaofen-3 system. We use multiple large-scale SAR images including airports
and aircrafts to perform training and testing. First, we use the RSlabel tool to label the
aircrafts in the SAR images, which are confirmed by the SAR expert. Then, we use the
generated tag files and the original SAR images to automatically generate a data set, which
contains 5480 aircraft slices with a size of 500 × 500 and the corresponding label files.
In addition, the ratio of training set to validation set is 4:1. To validate the proposed
framework in the paper, three SAR images including aircrafts which are unused in the
datasets are utilized to generate the aircrafts detection results.

4.2. Hyperparameter Settings

This article builds all experimental environments under the Ubuntu 18.04 system, and
trains the network model based on the pytorch framework and CUDA 10.0. All models
are trained using the same data set. All models are optimized using the SGD algorithm,
and each model is trained using an SGD optimizer with momentum 0.9 and weight decay
4 × 10−5. each model is trained on two 2080Ti GPUs for 100 epochs. We employed an
initial learning rate of 0.0005 and the batch size of 16. We also employed the aspect ratio
{0.6,1.12,1.57}. The input image size is 512 × 512. It should be noted that, for fairness, none
of the three models use pre-training models and automatic enhancement functions. In the
testing phase, the NMS thresholds of the three models are all 0.5. For the sake of fairness,
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we do not use any advanced testing techniques such as Softer-NMS or data enhancement
during testing. The test time we recorded is the running time of the entire framework.

4.3. Results Evaluation Method

In order to verify the effectiveness of the method in this paper, six evaluation indexes
are used to measure the effect of the network. They are detection rate (DR) [8], false alarm
rate (FAR) [5], missed alarm rate (MAR) [5], false alarm number (F) [5], missed alarm
number (M) [5], and mAP [31] respectively. Among them, the detection rate represents
the ratio of the number of aircraft targets correctly detected by the network (C) [5] to the
number of aircraft targets in the label (L), and the false alarm rate is the ratio of the number
of false alarms(they are not aircrafts, but they have been detected as aircrafts) to the number
of prediction boxes last output by the network (S), and the missed detection rate is the ratio
of the number of missed alarms (they are aircrafts, but they have not been detected) to the
number of aircraft targets in the label. Q is the number of categories, |R(q)| is the number
of images relevant to the category q, k is the rank in the sequence of retrieved images, n is
the total number of retrieved images, P(k) is the precision at cutoff k in the list, and r(k) is an
indicator function whose value is 1 if the image at rank k is relevant and is 0 otherwise [31].
The specific calculation equations are as follows:

DR =
C
L

(12)

FAR =
F
S

(13)

MAR =
M
L

(14)

mAP =
1
Q

Q

∑
q=1

AP(q) (15)

AP =
∑n

k=1(P(k)× r(k))
|R(q)| (16)

4.4. Analysis of the Role of Airport Detection Algorithms

In this article, we compare the detection results of aircrafts using airport mask with
those when they are not used, as shown in Figure 10. Then the detection results of several
SAR images are counted and analyzed, as shown in Tables 1 and 2. It can be seen from
the experimental results that the false alarm rate of the aircraft detection is significantly
reduced after using the airport mask algorithm proposed in this paper.
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Table 1. Comparison of airport detection algorithms effectiveness of EfficientDet network.

Network DR (%) FAR (%) MAR (%) F M

EfficientDet (raw) (512) 97.7 30.6 2.6 130 8
EfficientDet (mask) (512) 96.4 11.8 3.6 39 11

Table 2. Comparison of airport detection algorithms effectiveness of EWFAN network.

Network DR (%) FAR (%) MAR (%) F M

EWFAN (raw) (512) 97.4 7.2 2.6 23 8
EWFAN (mask) (512) 95.4 3.3 4.6 10 14

In Figure 10, we show aircraft detection results with the airport mask and without
airport mask. The green box represents the correctly detected aircraft, and the red box
represents false alarms. It can be seen that there are 4 false alarms when the airport
detection algorithm is not used, and there are no false alarms when the airport detection
algorithm is used. Therefore, the false alarms of aircraft detection are significantly reduced
after the airport detection algorithm is used.

Tables 1 and 2 (raw) indicate that the airport mask is not used, and (mask) indicates
that the airport mask is used. (512) Represents the input size of the network. It can be seen
that for the EfficientDet network, the false alarm is reduced by 18.8% when the airport
mask is used, but the missed alarm rate is increased by 1.3%. The reason for the slight
increase in the missed alarm rate is that the use of masks will remove aircraft targets that
are not on the runway. For the EWFAN algorithm, the false alarm is reduced to only 3.3%
after using the airport mask. Based on the comparison results of the two networks, it can
be seen that the false alarm rate will be greatly reduced after the airport mask removal. In
addition, although the use of mask to filter false alarms will lead to a slight increase in the
missed alarm rate, the false alarm rate is greatly reduced, and the overall aircraft detection
effect is still greatly improved.

4.5. The Influence of Different Window Overlap Rates on Aircraft Detection Performance

Table 3 shows the aircraft detection effects under different sliding window overlap
ratios. The false alarm rate under 10% sliding window overlap rate is slightly lower than
20%, but the missed alarm rate under 10% sliding window overlap rate is much higher than
20%. The missed alarm rate under 30% sliding window overlap rate is slightly lower than
20%, but the false alarm rate under 30% sliding window overlap rate is 20% is much higher.

Table 3. Comparison of aircraft detection results with different window overlap rates.

Window Overlap Rates DR (%) FAR (%) MAR (%) F M

EWFAN (10%) 93.4 2.8 6.6 8 20
EWFAN (20%) 95.4 3.3 4.6 10 14
EWFAN (30%) 95.6 5.5 4.3 17 13

Table 4 shows the aircraft detection time under different sliding window overlap ratios
(the time includes airport detection time and mask time).

Table 4. Comparison of aircraft inspection time with different window overlap rates.

Window Overlap Rates Mean

EWFAN (10%) 16.78 s
EWFAN (20%) 18.58 s
EWFAN (30%) 21.23 s
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In order to trade off the missed alarm rate, false alarm rate, and detection time, this
paper sets the overlap rate of the aircraft detection sliding window to 20%.

4.6. Aircrafts Detection Performance Analysis

In order to better demonstrate the performance of the algorithm proposed in this
paper, three unused large airports images containing aircrafts are tested and analyzed.

4.6.1. Analysis of Aircrafts Detection for Airport I

The airport is Hongqiao Airport in Shanghai, China. In this airport, the aircrafts are
small. In addition, there are many objects around the aircrafts that are similar to aircrafts,
which will interfere with the aircraft detection results, thereby false alarms will be increased.
In addition, the distribution of aircrafts in Hongqiao Airport is very dense, which also
increases the difficulty of detection. The size of Hongqiao Airport is 12,000 × 14,400 pixels.
Figure 11 shows the aircraft detection results of each network in Airport I. Figure 11a is the
SAR image of Gaofen-3 system with 1 m resolution. Figure 11b is the aircrafts label (which
is generated by SAR expert by comparing SAR image with the corresponding Google
optical image). Figure 11c–e shows the detection results of EfficientDet algorithm, YOLOv4
algorithm, and proposed EWFAN algorithm respectively. The green box represents the
correctly detected aircrafts, the red box represents the false alarms (they are not aircrafts,
but they have been detected as aircrafts), and the yellow box represents the missed alarms
(they are aircrafts, but they have not been detected aircrafts) aircrafts, the false alarms,
and the missed alarms respectively. For the detail images, the detection result of the
EWFAN algorithm has no false alarm, but YOLOv4 has 2 false alarms. While, EfficientDet
algorithm has 4 false alarms, so it is much more than EWFAN algorithm. Neither YOLOv4
nor EfficientDet can well extract the features of aircrafts and suppress interference from
difficult negative samples. In the EWFAN algorithm, the WFAM module can well enhance
the saliency of positive samples and suppress the interference of negative samples, thus
greatly reducing the generation of false alarm targets.

4.6.2. Analysis of Aircrafts Detection for Airport II

The aircrafts at Airport II are smaller than the aircraft at Hongqiao Airport. However,
because the total number of aircrafts is less and the overall background information
interference is not serious, the aircrafts detection effect for Airport II is very good. The
size of Airport II is 9600 × 9600 pixels. Figure 12 shows the aircraft detection results of
each network in Airport 2, where (a)–(e) are the same types of images as Figure 11. It
can be seen from Figure 12 that there are no missing alarms in the detection results of
the three networks. As for the false alarm, there are one and two false alarms for the
EfficientDet algorithm (as shown in Figure 12c) and the YOLOv4 algorithm (as shown in
Figure 12d) respectively, but there are no false alarms for the EWFAN algorithm (as shown
in Figure 12e). Because the CIF Loss and WFAM modules in the EWFAN can effectively
detect aircrafts and remove false alarms, so the detection effect is better than EfficientDet
and YOLOv4.
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4.6.3. Analysis of Aircrafts Detection for Airport III

Airport III is the Capital Airport in Beijing, China. Its background is more complicated.
There are many bright areas formed by buildings, and there are lots of interference from
targets with similar shapes to aircrafts, which may cause false alarms. The size of the
airport III is 14,400 × 16,800 pixels. Figure 13 shows the aircraft detection results of the
Capital Airport, where (a)–(e) are the same types of images as Figure 11. According to the
detection results, the detection rates of EWFAN, YOLOv4, and EfficientDet are all high, but
the false alarm rate is quite different. We can find that the detection result of the EWFAN
algorithm is the best. There is only one false alarm in the detail map and no missing alarms
(as shown in Figure 13e). The detection result of the EfficientDet algorithm is the worst. It
has many false alarms (as shown in Figure 13c), and its prediction box is not accurate. This
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shows that the regression accuracy of the EfficientDet algorithm is low. EWFAN algorithm
introduces CIF Loss, which solves this problem well.
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4.7. Analysis and Evaluation

Table 5 shows the aircraft detection results of SAR images with different networks
when using GCAM airport detection algorithm [23] and mask to remove false alarms.
Based on the analysis of the results of the three airports, the detection rates of EfficientDet,
YOLOv4, and the algorithm proposed in this article are similar, and their detection rates
are all over 95.0%. However, their false alarm rates vary greatly. The total false alarm rates
of EfficientDet, YOLOv4, and EWFAN are 11.8%, 7.6%, and 3.3%, respectively. The false
alarm rate of EfficientDet is the highest. The false alarm rate of YOLOv4 is lower compared
with EfficientDet, but it is still higher than the EWFAN algorithm. The false alarm rate
of EWFAN is greatly reduced compared with EfficientDet and YOLOV4, indicating that
it can enhance the saliency of the target and suppress the interference of background
information. Table 6 shows the results of different network on our validation dataset, the
mAP of EfficientDet, YOLOv4, and EWFAN are 92.4%, 95.1%, and 97.9%, respectively.
Combining Tables 1, 5 and 6, we can see that the aircraft detection framework proposed in
this paper can greatly improve the overall detection effect.

Table 5. Comparison of aircraft detection results from SAR images of different network.

Airport DR (%) FAR (%) MAR (%) F M

EfficientDet (512)

Airport I 98.4 6.7 1.6 9 2
Airport II 100 2.9 0 1 0
Airport III 93.0 17.8 6.3 29 9

Total 96.4 11.8 3.6 39 11

YOLOv4 (512)

Airport I 98.4 4.6 1.6 6 2
Airport II 100 5.7 0 2 0
Airport III 92.3 10.8 7.7 16 11

Total 95.7 7.6 4.3 24 13

EWFAN (Ours)
(512)

Airport I 98.4 0.8 1.6 1 2
Airport II 100 0 0 0 0
Airport III 91.6 6.4 8.4 9 12

Total 95.4 3.3 4.6 10 14

Table 6. Results of different network on our validation dataset.

Network EfficientDet YOLOv4 EWFAN (Ours)

mAP (%) 92.4 95.1 97.9

Tables 7 and 8 respectively show the test time of different networks before and after
using the airport detection algorithm. (512) Represents the input size of the network. When
the airport detection algorithm is not used, the average test time of EfficientDet, YOLOv4,
and EWFAN in this paper are 18.20 s, 15.91 s, and 18.58 s, respectively. Among them, the
test time of the proposed network in this paper only increased by 0.38 s compared with
EfficientDet, which can be almost ignored. After using the airport detection algorithm,
the average test time of the EfficientDet, YOLOv4, and EWFAN algorithms are 15.25 s,
14.66 s, and 15.40 s respectively, which indicates that the time of detecting aircrafts can be
shortened by introducing the airport mask. It can be seen from Table 9 that the average
extraction time of the airport area is 7.89 s. For the EWFAN algorithm, the average running
time of the entire framework while using the airport mask algorithm is 15.40 s, which is
3.18 s shorter than that of the unused airport extraction algorithm. This shows that the
SAR image aircraft detection framework proposed in this paper can not only significantly
improve the detection effect, but also shorten the detection time.
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Table 7. Comparison of the test time from SAR images of different network (without airport
mask algorithm).

Network Airport I Airport II Airport III Mean

EfficientDet 17.97 s 8.89 s 27.75 s 18.20 s
YOLOv4 15.61 s 8.09 s 24.04 s 15.91 s

EWFAN (Ours) 18.21 s 9.03 s 28.50 s 18.58 s

Table 8. Comparison of the test time from SAR images of different network (with airport mask algorithm).

Network Airport I Airport II Airport III Mean

EfficientDet 12.79 s 11.12 s 21.85 s 15.25 s
YOLOv4 12.40 s 10.90 s 20.68 s 14.66 s

EWFAN (Ours) 12.92 s 11.19 s 22.07 s 15.40 s

Table 9. Airport extraction time from SAR image.

Airport I Airport II Airport III Mean

Time 7.60 s 6.73 s 9.33 s 7.89 s

5. Discussion

In this paper, an effective framework for aircraft detection in SAR images is proposed.
This framework combines the airport detection mask with the EWFAN algorithm invented
in this paper. It can actively remove false alarms, greatly improve the aircraft detection
accuracy, and significantly reduce the detection time. The success of this new aircraft
detection framework has proved the necessity of combing different deep neural networks
in SAR image analytics.

The missed detection of aircrafts turns out to be an interesting topic for further inves-
tigation. The airport detection algorithm can quickly locate the airport area, significantly
reducing the calculation amount and false alarm rate of aircraft detection. The mask re-
moval method can further reduce the false alarm rate of aircrafts detection. Frequently, a
small number of aircraft targets would be placed outside the airport runway area, which
slightly increases the missed alarm. We plan to conduct in-depth analysis and address the
detection of aircrafts in the flight in our future work.

We also highlight the supplementary improvement of EWFAN. This paper proposes
an efficient deep learning network EWFAN for dense object detection. Compared with
EfficientDet and YOLOv4, EWFAN has unique advantages in aircraft detection in SAR
images. These satisfactory results are not only coming from the reasonable architecture of
our EWFAN, but also the precise annotation of similar situations in our training dataset.
In EWFAN, the backbone, feature fusion module, classifier, and detector are specially
designed to make the training converge well. In addition, the proposed framework could
be employed in near real-time aircraft detection. However, we also noticed that although
the false alarm rate of EWFAN is very low, the missed alarm rate is almost the same as
EfficientDet and YOLOv4. We will explore corresponding solutions in our future study.

6. Conclusions

In this paper, an efficient framework for aircrafts detection in SAR images is proposed,
which includes airport detection algorithm, EWFAN algorithm, improved loss function,
and mask removal method to reduce false alarms. The proposed framework achieves
low false alarm rate and missed alarm rate; and the aircraft detection testing at the three
airports only takes 15.40 s on average, which indicates prominent detection efficiency
of the framework. Main contributions and future research directions of this paper are
summarized as follows:
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(1) An end-to-end aircraft detection framework is proposed in this paper. It uses the
airport detection algorithm GCAM to obtain the airport runway area first. Then the airport
rectangular contour is quickly obtained based on the airport runway area. In addition,
aircrafts detection is performed in the rectangular box of the airport. Finally, detection
results are masked by the extracted runway areas to generate the final aircrafts detection.
This framework greatly reduces false alarms and improves aircraft detection efficiency,
which can be utilized broadly in aircraft detection studies.

(2) An innovative aircraft detection network EWFAN is proposed in this paper. The
main contributions of EWFAN are the WFAM module and the CIF loss function. In this
network, BiFPN, RSAM, and ASFF are integrated to achieve effective extraction of aircraft
features, which thereby can greatly reduce background interference and improve aircraft
detection accuracy. It also provides a valid methodology of combining various deep neural
networks for targets detection.

(3) Following the initial experiment in this paper, we will employ other SAR images.
The SAR image aircraft detection framework proposed in this paper can detect aircrafts
automatically and efficiently, and it is also applicable to other types of dense target detection,
such as vehicles and ships.
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